朱克明 楊艷華
摘要:轉(zhuǎn)座子是存在于染色體DNA上可自主復(fù)制和位移的基本單位。簡單介紹了轉(zhuǎn)座子的種類、結(jié)構(gòu)和特性, 綜述了MITEs轉(zhuǎn)座子的研究進展及其應(yīng)用。
關(guān)鍵詞:植物;MITEs轉(zhuǎn)座子;種類;結(jié)構(gòu);特性
中圖分類號:Q784 文獻標識碼:A 文章編號:0439-8114(2015)22-5497-04
Abstract: The transposon, existing in the chromosome DNA, is the basic unit of self-duplication and displacement. In this review, the category, the structure, and the characteristic of the transposon were introduced, and the research progress and application of plant MITEs transposon were summarized.
Key words:plant; MITEs(miniature inverted-repeat transposable elements); category; structure; characteristic
1951年美國的McClintock在玉米中首先發(fā)現(xiàn)了DNA轉(zhuǎn)座子(DNA-transposon),以后陸續(xù)在矮牽牛、金魚草、甜豌豆等其他高等植物和動物中也證實了轉(zhuǎn)座子的存在。另外,在一些多細胞綠藻中也發(fā)現(xiàn)了轉(zhuǎn)座子的存在。研究證實,在高等真核生物中轉(zhuǎn)座子構(gòu)成了其基因組的重要組成部分,例如人類基因組的45%,玉米基因組的60%都是由轉(zhuǎn)座子構(gòu)成的[1,2]。雖然轉(zhuǎn)座子在水稻和擬南芥的基因組中所占的比例較低,但仍然大量存在,例如水稻基因組的29%是由轉(zhuǎn)座子構(gòu)成的[3]。盡管轉(zhuǎn)座子的研究已經(jīng)有50多年的歷史,但是轉(zhuǎn)座子在基因組進化中的作用尚不清楚。隨著分子生物學(xué)和分子遺傳學(xué)的不斷發(fā)展,人們能夠從分子水平上研究轉(zhuǎn)座子的結(jié)構(gòu)與功能,對轉(zhuǎn)座子本質(zhì)的認識不斷深化,也使轉(zhuǎn)座子的應(yīng)用前景更加廣闊。近年來,轉(zhuǎn)座子的應(yīng)用研究日益受到人們的重視,許多研究表明,轉(zhuǎn)座子在許多植物的基因和基因組進化中起著重要作用[4-12]。
1 轉(zhuǎn)座子的種類和特性
轉(zhuǎn)座子根據(jù)其轉(zhuǎn)座方式的不同可以分為兩類:類型Ⅰ轉(zhuǎn)座子(Class I),又稱作反轉(zhuǎn)錄轉(zhuǎn)座子(Retrotransposon),其轉(zhuǎn)座過程以RNA為中間媒介,將原有的元件復(fù)制并粘貼到新的位點,這類轉(zhuǎn)座子在基因組中一般呈多拷貝分布;類型Ⅱ轉(zhuǎn)座子(Class II),也稱作DNA轉(zhuǎn)座子(DNAtransposon),是以DNA為媒介,將元件從初始位置剪切出來,單鏈的或雙鏈的,然后粘貼到新的位點,其拷貝數(shù)一般較少[13]。
1.1 反轉(zhuǎn)錄轉(zhuǎn)座子
反轉(zhuǎn)錄轉(zhuǎn)座子其轉(zhuǎn)座過程是轉(zhuǎn)座因子DNA先被轉(zhuǎn)錄成RNA,再借助反轉(zhuǎn)錄酶(RNaseH)反轉(zhuǎn)錄成DNA,之后插入到新的染色體位點,從而引起基因的突變或重排。因為反轉(zhuǎn)錄轉(zhuǎn)座子是通過復(fù)制的方式實現(xiàn)轉(zhuǎn)座,每轉(zhuǎn)座一次,其拷貝數(shù)就增加一份,因而極大地增加了植物基因組的大小,是構(gòu)成植物基因組的主要成分。Sanmiguel等[14]依據(jù)對玉米核基因組基因間填充成分研究的結(jié)果推斷,高等植物基因組大小的差別主要是由基因間填充的反轉(zhuǎn)錄轉(zhuǎn)座子拷貝數(shù)的多少造成的。反轉(zhuǎn)錄轉(zhuǎn)座子主要包括長末端重復(fù)(Long terminal repeat, LTR)反轉(zhuǎn)錄轉(zhuǎn)座子和非長末端重復(fù)(Non-long terminal repeat,Non-LTR)反轉(zhuǎn)錄轉(zhuǎn)座子。LTR根據(jù)其編碼序列的結(jié)構(gòu)可以進一步分為Copia和Gypsy,Non-LTR包括LINEs(Long interspersed elements)和SINEs(Short interspersed elements)兩類[8,9]。
