亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        魚類LC-PUFA合成代謝調(diào)控機制研究進展

        2015-12-08 03:42:44謝帝芝陳芳張慶昊陳軍亮董燁瑋王樹啟游翠紅聶國興李遠友
        關鍵詞:魚油黃斑魚類

        謝帝芝,陳芳,張慶昊,陳軍亮,董燁瑋,王樹啟,游翠紅,聶國興,李遠友

        (1.河南師范大學水產(chǎn)學院,河南新鄉(xiāng)453007;2.汕頭大學海洋生物研究所/廣東省海洋生物技術重點實驗室,廣東汕頭515063)

        魚類LC-PUFA合成代謝調(diào)控機制研究進展

        謝帝芝1,2,陳芳1,2,張慶昊2,陳軍亮2,董燁瑋2,王樹啟2,游翠紅2,聶國興1,李遠友2

        (1.河南師范大學水產(chǎn)學院,河南新鄉(xiāng)453007;2.汕頭大學海洋生物研究所/廣東省海洋生物技術重點實驗室,廣東汕頭515063)

        魚類是人體獲取優(yōu)質(zhì)蛋白、特別是LC-PUFA的主要食物來源,人類對水產(chǎn)品需求的增加將主要依賴于水產(chǎn)養(yǎng)殖.然而,魚油資源短缺、價格昂貴嚴重制約水產(chǎn)養(yǎng)殖業(yè)的可持續(xù)發(fā)展.弄清魚類LC-PUFA合成代謝的調(diào)控機制,有助于解決在水產(chǎn)飼料中利用植物油替代魚油存在的不良效果問題,降低或擺脫水產(chǎn)養(yǎng)殖對魚油的依賴.本文主要從轉(zhuǎn)錄水平、轉(zhuǎn)錄后水平、表觀遺傳水平等方面,對魚類LC-PUFA合成代謝調(diào)控機制方面的研究進展進行綜述,以期為該領域的研究工作者提供參考.

        魚類;LC-PUFA;合成代謝;調(diào)控機制;魚油替代

        0 引言

        多不飽和脂肪酸(Polyunsaturated fatty acid,PUFA)一般指碳原子數(shù)≥18、雙鍵數(shù)≥2的直鏈脂肪酸;其中,碳原子數(shù)≥20、雙鍵數(shù)≥3的PUFA稱為長鏈多不飽和脂肪酸(LC-PUFA).具有重要生理功能的LC-PUFA主要指二十碳四烯酸(又稱花生四烯酸,ARA)、二十碳五烯酸(EPA)和二十二碳六烯酸(DHA);它們是人和動物體維持正常生長發(fā)育及生理功能的必需脂肪酸(EFA),也是細胞膜磷脂的重要成分;由于其在促進人的大腦發(fā)育和防止心腦血管疾病等方面具有重要作用,故有“腦黃金”和“心腦金”之稱.

        魚類(特別是海水魚)不僅提供優(yōu)質(zhì)的食物蛋白,它更特別的營養(yǎng)價值在于其是人體獲取LC-PUFA的主要食物來源.由于過度捕撈和環(huán)境破壞等因素,天然漁業(yè)資源呈現(xiàn)下降的趨勢,人類對水產(chǎn)品需求的不斷增加將主要依賴于水產(chǎn)養(yǎng)殖業(yè)的發(fā)展.目前,全球約45%的水產(chǎn)品來源于水產(chǎn)養(yǎng)殖,而中國的水產(chǎn)養(yǎng)殖產(chǎn)量占世界水產(chǎn)養(yǎng)殖總產(chǎn)量70%,已連續(xù)24年居世界首位[1].然而,水產(chǎn)養(yǎng)殖動物、特別是海水魚類的LC-PUFA合成能力較弱或缺乏,其配合飼料中一般需要添加富含LC-PUFA的魚油才能滿足機體

        正常生長發(fā)育對EFA的需要.但是,魚油資源的短缺且價格昂貴嚴重制約水產(chǎn)養(yǎng)殖業(yè)的健康、可持續(xù)發(fā)展.為降低或擺脫水產(chǎn)養(yǎng)殖對魚油的依賴,科研工作者正在努力尋求魚油替代品.其中,資源較豐富、價格較低的植物油是較適宜的魚油替代品.現(xiàn)有研究表明,在有些養(yǎng)殖魚類中,其配合飼料中利用植物油替代魚油雖然對生長性能影響不大,但由于植物油中缺乏LC-PUFA、而魚體自身的LC-PUFA合成能力較弱,導致養(yǎng)殖產(chǎn)品中的LC-PUFA含量顯著下降,影響魚肉的品質(zhì)[2-4].因此,如何提高養(yǎng)殖魚類自身的LC-PUFA合成能力是解決飼料中植物油替代魚油問題的關鍵,而弄清魚類LC-PUFA合成代謝的調(diào)控機制是研發(fā)提高魚體LC-PUFA合成能力方法的基礎.本文擬就魚類LC-PUFA合成代謝調(diào)控機制方面的研究進展進行綜述,供相關研究者參考.

        1 魚類LC-PUFA合成代謝特點及其主要影響因素

        同其它脊椎動物一樣,魚類缺乏Δ12及Δ15脂肪酸去飽和酶(Fad),因而不能以油酸(18:1n-9)為底物合成PUFA,必須從食物中獲取C18 PUFA(主要是亞油酸18:2n-6和亞麻酸18:3n-3)作為基本營養(yǎng)物質(zhì).在多種Fad和碳鏈延長酶(Elovl)的作用下,C18 PUFA前體可被轉(zhuǎn)化為LC-PUFA(圖1).然而,不同魚類的LC-PUFA合成能力不一樣,導致其EFA需求種類不同.一般認為,淡水魚和鮭鱒魚類具有將C18 PUHA轉(zhuǎn)化為LC-PUFA的能力,故其EFA為18:2n-6和18:3n-3;而海水魚類除汕頭大學李遠友課題組在黃斑藍子魚中發(fā)現(xiàn)具有LC-PUFA合成能力外[5],大多不具有此種能力或該能力很弱,故其EFA為LC-PUFA.魚體LC-PUFA生物合成能力的強弱,主要取決于其是否擁有一套完整的LC-PUFA合成關鍵酶體系[6],LC-PUFA合成途徑中的關鍵酶基因的表達量和酶活性直接影響著魚體的LC-PUFA合成能力.影響魚類LC-PUFA合成關鍵酶基因表達及酶活性的主要因素包括飼料脂肪源及其n-3/n-6 PUFA比例、維生素和礦物質(zhì)等營養(yǎng)因子,溫度、鹽度、光周期等環(huán)境因子,轉(zhuǎn)錄因子、激素與遺傳因子等,相關內(nèi)容詳見作者前期的綜述[7].

