潘其鋒 任悅萍
(浙江新景市政園林有限公司浙江紹興 312000)
基于多視圖幾何的三維測量技術研究
潘其鋒 任悅萍
(浙江新景市政園林有限公司浙江紹興 312000)
隨著三維測量技術的推廣,基于多視圖的測量技術研究越來越熱門。由于攝像機標定的精度會對視覺測量的結果造成影響,因此基于多視圖幾何的三維測量技術的關鍵是對攝像機進行標定。本文利用一臺CCD(電荷耦合元件)攝像機在沒有標定靶的條件下完成高精度的視覺測量。
多視圖;三維測量;技術研究
對攝像機的標定時三維測量技術中的關鍵環(huán)節(jié),一般在攝像機標定的過程中都要借助參考點或者標定靶來實現,因此視覺測量的效率就會收到影響。隨著科學技術的發(fā)展,建筑行業(yè)對精密測量技術提出了較高的要求,不僅要擔負產品質量檢驗的重任,而且還要提高建筑產品的生產效率。本研究中在標定CCD攝像機的過程中采用攝像機的自標定技術,利用基于絕對二次曲面的攝像機自標定方法,完全不需要借助標定靶。將計算機視圖中的多視覺方法與單目視覺測量技術相結合,可以利用單個的CCD攝像機完成三維測量。
攝像機視覺測量技術的核心是在圖像數據的基礎上實現三維重構,三維重構技術涉及到射影幾何理論。
圖1是攝像機成像模型的幾何關系。
圖1 攝像機成像模型的幾何關系
P點是空間點P在攝像機像面中的像,O-XYZ為物面坐標系,P點的坐標可以直接得出,o-uv為像面坐標系,可以直接得出p點的坐標,o-xyz為攝像機坐標系,o為光心。攝像機在成像過程中,通過矩陣變換將三維空間點轉換為二維圖像,例如將P轉換為p。
在同一場景下,將兩臺攝像機視圖之間的射影幾何稱為對極幾何,對極幾何直接與攝像機的結構參數和相對參數和相對姿態(tài)有關,并且獨立于空間場景[1]。
多視圖幾何測量技術的目的是要獲取被測目標的圖像,隨著半導體技術和光電傳感技術的發(fā)展,CCD電荷耦合元件被廣泛應用于攝像機圖像傳感器中。
CCD傳感器中的半導體材料感光度較高,將光信號轉變成電信號,即利用A/D轉換器實現模擬信號向數字信號的轉變,對數字信號進行壓縮后保存到攝像機內部的存儲設備上。CCD圖像傳感器會在光纖的照射下反應出電荷量,不同的感光單元將電信號集中起來就形成一幅完整的圖像。
在多視圖三維測量系統(tǒng)中,CCD圖像傳感器是至關重要的部件,一般用CCD尺寸、像素數量、信噪比和靈敏度來衡量傳感器的性能。
在建筑測量過程中,通常對圖像中提取的邊緣點進行橢圓擬合,因為圓形的標志點往往會被投影成橢圓形的標志點,通過橢圓擬合后可以計算出橢圓的中心坐標。將橢圓的一般式方程表示為:
將橢圓的中心坐標表示為:
由于圖像噪聲會對橢圓標志點的中心定位精度造成一定的影響,因此必須對標志點邊緣進行多次擬合以消除圖像噪聲。當第一次橢圓擬合結束后,計算出邊緣像素點的殘差,剔除殘差較大的像素點,對剩余的像素點進行二次擬合,以提高標志點中心坐標的定位精度。如果標志點在圖像中所占的像素面積較小,可以利用圖像插值的方法擴充邊緣像素點,提高橢圓擬合精度。
在基于多視圖幾何的三維測量過程中,攝像機標定時非常重要的步驟,直接關系著視覺測量的精度,攝像機自標定技術的優(yōu)點在于擺脫了對標定靶的依賴,測量過程中也不需要復雜的機械結構來控制攝像機的運動,本研究中利用對偶絕對二次曲面的理論進行攝像機自標定[2]。
3.1 絕對對偶二次曲面標定原理
3.2 攝像機自標定方法
由于圖像矩陣中的未知量較多,直接利用線形方程進行線形求解可能出現局部最優(yōu)解的情況,因此可以先標定攝像機的主
點坐標,標定出攝像機的焦距,整體優(yōu)化攝像機內的參數。
假設主點坐標為[ut,vt]T,令變換矩陣為:
攝像機在拍攝多幅圖片之后,可以聯系多個方程,得出m×10的系數矩陣,其中m表示拍攝數量,利用射影空間下的對偶二次曲面,結合攝像機的拍攝矩陣,計算出攝像機的內參數矩陣,得出相應的焦距信息。