1.2 DNA轉(zhuǎn)座子
DNA轉(zhuǎn)座子是以DNA-DNA方式轉(zhuǎn)座的轉(zhuǎn)座子,可通過DNA復(fù)制或直接切除兩種方式獲得可移動片段,重新插入基因組DNA中,導(dǎo)致基因的突變或重排,但一般不改變基因組的大小。DNA轉(zhuǎn)座子根據(jù)轉(zhuǎn)座的自主性又分為自主轉(zhuǎn)座子和非自主轉(zhuǎn)座子,前者本身能夠編碼轉(zhuǎn)座酶而進行轉(zhuǎn)座,后者則要在自主轉(zhuǎn)座子存在時才能夠?qū)崿F(xiàn)轉(zhuǎn)座。玉米的Ac/Ds體系就是典型的一例。Ac(Activator)屬于自主轉(zhuǎn)座子,Ds(Dissociation)屬于非自主轉(zhuǎn)座子,只有在Ac存在時,Ds才能轉(zhuǎn)座。從結(jié)構(gòu)上看,MITEs (Miniature inverted-repeat transposable elements)屬于典型的非自主性DNA轉(zhuǎn)座子。
2 MITEs轉(zhuǎn)座子的研究概況
2.1 MITEs轉(zhuǎn)座子的發(fā)現(xiàn)
在分析玉米wx-B2突變的插入時,發(fā)現(xiàn)一個短的轉(zhuǎn)座子(128bp)在基因組中大量存在[15]。這些轉(zhuǎn)座子有14 bp的TIRs以及兩側(cè)有3 bp的TSDs。然而,這些轉(zhuǎn)座子的序列與已知任何的TE,甚至在TIR區(qū)域都沒有相似性。引人注目的是,不同于任何其他含有TIRs的TEs,這些轉(zhuǎn)座子在玉米基因組中具有較高的拷貝數(shù)[15]。這個轉(zhuǎn)座子家族被命名為Tourist。兩年后,通過計算分析草本基因組時,發(fā)現(xiàn)命名為Stowaway的另一類型轉(zhuǎn)座子的幾個家族[16]。Stowaway轉(zhuǎn)座子的TSDs是一個不可變并含有二核苷酸“TA”,與單子葉植物及雙子葉植物的基因相關(guān)聯(lián)。隨后在真菌、人類、蚊子、甲蟲、硬骨魚等多種生物中也陸續(xù)證實了MITEs的存在。截至2001年,已確定的MITEs可進一步被分為七類:Tourist、Stowaway、Gaijin、Castaway、Ditto、Wanderer和Explorer。最近, 在蘋果中發(fā)現(xiàn)了一類新的MITEs轉(zhuǎn)座子Spring[17]。
2.2 MITEs轉(zhuǎn)座子的特征
從結(jié)構(gòu)上看,MITEs屬于典型的非自主性DNA轉(zhuǎn)座子。它們一般較短(100~700 bp),含有類似于DNA轉(zhuǎn)座子的末端倒轉(zhuǎn)重復(fù)(Terminal inverted repeats,TIRs,10-30 bp)和插入位點復(fù)制區(qū)(Target site duplications,TSDs,2-3bp)。其中大部分MITEs長度在400 bp左右,同時其側(cè)翼具有相似的反向重復(fù),例如:
5′GGCCAGTCACAATGG..~400 nt..CCATTGTGACTGGCC 3′
3′CCGGTCAGTGTTACC..~400 nt..GGTAACACTGACCGG 5′
2.3 MITEs轉(zhuǎn)座子的鑒定