        圖1 魚類LC-PUFA合成代謝途徑[6,8]

        2 魚類LC-PUFA合成關鍵酶基因研究進展

        魚類LC-PUFA生物合成關鍵酶主要有Δ6 Fad、Δ5 Fad、Δ4 Fad、Elovl5、Elovl4和Elovl2(圖1);在某些魚類還有Δ6/Δ5 Fad,即雙功能去飽和酶.從分子角度看,上述關鍵酶活力低下或其基因的缺失是造成魚體LC-PUFA生物合成功能較弱、甚至缺失的主要原因[9].為了研究魚類LC-PUFA合成代謝的調(diào)控機制,其關鍵酶基因的克隆及功能驗證是基礎工作,相關報道見表1.

        2.1 Fads

        在哺乳動物中,F(xiàn)ads家族包括fads1、fads2、fads3三種基因.fads1和fads2基因產(chǎn)物分別具有Δ5和Δ6 Fad酶活性,而fads3的表達產(chǎn)物沒有活性[10].Monroig等[11]將所能檢索到的魚類Fad基因的氨基酸序列進行系統(tǒng)發(fā)育樹分析,結(jié)果表明魚類Fad都屬于fads2基因.但是,與哺乳動物fads2基因功能專一性不同,魚類fads2基因具有Δ6、Δ4、Δ5、Δ8 Fad多功能性[12].fads基因的多功能性彌補了某些魚類Δ5 fad基因缺失給LC-PUFA合成造成的影響.例如,Δ6/Δ5 fad基因先后在斑馬魚(Danio rerio)[13]和墨西哥銀漢魚(Chirostoma estor)[13]等淡水魚中被克隆.本課題組在黃斑藍子魚(Siganus canaliculatus)中克隆到Δ4 fad和Δ6/Δ5 fad基因則分別是脊椎動物和海水魚中的首次發(fā)現(xiàn)[8].此外,黃斑藍子魚的Δ6/Δ5 fad基因還具有較高的Δ8 Fad酶活性[11],這可能與海洋環(huán)境中Δ8 Fad底物(20:3n3和20:2n-6)較豐富有關.

        脊椎動物的DHA生物合成存在兩條途徑:一種是經(jīng)典的“Sprecher途徑”,即22:5n-3經(jīng)過一步延長反應生成24:5n-3,再經(jīng)過Δ6 Fad的去飽和反應及過氧化物酶體β-氧化,最終生成DHA[15];另一種是本課題組在黃斑藍子魚中首次發(fā)現(xiàn)的“Δ4途徑”,22:5n-3只需經(jīng)過Δ4 Fad的去飽和反應即可直接生成DHA[8].最近,在塞內(nèi)加爾鰨(Solea senegalensis)[16]、墨西哥銀漢魚[13]、泰國鱧(Channa striata)[17]等魚體內(nèi)中也發(fā)現(xiàn)Δ4途徑的存在.

        2.2 Elovl

        Elovl催化底物脂肪酸和丙二酰-CoA縮合,是C18以上PUFA合成LC-PUFA的關鍵酶.在哺乳動物中,延長酶家族存在7個基因,根據(jù)它們作用底物的特異性不同,分別命名為Elovl1-Elovl7[18].一般認為,Elovl1、Elovl3、Elovl6、Elovl7參與飽和脂肪酸或單不飽和脂肪酸合成的碳鏈延長作用,此類Elovl在魚類中報道甚少.研究較多的是Elovl2、Elovl4、Elovl5等三種參與LC-PUFA合成的延長酶.目前,elovl5基因至少已在17種魚類中得到克隆,而elovl2和elovl4基因僅在極少數(shù)魚體中發(fā)現(xiàn)(見表1).

        在LC-PUFA合成過程中,Elovl5偏好C18、C20脂肪酸底物,Elovl2通常以C20、C22脂肪酸為底物.從圖1可知,Elovl2催化22:5n-3合成24:5n-3是“Sprecher途徑”合成DHA的必經(jīng)之路.然而,至今為止,尚未從海水魚體內(nèi)克隆到elovl2基因,這可能是海水魚LC-PUFA合成能力低下的原因之一[9].有趣的是,不同于哺乳動物Elovl4只能延長C26 PUFA,魚類Elovl4可有效地將C20和C22延長到C36超長鏈多不飽和脂肪酸(VLC-PUFA)[19-21].同Elovl2功能相似,Elovl4也能催化22:5n-3合成24:5n-3,這對

        于一些elovl2基因缺失的海水魚合成DHA極為重要性.

        表1 在魚類中報道的脂酰去飽和酶及碳鏈延長酶基因

        3 魚類LC-PUFA合成代謝調(diào)控機制研究進展

        魚類LC-PUFA合成代謝的調(diào)控,其核心是LC-PUFA合成關鍵酶基因的表達調(diào)控問題.大量fads和elovl基因的克隆為研究魚類LC-PUFA合成代謝調(diào)控機制提供了基礎和可能.特別是本課題組近年來在黃斑藍子魚中首次發(fā)現(xiàn)和證明海水魚具有LC-PUFA合成能力,并在該魚中克隆到Δ4 fad和Δ6/Δ5 fad及elovl4和elovl5基因,從而使其成為LC-PUFA合成途徑中所有關鍵酶基因被闡明的唯一海水魚類,為我們研究魚類LCPUFA合成代謝的調(diào)控機制、探討海水魚LC-PUFA合成能力低下的原因等提供了較理想的模式魚類.基因表達調(diào)控可發(fā)生在染色質(zhì)水平、轉(zhuǎn)錄水平、轉(zhuǎn)錄后水平、翻譯水平以及翻譯后水平.目前,有關魚類LC-PUFA合成代謝的調(diào)控機制研究還主要集中在轉(zhuǎn)錄水平方面.

        3.1 轉(zhuǎn)錄水平調(diào)控研究

        基因轉(zhuǎn)錄水平的調(diào)控是由啟動子和與之相互作用的轉(zhuǎn)錄因子共同完成的.啟動子中順式作用元件(cis-acting element)是轉(zhuǎn)錄因子的結(jié)合位點,通過與轉(zhuǎn)錄因子結(jié)合調(diào)控基因轉(zhuǎn)錄的精確起始和轉(zhuǎn)錄效率.研究報道,魚類LC-PUFA合成關鍵酶基因的表達受其上游啟動子中順式作用元件及轉(zhuǎn)錄因子調(diào)控[45-47].

        3.1.1 魚類LC-PUFA合成代謝關鍵酶啟動子研究

        啟動子是基因轉(zhuǎn)錄調(diào)控至關重要的區(qū)域,可結(jié)合各種轉(zhuǎn)錄因子并對基因轉(zhuǎn)錄進行調(diào)控.至今為止,魚類LC-PUFA合成關鍵酶啟動子研究僅在Fads中有報道.Zheng等[45]對大西洋鮭魚和大西洋鱈魚的Δ6 Fad啟動子進行了分析,結(jié)果發(fā)現(xiàn)大西洋鮭魚和大西洋鱈魚的Δ6 Fad核心啟動子區(qū)分別位于起始密碼子到第一個外顯子上游的546 bp和807 bp.本課題組在黃斑藍子魚的研究發(fā)現(xiàn),Δ6/Δ5 Fad和Δ4 Fad的核心啟動子區(qū)則大致在-456~+629 bp和-266~+692 bp[47].Geay等[46]將NCBI中歐洲鱸魚Δ6 Fad 8條cDNA序列與其基因全長進行比對,發(fā)現(xiàn)Δ6Fad中存在兩個轉(zhuǎn)錄起始位點(TSS1和TSS2).以TSS1為研究對象,結(jié)果表明歐洲鱸魚Δ6 Fad啟動子的核心區(qū)域大致在-200~+320 bp之間.