將焦距fu和fv與求出的主點坐標[u0,v0]T組成攝像機內參數的初值K0:
通過對攝像機內參數進行迭代,得出最優(yōu)解,此種方法對內參數進行優(yōu)化可以較容易實現收斂。
為了驗證攝像機自標定方法的精確性,假設模擬攝像機拍攝過程中獲取了5幅模擬圖像,來對攝像機的內參數進行標定。先模擬空間點的三維坐標,例如將8個空間點的三維坐標寫成齊次坐標矩陣的形式:
之后對攝像機的內參數和外參數進行模擬,假設攝像機的光學鏡頭為35mm,單像素尺寸3.45×3.45μm。攝像機的內參數矩陣為:
這種標定方法在應用的過程中,在模擬圖像坐標中加入0.01-1個不同像素級別的隨機噪聲,此時得出的攝像機內參數的相對誤差較小,該方法具有較好的魯棒性,只要將標志點中心坐標的定位精度控制在0.1個像素,攝像機內參數的相對誤差就會被控制在很小的范圍內,在標志點中心點定位精度的誤差增大時,攝像機自標定的誤差也會增大,利用這種攝像機自標定的方法由于傳統(tǒng)的攝像機自標定方法,尤其適用于標志點較少的情況[3]。
三維測量需要在六面體的空間內表現出物體的幾何形狀、長度和圓周分度,其中涉及到尺寸精度、定位精度和幾何精度。在計算機技術不斷的同時,由最初的機械式測量逐漸過渡到視覺測量。視覺測量的優(yōu)點在于非接觸、高效便捷,成為當下十分熱門的研究領域。多視圖幾何的三維測量系統(tǒng)主要包括攝像機和計算機,由于攝像機使用數量的不同個,可以將其分為單目視覺測量系統(tǒng)和多目視覺測量系統(tǒng)。本研究重點分析單目視覺的三維測量技術,該技術應用過程中,利用已知內參數的攝像機拍攝出被測特征點,對獲取到的圖像信息進行處理,提取出拍攝特征點的二維坐標,該方法簡單高效、精度高,具有優(yōu)越的實用性和應用前景[4]。
以Xj表示j號特征點的空間齊次坐標,以Pi表示攝像機在拍攝i號圖像時的攝像機矩陣,以表示空間特征點Xj在i號圖像上的齊次坐標,以表示空間特征點Xj到i號圖像上的攝影深度,即表示物點在光軸方向上的深度,則可以得出:
λi
jPiXj
在三維空間點測量的過程中,一般應用模擬的方法進行,利用MATLAB軟件編寫模擬實驗程序,在300×300×300mm的空間范圍內生成50個已知三維坐標的空間點,利用CCD攝像機在大約2m的位置對這些空間點進行拍攝,在模擬圖像中隨機加入0.1個像素噪聲,然后對空間的三維特征點進行測量。測量過程中先利用圖像坐標生成測量矩陣,攝像機進行自標定。
統(tǒng)計出不同點的測量誤差,得出坐標測量誤差的平均值和標準差,如表1所示。
表1 隨機空間點的坐標誤差的平均值和標準差
為了證明該測量方法的穩(wěn)定性,重復試驗50次,繪制出隨機誤差的平均值和標準差分布圖。將本研究單目視覺測量方法、傳統(tǒng)單目視覺測量方法和雙目視覺測量方法進行對比,得出如表2的結果。
表2 不同視覺測量方法的對比結果
本研究在總結數字圖像處理和獲取的基礎上,利用CCD攝像機的自標定方法,實現了空間三維點的視圖幾何測量,不需要利用加工緊密的標定靶和復雜機械,在自標定方法的應用過程中只需要5幅被測特征點,簡化了傳統(tǒng)攝像機的標定過程,提高了測量的精確性和簡便性,這種自標定方法可以應用于工業(yè)生產和工程測量領域。
[1]葉聲華,王仲,曲興華.精密測試技術展望[J].中國機械工程,2012,11 (3):262.
[2]黃桂平.數字近景工業(yè)攝影測量關鍵技術研究與應用[D].天津大學,2012,12(1):72.
[3]黃桂平,欽桂勤.大尺寸三坐標測量方法與系統(tǒng)[J].宇航計測技術,2011,27(4):15.
[4]葉聲華,邾繼貴,等.視覺檢測技術及應用[J].中國工程科學,2010,21 (1):26.
TP391.41
A
1673-0038(2015)47-0192-02
2015-11-6