20世紀90年代中期,隨著大量基因組序列的公布,MITE家族的數(shù)量也迅速增長[18]。需要有專門的軟件,以便在一個較大的基因組中來確定轉(zhuǎn)座子MITEs的結(jié)構(gòu)特征。FINDMITE軟件使用的是平均大小為829 bp的序列,并成功地在蚊子基因組中找到了MITE家族[19-21]。該軟件要求用戶預(yù)先定義TSD序列或長度、TIR的長度以及TIRs之間的最小距離。不符合預(yù)先設(shè)定的參數(shù)、TIRs序列有大量變異或失去TSDs的轉(zhuǎn)座子很可能會漏掉[22]。MUST軟件(MITE Uncovering SysTem)是基于字符串匹配,在500 bp長度的片段中搜素TIR結(jié)構(gòu)[23]。然后,驗證是否該區(qū)域兩側(cè)有成對的TSD。當(dāng)檢索完所有候選轉(zhuǎn)座子,MUST根據(jù)TIRs之間的序列相似性將轉(zhuǎn)座子分為不同家族。FINDMITE軟件,由于基因組中TE結(jié)構(gòu)比較復(fù)雜,它可能會產(chǎn)生大量的假陽性和假陰性[24]。MITE-Hunter軟件利用多重序列比對來篩選序列,另外符合MITE特定標準,但有相似的側(cè)翼序列。MITE-Hunter軟件將候選序列歸為不同家族,并建立共識序列。在水稻基因組中,MITE-Hunter軟件的假陽性率為4.4%~8.3%,F(xiàn)INDMITE軟件的假陽性為85%,MUST軟件的假陽性率為86%[24]。為了減少MITEs高拷貝數(shù)而引起的計算冗余,開發(fā)了MITE Digger軟件,該軟件可以全基因組鑒定MITE家族。運用該軟件處理水稻基因組的時間減少到15 h左右,而且假陽性率(1.8%)和假陰性率(0.9%)比較低[25]。
3 MITEs在實際研究中的應(yīng)用
轉(zhuǎn)座子插入是基因組中頻繁發(fā)生的事件。據(jù)估計,水稻兩個亞種在分化后基因組分別增大2%和6%就是由于LTR轉(zhuǎn)座子插入造成的[26]。在水稻基因組中,轉(zhuǎn)座子約占26%,Class I和Class II分別為15%和11%[27]。從拷貝數(shù)上看,Class II要多于Class I,其主要原因在于水稻基因組中含有約100 000份拷貝的MITEs,占據(jù)了水稻轉(zhuǎn)座子的71.6%及將近20%的核苷酸序列長度,是水稻基因組中含量最多的轉(zhuǎn)座因子[28,29]。對水稻4號染色體的分析表明,MITEs約占重復(fù)DNA總量的50%[30]。由于MITEs較小而不能編碼任何蛋白質(zhì),尚不確定它們是如何復(fù)制及如何移動到一個新的位置,或許較大的轉(zhuǎn)座子能夠編碼轉(zhuǎn)座所必需的酶及識別相似的反向重復(fù)。在水稻中某些品系的突變就是MITEs在基因中的插入引起的。對于系統(tǒng)發(fā)育研究而言,MITEs是比較好的分子標記,首先它們一般長度較短(100~700 bp),并且作為一種可移動因子極少受到選擇作用,進化速率更快、信息量更大,適合于低分類等級的研究;其次,MITEs分布極其廣泛,是水稻基因組中最多的轉(zhuǎn)座因子,便于找到適合研究的片段;此外,從分布區(qū)域上看,MITEs主要分布于染色體臂的常染色質(zhì)區(qū),如基因富集區(qū)[5, 30],便于用EPIC-PCR策略去篩選一些位于內(nèi)含子中的MITEs用于分析??傊瑢τ诘緦賰?nèi)較低分類等級物種的系統(tǒng)發(fā)育和群體遺傳學(xué)研究而言,MITEs是較為理想的一種分子標記。
同時MITEs也是植物基因組的一個重要組成部分,如MITEs中的“Stowaway”家族占水稻基因組的2%[29]。由于MITEs存在極高的拷貝數(shù)和插入位點多態(tài)性,因而被認為是水稻中等位基因多態(tài)性的主要來源[31]。MITEs在影響基因表達方面具有重要作用[4,15,32]。由于MITEs多分布于基因富集區(qū)域,如5′-側(cè)翼區(qū)、3′-側(cè)翼區(qū)和內(nèi)含子區(qū)段,這種現(xiàn)象在禾本科植物中表現(xiàn)尤為明顯[32-34]。MITEs插入可能會改變基因的起始或終止序列,甚至轉(zhuǎn)錄起始或編碼序列[4,22,35,36]。如水稻的一個抗病基因家族Xa21包含多個轉(zhuǎn)座子(例如MITEs和LTR反轉(zhuǎn)錄轉(zhuǎn)座子),它們插入到不同的基因中,由此產(chǎn)生高度變異使得該家族的一些成員又進化出新的抗病性[37]。
一系列研究表明,MITEs插入基因組某個特定位置能為系統(tǒng)發(fā)育重建提供重要信息,只要它們具有同源性[38,39]。由于MITEs插入后再發(fā)生切除的頻率相當(dāng)?shù)蚚4,40],只要MITEs不從基因組中切除,則會成為該基因組的一個標記(Marker),因而MITEs的存在與否對推斷物種之間的系統(tǒng)發(fā)育關(guān)系非常有用[4,40],可以用來探討一些物種的進化歷史[41,42]。