        對已報道的魚類Fad啟動子序列進行比對分析,發(fā)現(xiàn)“NF-Y”、“SRE”元件在不同魚類fad基因間相當保守;不僅如此,NF-Y和SRE元件的相對位置也十分保守(圖2).相同的是,NF-Y和SRE元件的相對位置在兩棲類和哺乳類fad基因也十分保守,這可能是進化中存在的保守調(diào)控機制[45].在哺乳動物中的相關研究表明,轉(zhuǎn)錄因子SREBP1c與SRE元件的結(jié)合通常需要鄰近區(qū)域存在NF-Y或Sp1位點[48].除了上述保守序列外,SRE下游還有一個非常保守的區(qū)域(如圖2),根據(jù)TRANSFAC網(wǎng)站的預測,該保守區(qū)可能是PPAR γ-RXRα二聚體的結(jié)合位點,其具體功能有待進一步分析.然而,另一保守元件—Sp1僅在大西洋鮭Δ6 Fad和黃斑藍子魚的Δ6/Δ5 Fad啟動子中存在.比較研究發(fā)現(xiàn),含有Sp1組件的啟動子的活性顯著高于無Sp1組件的啟動子[45,47].在哺乳動物中,Sp1及其相關蛋白可以特異性啟動RNA聚合酶II促進基因的轉(zhuǎn)錄[49].因此,Sp1是強啟動子活性的標志.

        圖2 幾種魚類fad啟動子的序列比對[47]

        3.1.2 轉(zhuǎn)錄因子

        現(xiàn)有研究表明,可能參與魚類LC-PUFA合成調(diào)控的轉(zhuǎn)錄因子主要有過氧化物酶體增殖物激活受體(Peroxisome proliferator-activated receptors,PPARs),固醇調(diào)節(jié)元件結(jié)合蛋白(Sterol regulatory element binding proteins,SREBPs),肝核因子(Hepatocyte nuclear factor,HNF),肝X受體(Liver X receptor,LXR),類視黃醇X受體(Retinoid X receptor,RXR)等,分述如下.

        3.1.2.1 PPARs

        PPARs是配體激活轉(zhuǎn)錄因子核受體超家族的一員,在調(diào)控脂代謝、炎癥、免疫功能、生長發(fā)育等方面有重要作用[50].PPARs存在三種亞型,即PPARα、β和γ[51].近年來,PPARs三種亞型的基因已分別從斑馬魚[52]、日本河豚(Fugu rubripes)[53]、金頭鯛[53]、歐鰈(Pleuronectes platessa)[54]、歐洲鱸魚[55]、棕鱒(Salmo trutta)[56]、大西洋鮭魚[57,58]、黃斑藍子魚[59]等魚體內(nèi)成功克隆.

        PPARα、β和γ都可被內(nèi)源性脂肪酸及其衍生物激活,但它們在脂代謝的調(diào)控過程中所起的功能并不一致.在團頭魴(Megalobrama amblycephala)體內(nèi)發(fā)現(xiàn),PPARα和PPARβ通過上調(diào)線粒體和過氧化物酶體中的肉毒堿棕櫚酰轉(zhuǎn)移酶I(Carnitine palmitoyltransferase I,CPT I)、乙酰輔酶A氧化酶(Acyl-CoA oxidase,ACO)等一些參與脂肪酸β-氧化的基因,以促進脂肪酸的氧化,增加LC-PUFA的需求,從而間接地影響LC-PUFA合成代謝[60].不同的是,PPARγ主要參與脂肪積累和脂肪生成的調(diào)控[61]. Vagner等[62]發(fā)現(xiàn)飼料n-3 LC-PUFA含量低(0.3%-0.5%EPA+DHA)顯著促進歐洲鱸魚幼魚ppar α和ppar β基因表達.同時,Δ6 fad mRNA水平也顯著提高.本課題組的研究發(fā)現(xiàn),黃斑藍子魚在低鹽環(huán)境條件下的LC-PUFA合成量顯著高于高鹽條件下,且Δ6/Δ5 fad、Δ4 fad、elovl5、ppar γ等參與LC-PUFA合成的相關基因表達量在低鹽組魚體肝臟中高表達,而ppar α和ppar β低表達[63].Corcoran等[64]采用不同水平PPARα配體—氯貝丁酯處理鯉魚,結(jié)果發(fā)現(xiàn)ppar α基因表達量隨著氯貝丁酯添加水平的增加而增加.同

        時,參與脂肪酸氧化代謝的乙酰輔酶A氧化酶基因的表達量及其酶活性也與降固醇酸水平呈正相關.

        上述研究表明,PPARs可以通過調(diào)控魚類脂肪酸代謝相關基因的表達,影響LCPUFA的合成代謝.但是,PPARs具體的調(diào)控機制在魚類中尚未闡明.在哺乳動物的相關研究中報道,PPARs被脂肪酸或脂肪酸衍生物激活后,與類視黃醇X受體(Retinoid X receptor,RXR)組合成異源二聚體.異源二聚體一方面可通過配體結(jié)合域響應感應物,另一方面可通過高度保守的DNA結(jié)合域與靶基因啟動子中過氧化物酶體增殖物應答元件(Peroxisome proliferator response element,PPRE)結(jié)合,調(diào)控靶基因的表達[65].

        3.1.2.2 SREBPs

        SREBPs屬于“螺旋-環(huán)-螺旋-亮氨酸拉鏈”(bHLH-Zip)轉(zhuǎn)錄因子家族.無活性的SREBPs前體結(jié)合于內(nèi)質(zhì)網(wǎng)膜上,需轉(zhuǎn)移至高爾基體上進行蛋白水解,以釋放氨基端的bHLH-zip結(jié)構(gòu)域,然后,進入細胞核與膽固醇調(diào)節(jié)元件(Sterol Regulatory Element,SRE)結(jié)合,激活靶基因的轉(zhuǎn)錄(圖3)[66,67].SREBPs存在SREBP-1a、SREBP-1c、SREBP-2三種亞型.其中,SREBP-1a、SREBP-1c由SREBP-1基因的不同啟動子轉(zhuǎn)錄,而SREBP-2由SREBP-2基因編碼[68].SREBPs三種亞型所調(diào)控的基因類型并不一致,SREBP-2主要參與膽固醇合成調(diào)控,SREBP-1調(diào)控脂質(zhì)合成代謝相關基因.其中,SREBP-1c參與脂肪酸合成代謝相關的酶基因的轉(zhuǎn)錄[69].

        在哺乳動物中,SREBP-1c已被證實參與機體LC-PUFA生物合成的轉(zhuǎn)錄調(diào)控.例如,Nara等[70]發(fā)現(xiàn)人Δ6 Fad啟動子-90 bp區(qū)域受到SREBP-1c激活,卻受到LCPUFA的抑制.在小鼠,SREBP-1c能與Elovl 6、Elovl 5啟動子結(jié)合[71,72].到目前為止,魚類中僅在Fad基因啟動子中發(fā)現(xiàn)SREBP-1c結(jié)合位點,大西洋鮭和大西洋鱈魚Δ6 Fad啟動子均存在SREBP-1c的結(jié)合位點—SRE,且該位點對Δ6 Fad正常轉(zhuǎn)錄表達起重要作用[45].Carmona-Anto觡anzas等[73]將大西洋鮭魚的Elovl5a、Elovl5b、Δ6 Fad啟動子與其SREBP-1 N端結(jié)構(gòu)域nSrebp1,以及SREBP-2 N端結(jié)構(gòu)域nSrebp2共轉(zhuǎn)染FHM細胞,雙熒光酶報告實驗結(jié)果表明,Elovl5a、Elovl5b、Δ6 Fad都受SREBP-1和SREBP-2轉(zhuǎn)錄調(diào)控.營養(yǎng)調(diào)控實驗也表明,大西洋鮭魚、歐洲鱸魚、黃斑藍子魚LC-PUFA合成代謝的關鍵酶基因表達水平同SREBPs水平成正比[74,75,63].上述研究結(jié)果表明,SREBPs在轉(zhuǎn)錄水平上調(diào)控魚類LC-PUFA合成代謝(圖3).

        圖3 SREBPs轉(zhuǎn)錄調(diào)控過程

        3.1.2.3 LXRs

        LXRs是核受體超家族的一員,參與機體多種生理活動的調(diào)節(jié),特別是在交叉調(diào)控脂肪酸和固醇代謝方面起關鍵作用[76].在

        哺乳動物體內(nèi)已發(fā)現(xiàn)LXR存在LXRα、LXRβ兩個亞型[77],但在魚類中至今僅發(fā)現(xiàn)一種L XR亞型,即在斑馬魚[78]、大西洋鮭魚和虹鱒[79]、黃斑藍子魚[80]、草魚(Ctenopharyngodon idellus)[81]等魚類中只發(fā)現(xiàn)LXRα基因.Archer等[78]認為魚類缺失LXRβ基因可能是物種進化的結(jié)果.

        當動物體內(nèi)缺乏配體時,LXR/RXR二聚體與共阻抑物(NCoR/SMRT)連接;當LXR/ RXR二聚體與脂肪酸、糖類、羥固醇等配體結(jié)合時,共阻抑物則脫離二聚體并與共激活劑結(jié)合,LXR/RXR二聚體則從細胞質(zhì)移位至細胞核中,通過與靶標基因啟動子上的LXR響應元件(LXRE)結(jié)合,啟動基因表達(圖4).在哺乳動物中的相關研究表明,LXRs通過影響SREBP-1c的活性間接地調(diào)節(jié)Fad及Elovl5等LC-PUFA合成代謝關鍵基因的轉(zhuǎn)錄[72].然而,在大西洋鮭魚體內(nèi),LXRs不僅可以通過調(diào)控SREBPs的表達間接影響elovl5和Δ6 fad基因的轉(zhuǎn)錄,而且還可以直接調(diào)控Δ6 fad基因的表達[73].

        圖4 LXR轉(zhuǎn)錄調(diào)控過程

        3.1.2.4 HNF4α

        HNF4α隸屬于固醇受體超家族.作為一個功能廣泛的轉(zhuǎn)錄因子,HNF4α可以與肝臟中12%的基因啟動子結(jié)合,并參與肝臟脂質(zhì)代謝和轉(zhuǎn)運過程,維持體內(nèi)脂質(zhì)代謝平衡[82].

        到目前為止,尚未發(fā)現(xiàn)HNF4α直接參與LC-PUFA合成代謝調(diào)控的相關報道.但是,大量研究表明,HNF4α可通過與其它轉(zhuǎn)錄因子或基因相互作用,間接地參與LCPUFA合成代謝調(diào)控.例如,Zhang等[83]采用生物信息學分析,發(fā)現(xiàn)人PPARγ2啟動子區(qū)存在一個高親和力的HNF4α結(jié)合位點,在體和離體實驗都證實HNF4α可轉(zhuǎn)錄激活PPARγ2啟動子.過表達HNF4α基因,同樣促進了小鼠的PPARα和脂酰輔酶A硫脂酶(參與超長鏈直鏈脂肪酸氧化的關鍵基因)的表達[84,85].在患糖尿病的小鼠體內(nèi)發(fā)現(xiàn),SREBPs抑制HNF4α基因的表達[86].

        3.1.2.5 RXR

        RXR可與9-cis視磺酸、甲狀腺激素、維生素D、PPARs、LXR等多種配體結(jié)合[87].在脂肪酸代謝調(diào)控方面,RXR需要與PPARs和LXR形成異二聚體后,才能參與靶基因的調(diào)控.例如,PPARs經(jīng)過脂肪酸或脂肪酸衍生物的激活后,與RXR形成異源二聚體,共同調(diào)控脂代謝相關基因的表達.LXRs被膽固醇中間代謝產(chǎn)物激活后,與RXR結(jié)合形成異源二聚物,共同調(diào)控脂代謝相關基因表達(圖3).目前,有關RXR在魚類LC-PUFA合成代謝調(diào)控中的作用還未見報道.

        3.2 轉(zhuǎn)錄后水平調(diào)控研究

        近年來,在生物體內(nèi)發(fā)現(xiàn)一類可在轉(zhuǎn)錄后水平參與基因表達調(diào)控的非編碼微小RNA(microRNA,miRNA,miR).miRNAs廣泛存在于真核生物,在個體時序性發(fā)育、細胞增殖分化和凋亡、器官發(fā)育、脂肪代謝等許多生物學過程中起著重要作用.目前,關于miRNA轉(zhuǎn)錄后調(diào)控機制有多種,如誘導靶mRNA的降解、阻斷翻譯起始、P-小體形成和翻譯激活等[88-91].

        在哺乳類的一些研究證實,多種miRNA參與脂類代謝相關的生物學過程調(diào)控.例如,miR-33a/b過表達時,人肝臟細胞甘油三酯含量增加,并積累形成脂滴;相反,抑制miR-33a/b的表達,胞內(nèi)β氧化加劇[92].在小鼠體內(nèi),miR-370可以通過兩條途徑調(diào)控脂類代謝:誘導miR-122表達和直接抑制Cpt1α表達.此外,miR-370還可以抑制Cpt1α表達,降低肝臟中脂肪酸β氧化[93].PPARs是脂肪細胞分化中期最重要的兩種轉(zhuǎn)錄調(diào)控因子,是miR-27a、b的直接作用靶標.人肝臟組織中,過表達miR-27b顯著抑制PPARα蛋白水平表達[94].miR-143參與調(diào)控小鼠脂肪細胞分化與脂肪積累,在分化的脂肪細胞中miR-143表達升高[95],而抑制miR-143表達,則前脂肪細胞分化受到抑制[96].

        miRNA在魚類脂類代謝中的研究作用剛剛起步.在虹鱒的研究表明,miR-122表達可使肝臟胰島素通路激活,生脂基因表達增加[97].最近,本課題組利用體內(nèi)和體外實驗證明,miR-17通過調(diào)節(jié)Δ4 Fad表達參與黃斑藍子魚肝臟的LC-PUFA調(diào)控,這是miRNA參與脊椎動物LC-PUFA合成調(diào)控的首次報道[98].