近年來,隨著亞洲栽培稻兩個亞種基因組測序工作的完成,部分研究從基因組角度探討了兩個亞種的起源及分化時間[26,43-45]。Ma等[26]以非洲栽培稻Oryza glaberrima的序列為參照,分析了O.sativa ssp. indica和O.sativa ssp. japonica基因組的同源序列,發(fā)現(xiàn)這兩個亞種從它們的祖先種分化出來后,基因組分別增大了2%和6%。他們利用隨機選擇的24個基因的核苷酸序列,估測亞洲栽培稻兩個亞種的分化時間約為0.44 MYA左右,非洲栽培稻和亞洲栽培稻的分化時間約為0.64 MYA。Zhu等[45]測定了4個單拷貝核基因(Adhl及3個未注釋基因)的內(nèi)含子序列,構(gòu)建了稻屬A基因組8個物種的系統(tǒng)發(fā)育關(guān)系。用分子鐘方法估測亞洲栽培稻和非洲栽培稻,以及亞洲栽培稻的兩個亞種的分化時間分別為0.7 MYA和0.4 MYA左右。
研究表明,轉(zhuǎn)座子在哺乳動物的基因調(diào)節(jié)、產(chǎn)生新的外顯子及新的基因方面具有積極作用[46-48]。也有研究表明,轉(zhuǎn)座子對基因變異及產(chǎn)生新的功能亦具有積極的作用[7,11,49-54]。另外,大約4%的人類蛋白質(zhì)編碼基因含有轉(zhuǎn)座子,這表明轉(zhuǎn)座子對基因進化具有重要影響。因此,闡明轉(zhuǎn)座子在生物物種中的生物重要性值得進一步的研究和探討。
參考文獻:
[1] BI?魪MONT C, VIEIRA C. Genetics: Junk DNA as an evolutionary force[J]. Nature, 2006, 443(7111): 521-524.
[2] LOCKTON S, GAUT B S. The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana[J]. Journal of Molecular Evolution, 2009, 68(1):80-89.
[3] MESSING J, BHARTI A K, KARLOWSKI W M, et al. Sequence composition and genome organization of maize[J]. Proc Natl Acad Sci, 2004, 101(40):14349-14354.
[4] WESSLER S R, BUREAU T E, WHITE S E. LTR-retrotransposons and MITES: Important players in the evolution of plant genomes[J].Current Opinion in Genetics & Development,1995, 5(6): 814-821.
[5] ZHANG Q, ARBUCKLE J, WESSLER S R. Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize[J]. Proc Natl Acad Sci, 2000, 97(3):1160-1165.
[6] CASACUBERTA J M, SANTIAGO N. Plant LTR-retrotransposons and MITEs: Control of transposition and impact on the evolution of plants genes and genomes[J]. Gene, 2003, 311: 1-11.
[7] SAKAI H, TANAKA T, ITOH T. Birth and death of genes promoted by transposable elements in Oryza sativa[J]. Gene, 2007, 392(1-2): 59-63.
[8] WICKER T, SABOT F, HUA-VAN A, et al. A unified classification system for eukaryotic transposable elements[J]. Nature Reviews Genetics, 2007, 8(12):973-982.