        3.3 表觀遺傳學調(diào)控

        表觀遺傳學是指在基因的DNA序列沒有發(fā)生改變的情況下,基因功能發(fā)生可遺傳的變化,并最終導致表型變化.表觀遺傳學主要包括DNA甲基化作用、組蛋白修飾作用、染色質(zhì)重塑、遺傳印記、X染色體隨機失活及長鏈非編碼RNA等.

        3.3.1 DNA甲基化

        近年來,一些研究陸續(xù)發(fā)現(xiàn)DNA甲基化也參與機體LC-PUFA合成代謝的調(diào)控.例如,老鼠Δ6 fad基因啟動子被超甲基化后,其肝組織Δ6 Fad酶活性及其mRNA表達量顯著下調(diào)[99].同型半胱氨酸可以誘導人血液單核細胞中PPARα、PPARγ的DNA甲基化,抑制ppar α和ppar γ基因表達,從而間接地影響機體LC-PUFA合成代謝[100].在嚙齒動物營養(yǎng)調(diào)控研究中也發(fā)現(xiàn),營養(yǎng)素通過影響Δ6 fad基因啟動子甲基化程度,調(diào)控基因轉(zhuǎn)錄[101].然而,Geay等[46]研究發(fā)現(xiàn),不管歐洲鱸魚仔稚魚所攝食的餌料是否富含LC-PUFA,魚體Δ6 fad啟動子區(qū)CpG甲基化程度不受影響,但不同餌料顯著影響了Δ6 fad基因表達.不同的結(jié)果是,飼料脂肪源顯著影響了花鱸(Lateolabrax japonicus)fads2基因表達及其啟動子甲基化,fads2基因表達量與其啟動子甲基化成負相關[102].DNA甲基化對歐洲鱸魚和花鱸LC-PUFA合成代謝的影響不一致,這可能與魚種類或生長階段有關;在魚類的相關研究有待于進一步全面、深入開展.

        3.3.2 組蛋白修飾

        組蛋白修飾可以改變?nèi)旧|(zhì)狀態(tài),或者與其他調(diào)節(jié)蛋白結(jié)合參與DNA的加工過程.組蛋白與DNA的緊密結(jié)合使其翻譯后修飾在DNA復制、損傷修復以及基因表達中有著重要的作用.Wang等[103]發(fā)現(xiàn)組蛋白甲基轉(zhuǎn)移酶G9a可以通過H3K9me2抑制PPARγ的

        表達,從而抑制小鼠脂肪生成.Knutson等[104]特異性敲除新生小鼠肝臟組蛋白去乙?;?(HDAC3)基因,結(jié)果發(fā)現(xiàn),PPARγ的表達水平增加,脂質(zhì)、膽固醇合成相關基因如肝X受體、視黃醇類X受體及乙酰輔酶A羧化酶等的表達水平發(fā)生改變.在魚類,相關研究還未見報道.

        4 結(jié)論及展望

        當今,魚油資源供不應求、價格昂貴,這嚴重制約水產(chǎn)養(yǎng)殖業(yè)的健康可持續(xù)發(fā)展.因此,如何降低或擺脫水產(chǎn)養(yǎng)殖對魚油的依賴已成為確保水產(chǎn)業(yè)可持續(xù)發(fā)展亟待解決的問題,而闡明魚類LC-PUFA合成代謝的調(diào)控機制則有助于解決此問題.為達到此目的,研究者已從多種魚類中克隆到參與LC-PUFA合成的關鍵酶基因,包括Δ6、Δ4、Δ5、Δ6/Δ5 fad及elovl2、elovl4、elovl5等,并著手從轉(zhuǎn)錄因子、miRNAs、DNA甲基化等不同水平上開展基因表達調(diào)控機制方面的研究.借助現(xiàn)代組學方法對魚類LC-PUFA合成代謝調(diào)控網(wǎng)絡和調(diào)控機制進行深入研究將是今后的重要發(fā)展方向.此外,最近在哺乳動物的研究顯示,長鏈非編碼RNA(long non-coding RNAs,lncRNAs)在脂質(zhì)生成和脂肪細胞分化過程中發(fā)揮重要調(diào)控作用[105-107],lncRNAs在魚類脂類代謝、特別是LC-PUFA合成調(diào)控中的作用也值得探討.只有通過系統(tǒng)深入的研究,才能全面深入揭示魚類LCPUFA合成調(diào)控的分子機制,研發(fā)出提高魚體自身LC-PUFA合成能力的方法,最終達到提高配合飼料中植物油替代魚油的比例,降低飼料成本,擺脫水產(chǎn)養(yǎng)殖對魚油的依賴,促進水產(chǎn)養(yǎng)殖業(yè)的健康可持續(xù)發(fā)展.

        為減少水產(chǎn)養(yǎng)殖對魚油的依賴,除上述主要研究方向外,如下三方面的研究目前也在開展.(1)有研究者采用轉(zhuǎn)基因技術,將具有LC-PUFA合成能力的藻類關鍵酶基因轉(zhuǎn)入到油料作物中,以使其植物油中含有較高比例LC-PUFA,克服傳統(tǒng)植物油中缺乏LC-PUFA的不足,使這些植物油具有魚油相同的效果[108,109].(2)采用轉(zhuǎn)基因技術提高魚體的LC-PUFA合成能力.例如,Kabeya等[110]直接將櫻鱒的elovl2基因轉(zhuǎn)入到鮸魚(Nibea mitsukurii)體內(nèi),可提高魚體的22:5n-3含量.(3)采用遺傳選育的方法培育LC-PUFA合成能力強的魚類品種(系).例如,Le Boucher等[111]發(fā)現(xiàn),利用植物性飼料培育大西洋鮭魚一代后,魚體利用植物性飼料的能力顯著提高.說明個體差異可有效地用于選育LC-PUFA合成能力強的魚種.總之,LC-PUFA合成代謝調(diào)控機制的闡明,植物基因工程的利用和魚類良種的選育,有助于研發(fā)提高魚體LC-PUFA合成能力的方法、提高配合飼料中植物油替代魚油的比例,降低水產(chǎn)養(yǎng)殖業(yè)對魚油的依賴,促進魚類養(yǎng)殖業(yè)的綠色健康發(fā)展.

        [1]FAO.The state of world fisheries and aquaculture 2014[M].Rome:Food and Agriculture Organization of the United Nations,2014[2015-04-08].http://www.fao.org/3/a-i3720e/index.html.

        [2]Turchini G M,Ng W K,Tocher D R.Fish oil replacement and alternative lipid sources in aquaculture feeds[M].Florida:CRC Press.2010:551.

        [3]Xu S,Wang S,Zhang L,et al.Effects of replacement of dietary fish oil with soybean oil on

        growth performance and tissue fatty acid composition in marine herbivorous teleost Siganus canaliculatus[J].Aquac Res,2012,43(9):1276-1286.

        [4]Xie D,Wang S,You C,et al.Characteristics of LC‐PUFA biosynthesis in marine herbivorous teleost Siganus canaliculatus under different ambient salinities[J].Aquault Nutr,2014,in press. Doi:10.1111/anu.12178.

        [5]Li Y,Hu C,Zheng Y,et al.The effects of dietary fatty acids on liver fatty acid composition and delta-6 desaturase expression differ with ambient salinities in Siganus canaliculatus[J].Comp Biochem Phys B,2008,151(2):183-190.

        [6]Tocher D R.Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective[J]. Aquaculture,2015,in press.doi:10.1016/j.aquaculture.2015.01.010.

        [7]謝帝芝,王樹啟,游翠紅,等.魚類高度不飽和脂肪酸合成的影響因素及其機理[J].中國水產(chǎn)科學,2013,20(2):456-466.

        [8]Morais S,Monroig O,Zheng X,et al.Highly unsaturated fatty acid synthesis in Atlantic salmon: characterization of ELOVL5-and ELOVL2-like elongases[J].Mar Biotechnol,2009,11(5):627-639. [9]Guillou H,Zadravec D,Martin P G P,et al.The key roles of elongases and desaturases in mammalian fatty acid metabolism:Insights from transgenic mice[J].Prog Lipid Res,2010,49(2),186-199.

        [12]Hastings N,Agaba M,Tocher D R,et al.A vertebrate fatty acid desaturase with Δ5 and Δ6 activities[J].P Nat Acad Sci USA,2001,98(25):14304-14309.

        [13]Fonseca-Madrigal J,Navarro J C,Hontoria F,et al.Diversification of substrate specificities in teleostei Fads2:characterization of Δ4 and Δ6Δ5 desaturases of Chirostoma estor[J].J Lipid Res,2014,55(7):1408-1419.

        [14]Li Y,Oscar M,Zhang L,et al.Vertebrate fatty acyl desaturase with Δ4 activity[J].P Nat Acad Sci USA,2010,107(39):16840-16845.

        [15]Sprecher H.Metabolism of highly unsaturated n-3 and n-6 fatty acids[J].Biochim Biophys Acta. 2000,1486(2/3):219-231.

        [16]Morais S,Castanheira F,Martínez-Rubio L,et al.Long chain polyunsaturated fatty acid synthesis in a marine vertebrate:ontogenetic and nutritional regulation of a fatty acyl desaturase with Δ4 activity[J].Biochim Biophys Acta,2012,1821(4),660-671.

        [17]Kuah M K,Jaya-Ram A,Shu-Chien A C.The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate:Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead(Channa striata)[J].BBA-Mol Cell Biol L,2015,1851(3):248-260.

        [18]Jakobsson A,Westerberg R,Jacobsson A.Fatty acid elongases in mammals:their regulation and roles in metabolism[J].Prog Lipid Res,2006,45(3):237-249.

        [19]Agbaga M P,Brush R S,Mandal M N A,et al.Role of Stargardt-3 macular dystrophy protein(ELOVL4)in the biosynthesis of very long chain fatty acids[J].P Nat Acad Sci USA,2008,105(35),12843–12848.

        [20]Carmona-Antoanzas G,Monroig,Dick J R,et al.Biosynthesis of very long-chain fatty acids(C>24)in Atlantic salmon:Cloning,functional characterisation,and tissue distribution of an Elovl4 elongase[J].Comp Biochem Physiol B,2011,159(2),122-129.

        [22]Seiliez I,Panserat S,Kaushik S,et al.Cloning,tissue distribution and nutritional regulation of a Δ6-desaturase-like enzyme in rainbow trout[J].Comp Biochem Physiol B,2001,130(1):83-93.

        [23]Zheng X,Seiliez I,Hastings N,et al.Characterization and comparison of fatty acyl Δ6 desaturase cDNAs from freshwater and marine teleost fish species[J].Comp Biochem Physiol B,2004,139(2):269-279.

        [24]Hastings N,Agaba M K,Tocher D R,et al.Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexaenoic acids from α-linolenic acid in Atlantic salmon(Salmo salar)[J].Mar Biotechnol,2004,6(5):463-474.

        [26]Seiliez I,Panserat S,Corraze G,et al.Cloning and nutritional regulation of a Δ6-desaturase-like enzyme in the marine teleost gilthead seabream(Sparus aurata)[J].Fish Physiol Biochem B,2003,135(3):449-460.

        [27]Tocher D R,Zheng X,Schlechtriem C,et al.Highly unsaturated fatty acid synthesis in marine fish:cloning,functional characterization,and nutritional regulation of fatty acyl Δ6 desaturase of Atlantic cod(Gadus morhua L.)[J].Lipids,2006,41(11):1003-1016.

        [28]Zheng X,Ding Z,Xu Y,et al.Physiological roles of fatty acyl desaturases and elongases in marine fish:characterisation of cDNAs of fatty acyl Δ6 desaturase and elovl5 elongase of cobia(Rachycentron canadum)[J].Aquaculture,2009,290(1):122-131.

        [29]Santigosa E,Geay F,Tonon T,et al.Cloning,tissue expression analysis,and functional characterization of two Δ6-desaturase variants of sea bass(Dicentrarchus labrax L.)[J].Mar Biotechnol,2011,13(1):22-31.

        [30]Morais S,Mourente G,Ortega A,et al.Expression of fatty acyl desaturase and elongase genes,and evolution of DHA:EPA ratio during development of unfed larvae of Atlantic bluefin tuna(Thunnus thynnus L.)[J].Aquaculture,2011,313(1):129-139.

        [31]Tu W C,Cook-Johnson R J,James M J,et al.Barramundi(Lates calcarifer)desaturase with Δ6/ Δ8 dual activities[J].Biotechnol Lett,2012,34(7):1283-1296.

        [32]Monroig O,Tocher D R,Hontoria F,et al.Functional characterisation of a Fads2 fatty acyl desaturase with Δ6/Δ8 activity and an Elovl5 with C16,C18 and C20 elongase activity in the anadromous teleost meagre(Argyrosomus regius)[J].Aquaculture,2013,412-413:14-22.

        [33]Xie D,Chen F,Lin S,et al.Cloning,functional characterization and nutritional regulation of Δ6 fatty acyl desaturase in the herbivorous euryhaline teleost Scatophagus Argus[J].Plos One,2014,9

        (3):e90200.

        [34]Wang S,Monroig,Tang G,et al.Investigating long-chain polyunsaturated fatty acid biosynthesis in teleost fish:Functional characterization of fatty acyl desaturase(Fads2)and Elovl5 elongase in the catadromous species,Japanese eel Anguilla japonica[J].Aquaculture,2014,434:57-65.