[9] PARISOD C,ALIX K,JUST J,et al.Impact of transposable elements on the organization and function of allopolyploid genomes[J].New Phytologist,2010,186(1):37-45.
[10] LISCH D.How important are transposons for plant evolution?[J].Nature Reviews Genetics,2013,14(1):49-61.
[11] FATTASH I,ROOKE R,WONG A,et al. Miniature inverted-repeat transposable elements: discovery, distribution, and activity[J].Genome,2013,56(9):475-486.
[12] CHEN J,HU Q,ZHANG Y,et al. P-MITE:A database for plant miniatureinverted-repeat transposable elements[J].Nucleic Acids Research, 2014, 42:D1176-D1181.
[13] FINNEGAN D J. Transposable elements[A]. LINDSLEY D L, ZIMM G G. The genome of Drosophila melanogaster[M]. New York: Academic Press, 1992.
[14] SANMIGUEL P,TIKHONOV A,JIN Y K,et al. Nested retrotransposons in the intergenic regions of the maize genome[J]. Science,1996,274(5288):765-768.
[15] BUREAU T E, WESSLER S R. Tourist: A large family of small inverted repeat elements frequently associated with maize genes[J]. Plant Cell, 1992, 4(10): 1283-1294.
[16] BUREAU T E, WESSLER S R. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses[J]. Proc Natl Acad Sci, 1994, 91(4): 1411-1415.
[17] HAN Y, KORBAN S S. Spring: A novel family of miniature inverted-repeat transposable elements is associated with genes in apple[J]. Genomics, 2007,90(2): 195-200.
[18] FESCHOTTE C, ZHANG X, WESSLER S R. Miniature inverted-repeat transposable elements(MITEs) and their relationship with established DNA transposons[A]. CRAIG N, CRAIGIE R, GELLERT M, et al. Mobile DNA II[M]. Washington DC: American Society of Microbiology Press, 2002.
[19] TU Z. Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito,Anopheles gambiae[J]. Proc Natl Acad Sci,2001,98(4):1699-1704.
[20] NENE V,WORTMAN J R,LAWSON D,et al. Genome sequence of Aedes aegypti, a major arbovirus vector[J].Science,2007,316(5832): 1718-1723.
[21] AMUNDSEN K,ROTTER D,LI H M,et al. Miniature inverted-repeat transposable element identification and genetic marker development in Agrostis[J].Crop Science,2011,51:854-861.
[22] SANTIAGO N,HERRAIZ C,GONI J R,et al. Genome-wide analysis of the emigrant family of MITEs of Arabidopsis thaliana[J].Molecular Biology and Evolution,2002,19(12): 2285-2293.
[23] CHEN Y, ZHOU F, LI G, et al. MUST: A system for identification of miniature inverted-repeat transposable elements and applications to Anabaena variabilis and Haloquadratum walsbyi[J]. Gene, 2009, 436(1-2): 1-7.
[24] HAN Y, WESSLER S R. MITE-Hunter: A program for discovering miniature inverted-repeat transposable elements from genomic sequences[J]. NucleicAcids Res, 2010, 38(22): e199.
[25] YANG G. MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements[J]. BMC Bioinformatics, 2013, 14:186.
[26] MA J, BENNETZEN J L. Rapid recent growth and divergence of rice nuclear genomes[J]. Proc Natl Acad Sci, 2004, 101(34): 12404-12410.
[27] JIANG N, BAO Z, ZHANG X, et al. An active DNA transposon family in rice[J]. Nature, 2003,421(6919):163-167.
[28] TURCOTTE K, SRINIVASAN S, BUREAU T. Survey of transposable elements from rice genomic sequences[J]. Plant Journal, 2001, 25(2): 169-179.
[29] MAO L, WOOD T C, YU Y, et al. Rice transposable elements: A survey of 73,000 sequence-tagged connectors[J]. Genome Research, 2000, 10(7): 982-940.
[30] FENG Q, ZHANG Y, HAO P, et al. Sequence and analysis of rice chromosome 4[J]. Nature, 2002, 420(6913): 316-320.
[31] WESSLER S R. Plant transposable elements, A hard act to follow[J]. Plant Physiology, 2001, 125: 149-151.
[32] HU J, REDDY V S, WESSLER S R. The rice R gene family: two distinct subfamilies containing several miniature inverted-repeat transposable elements[J]. Plant Molecular Biology, 2000, 42(5): 667-678.