        [35]Li S,Mai K,Xu W,et al.Characterization,mRNA expression and regulation of Δ6 fatty acyl desaturase(FADS2)by dietary n-3 long chain polyunsaturated fatty acid(LC-PUFA)levels in grouper larvae(Epinephelus coioides)[J].Aquaculture,2014,434:212-219.

        [36]Agaba M,Tocher D R,Dickson C A,et al.Zebrafish cDNA encoding multifunctional fatty acid elongase involved in production of eicosapentaenoic(20:5n-3)and docosahexaenoic(22:6n-3)acids [J].Mar Biotechnol,2004,6(3):251-261.

        [39]Agaba M K,Tocher D R,Zheng X,et al.Cloning and functional characterisation of polyunsaturated fatty acid elongases of marine and freshwater teleost fish[J].Comp Biochem Physiol B,2005,142(3):342-352.

        [40]Kiron V,Satoh S,Takeuchi T,et al.Cloning and over-expression of a masu salmon(Oncorhynchus masou)fatty acid elongase-like gene in zebrafish[J].Aquaculture,2008,282(1):13-18.

        [41]Mohd-Yusof N Y,Monroig O,Mohd-Adnan A,et al.Investigation of highly unsaturated fatty acid metabolism in the Asian sea bass,Lates calcarifer[J].Fish Physiol Biochem,2010,36(4):827-843.

        [43]Carmona-Antoanzas G,Tocher D R,Taggart J B,et al.An evolutionary perspective on Elovl5 fatty acid elongase:comparison of Northern pike and duplicated paralogs from Atlantic salmon[J]. BMC Evol Biol,2013,13(1):85.

        [44]Gregory M K,James M J.Rainbow trout(Oncorhynchus mykiss)Elovl5 and Elovl2 differ in selectivity for elongation of omega-3 docosapentaenoic acid[J].BBA-Mol Cell Biol L,2014,1841(12):1656-1660.

        [45]Zheng X,Leaver M J,Tocher D R.Long-chain polyunsaturated fatty acid synthesis in fish: Comparative analysis of Atlantic salmon(Salmo salar L.)and Atlantic cod(Gadus morhua L.)Δ6 fatty acyl desaturase gene promoters[J].Comp Biochem Phys B,2009,154(3),255-263.

        [46]Geay F,Zambonino-Infante J,Reinhardt R,et al.Characteristics of fads2 gene expression and putative promoter in European sea bass(Dicentrarchus labrax):Comparison with salmonid species and analysis of CpG methylation[J].Mar Genomics,2012,5:7-13.

        [47]王樹啟.黃斑藍子魚HUFA合成關鍵酶基因的結(jié)構(gòu)和功能特性研究[D].汕頭:汕頭大學,2013.

        [48]Teran-Garcia M,Adamson A W,Yu G,et al.Polyunsaturated fatty acid suppression of fatty acid synthase(FASN):evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c[J].Biochem J,2007,402(3):591-600.

        [49]Kadonaga J T,Jones K A,Tjian R.Promoter-specific activation of RNA polymerase II transcription

        by Sp1[J].Trends Biochem Sci,1986,11(1),20-23.

        [50]Aagaard M M,Siersbaek R,Mandrup S.Molecular basis for gene-specific transactivation by nuclear receptors[J].Biochim Biophys Acta,2011,1812(8):824-835.

        [51]Dreyer C,Krey G,Keller H,et al.Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors[J].Cell,1992,68(5):879-887.

        [52]Ibabe A,Grabenbauer M,Baumgart E,et al.Expression of peroxisome proliferator-activated receptors in zebrafish(Danio rerio)[J].Histochem Cell Biol,2002,118(3):231-239.

        [53]Maglich J M,Caravella J A,Lambert M H,et al.The first completed genome sequence from a teleost fish(Fugu rubripes)adds significant diversity to the nuclear receptor superfamily[J]. Nucleic Acids Res,2003,31(14):4051-4058.

        [54]Leaver M J,Boukouvala E,Antonopoulou E,et al.Three peroxisome proliferator-activated receptor isotypes from each of two species of marine fish[J].Endocrinology,2005,146(7):3150-3162.

        [55]Boukouvala E,Antonopoulou E,F(xiàn)avre-Krey L,et al.Molecular characterization of three peroxisome proliferator-activated receptors from the sea bass(Dicentrarchus labrax)[J].Lipids,2004,39(11):1085-1092.

        [56]Batista-Pinto C,Rodrigues P,Rocha E,et al.Identification and organ expression of peroxisome proliferator activated receptors in brown trout(Salmo trutta f.fario)[J].BBA-Gene Struct Expr,2005,1731(2):88-94.

        [58]Leaver M J,Ezaz M T,F(xiàn)ontagne S,et al.Multiple peroxisome proliferator-activated receptor β subtypes from Atlantic salmon(Salmo salar)[J].J Mol Endocrinol,2007,38(3):391-400.

        [59]姜丹莉.黃斑藍子魚PPARs和HNF4α基因的克隆及環(huán)境鹽度對其mRNA表達水平的影響[D].汕頭:汕頭大學,2011.

        [60]Lu K L,Xu W N,Wang L N,et al.Hepatic β-oxidation and regulation of Carnitine Palmitoyltransferase(CPT)I in blunt snout bream Megalobrama amblycephala fed a high fat diet [J].PloS one,2014,9(3):e93135.

        [61]Nedergaard J,Petrovic N,Lindgren E M,et al.PPARγ in the control of brown adipocyte differentiation[J].BBA-Mol Basis Dis,2005,1740(2):293-304.

        [62]Vagner M,Robin J H,Tocher D R,et al.Ontogenic effects of early feeding of sea bass(Dicentrarchus labrax)larvae with a range of dietary n-3 HUFA levels on the function of polyunsaturated fatty acid desaturation pathways[J].British Journal of Nutrition,2009,101(10):1452-1462.

        [63]謝帝芝.環(huán)境鹽度與飼料脂肪源影響黃斑藍子魚HUFA合成代謝的分子機理研究[D].汕頭:汕頭大學,2014.

        [64]Corcoran J,Winter M J,Lange A,et al.Effects of the lipid regulating drug clofibric acid on PPARα-regulated gene transcript levels in common carp(Cyprinus carpio)at pharmacological and environmental exposure levels[J].Aquatic Toxicol,2015,161:127-137.

        [65]la Cour Poulsen L,Siersbk M,Mandrup S.PPARs:fatty acid sensors controlling metabolism[C]// Seminars in celldevelopmental biology.2012,23(6):631-639.

        [66]Brown M S,Goldstein J L.The SREBP pathway:regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor[J].Cell,1997,89(3):331-340.

        [67]Horton J D,Goldstein J L,Brown M S.SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver[J].Journal of clinical investigation,2002,109(9):1125-1131. [68]Shimomura I,Shimano H,Horton J D,et al.Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells[J].Journal of clinical investigation,1997,99(5):838.

        [69]Jeon T I,Osborne T F.SREBPs:metabolic integrators in physiology and metabolism[J].Trends Endocrin Met,2012,23(2):65-72.