[33] BUREAU T E, RONALD P C, WESSLER S R. A computer based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes[J]. Proc Natl Acad Sci, 1996, 93(16): 8524-8529.
[34] TARCHINI R, BIDDLE P, WINELAND R, et al. The complete sequence of 340 kb of DNA around the rice Adh1-Adh2 region reveals interrupted colinearity with maize chromosome 4[J]. Plant Cell, 2000, 12(3):381-391.
[35] YANG G,DONG J,CHANDRASEKHARAN MB,et al. Kiddo,a new transposable element family closely associated with ricegenes[J]. Molecular Genetics and Genomics,2001,266(3): 417-424.
[36] AMRANI A E, MARIE L, A?魵NOUCHE A, et al. Genome-wide distribution and potential regulatory functions of AtATE, a novel family of miniature inverted-repeat transposable elements in Arabidopsis thaliana[J]. Molecular Genetics and Genomics, 2002, 267(4): 459-471.
[37] RICHTER T E,RONALD P C.The evolution of disease resistance genes[J].Plant Molecular Biology,2000,42(1):195-204.
[38] IWAMOTO M,NAGASHIMA H,NAGAMINE T,et al.A Tourist element in the 5′-flanking region of the catalase gene CatA reveals evolutionary relationships among Oryza species with various genome types[J].Molecular Genetics and Genomics, 1999,262(3):493-500.
[39] PETERSON G,SEBERG O. Molecular evolution and phylogenetic application of DMCI[J]. Molecular Phylogenetics and Evolution, 2002, 22(1): 43-50.
[40] KANAZAWA A, AKIMOTO M, MORISHIMA H, et al. Inter-and intra-specific distribution of Stowaway transposable elements in AA-genome species in rice[J]. Theoretical and Applied Genetics, 2000, 101(3): 327-335.
[41] BATZER M A,DEININGER P L.Alu repeats and human genomic diversity[J].Nature Reviews Genetics,2002,3(5):370-379.
[42] KAZAZIAN H H. Mobile elements: Drivers of genome evolution[J]. Science, 2004, 303(5664): 1626-1632.
[43] TANG J B, XIA H A,CAO M,et al. A comparison of rice chloroplast genomes[J]. Plant Physiology,2004,135(1):412-420.
[44] VITTE C, ISHII T, LAMY F, et al. Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.)[J]. Molecular Genetics and Genomics, 2004, 272(5): 504-511.
[45] ZHU Q H, GE S. Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes[J]. New Phytologist, 2005, 167(1): 249-265.
[46] MAKALOWSKI W. Genomic scrap yard: How genomes utilize all that junk[J]. Gene, 2000, 259(1-2): 61-67.
[47] BRANDT J, SCHRAUTH S, VEITH A M, et al. Transposable elements as a source of genetic innovation: Expression and evolution of a family of retrotransposon-derived neogenes in mammals[J]. Gene, 2005, 345(1): 101-111.
[48] BRANDT J, VEITH A M, VOLFF J N. A family of neofunctionalized Ty3/gypsy retrotransposon genes in mammalian genomes[J]. Cytogenetic and Genome Research,2005,110(1-4): 307-317.
[49] BRITTEN R. Transposable elements have contributed to thousands of human proteins[J]. Proc Natl Acad Sci, 2006, 103(6): 1798-1803.
[50] BUREAU T E, WESSLER S R. Stowaway: A new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants[J]. Plant Cell, 1994, 6(6): 907-916.
[51] IWAMOTO M, NAGASHIMA H, NAGAMINE T, et al. P-SINEl-like intron of the CatA catalase homologs and phylogenetic relationships among AA-genome Oryza and related species[J]. Theoretical and Applied Genetics, 1999, 98(6): 853-861.
[52] MCCLINTOCK B. Chromosome organization and gene expression[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1951, 16(3): 13-47.
[53] MUOTRI A R, MARCHETTO M C, COUFAL N G, et al. The necessary junk: New functions for transposable elements[J]. Human Molecular Genetics, 2007, 16(R2):159-167.
[54] WU M, LI L, SUN Z. Transposable element fragments in protein-coding regions and their contributions to human functional proteins[J]. Gene, 2007,401(1-2): 165-171.
(責(zé)任編輯 潘 峰)