        [70]Nara T Y,He W S,Tang C,et al.The E-box like sterol regulatory element mediates the suppression of human Δ6 desaturase gene by highly unsaturated fatty acids[J].Biochem Bioph Res Co,2002,296(1):111-117.

        [71]Kumadaki S,Matsuzaka T,Kato T,et al.Mouse Elovl-6 promoter is an SREBP target[J]. Biochem Bioph Res Co,2008,368(2):261-266.

        [72]Qin Y,Dalen K T,Gustafsson J,et al.Regulation of hepatic fatty acid elongase 5 by LXRα–SREBP-1c[J].BBA-Mol Cell Biol L,2009,1791(2):140-147.

        [73]Carmona-Antoanzas G,Tocher D R,Martinez-Rubio L,et al.Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals[J].Gene,2014,534(1):1-9.

        [74]Leaver M J,Villeneuve L A N,Tocher D R,et al.Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon(Salmo salar)[J].BMC Genomics,2008,9:299-313.

        [75]Geay F,Culi S I,Corporeau C,et al.Regulation of FADS2 expression and activity in European sea bass(Dicentrarchus labrax)fed a vegetable diet[J].Comp Biochem Phys B,2010,156(4):237-243.

        [76]Jakobsson T,Treuter E,Gustafsson J,et al.Liver X receptor biology and pharmacology:new pathways,challenges and opportunities[J].Trends Pharmacol Sci,2012,33(7):394-404.

        [77]Reschly E J,Ai N,Welsh W J,et al.Ligand specificity and evolution of liver X receptors[J].J Steroid Biochem,2008,110(1):83-94.

        [78]Archer A,Lauter G,Hauptmann G,et al.Transcriptional activity and developmental expression of liver X receptor(lxr)in zebrafish[J].Dev Dynam,2008,237(4):1090-1098.

        [79]Cruz-Garcia L,Minghetti M,Navarro I,et al.Molecular cloning,tissue expression and regulation of liver X receptor(LXR)transcription factors of Atlantic salmon(Salmo salar)and rainbow trout(Oncorhynchus mykiss)[J].Comp Biochem Phys B,2009,153(1):81-88.

        [80]朱文娣.黃斑藍子魚LXRα基因的克隆及環(huán)境鹽度對其mRNA表達水平的影響[M].汕頭:汕頭大學,2012.

        [81]李超,劉品,曹艷姿,等.草魚LXRα基因的克隆及表達研究[J].西北農(nóng)林科技大學學報:自然科學版,2014,42(6):1-9.

        [82]Odom D T,Zizlsperger N,Gordon D B,et al.Control of pancreas and liver gene expression by HNF transcription factors[J].Science,2004,303(5662):1378-1381.

        [83]Zhang Y,Shen C,Ai D,et al.Upregulation of scavenger receptor BI by hepatic nuclear factor 4α through a peroxisome proliferator-activated receptor γ-dependent mechanism in liver[J].PPAR Res,2011,2011.

        [84]Martinez-Jimenez C P,Kyrmizi I,Cardot P,et al.Hepatocyte nuclear factor 4α coordinates a transcription factor network regulating hepatic fatty acid metabolism[J].Mol Cell Biol,2010,30(3):565-577.

        [85]Dongol,B,Shah Y M,Kim I,et al.The acyl-CoA thioesterase I is regulated by PPARα and HNF4α via a distal response element in the promoter[J].J Lipid Res,2007,48:1781-1791.

        [86]Xie X,Liao H,Dang H,et al.Down-regulation of hepatic HNF4α gene expression during hyperinsulinemia via SREBPs[J].Mol Endocrinol,2009,23(4):434-443.

        [87]Rowe A.Retinoid X receptors[J].Inte J Biochem Cell B,1997,29(2):275-278.

        [88]Shukla G C,Singh J,Barik S.MicroRNAs:processing,maturation,target recognition and regulatory functions[J].Mol Cell Pharmacol,2011,3(3):83-92.

        [89]Thermann R,Hentze M W.Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation[J].Nature,2007,447(7146):875-878.

        [90]Eulalio A,Behm-Ansmant I,Schweizer D,Izaurralde E.P-body formation is a consequence,not the cause,of RNA-mediated gene silencing[J].Mol Cell Biol,2007,27(11):3970-3981.

        [91]Vasudevan S,Tong Y C,Steitz J A.Switching from repression to activation:microRNAs can upregulate translation[J].Science,2007,318(5858):1931-1934.

        [92]Davalos A,Goedeke L,Smibert P,et al.miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling[J].P Natl Acad Sci USA,2011,108(22):9232-9237.

        [93]Iliopoulos D,Drosatos K,et al.MicroRNA-370 controls the expression of MicroRNA-122 and Cpt1α and affects lipid metabolism[J].J Lipid Res,2010,51(6):1513-1523.

        [94]Kida K,Nakajima M,Mohri T,et al.PPARα is regulated by miR-21 and miR-27b in human liver[J].Pharm Res,2011,28(10):2467-2476.

        [95]Kajimoto K,Naraba H,Naoharu I.MicroRNA and 3T3-L1 pre-adipocyte differentiation[J].RNA,2006,12(9):1626-1632.

        [96]Esau C,Davis S,Murray S F,et al.miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting[J].Cell Metab,2006,3(2):87-98.

        [97]Mennigen J A,Panserat S,Larquier M,et al.Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout[J].Plos One,2012,7(6):e38604.

        [98]Zhang Q H,Xie D Z,Wang S Q,et al.mir-17 is involved in the regulation of HUFA biosynthesis in rabbitfish Siganus canaliculatus[J].BBA-Mol Cell Biol L,2014,1841(7):934-943.

        [99]Devlin A M,Singh R,Wade R E,et al.Hypermethylation of Fads2 and altered hepatic fatty acid and phospholipid metabolism in mice with hyperhomocysteinemia[J].J Biol Chem,2007,282:37082-37090.

        [100]Jiang Y D,Liu Z H,Xiong J T,et al.Homocysteine-mediated PPAR alpha,gamma DNA methylation and its potential pathogenic mechanism in monocytes[J].DNA Cell Biol,2008,27(3):143-150.

        [101]Bozza P T,Kelsall C J,Hoile S P,et al.Vascular dysfunction induced in offspring by maternal dietary fat involves altered arterial polyunsaturated fatty acid biosynthesis[J].Plos One,2012,7(4):e34492.

        [102]Xu H,Dong X,Ai Q,et al.Regulation of tissue LC-PUFA contents,Δ6 fatty acyl desaturase(FADS2)gene expression and the methylation of the putative FADS2 gene promoter by different dietary fatty acid profiles in Japanese Seabass(Lateolabrax japonicus)[J].Plos One,2014,9(1):e87726.

        [103]Wang L,Xu S,Lee J E,et al.Histone H3K9 methyltransferase G9a represses PPAR-gamma expression and adipogenesis[J].Embo J,2013,32(1):45-59.

        [104]Knutson S K,Chyla B J,Amann J M,et al.Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks[J].Embo J,2008,27(7):1017-1028.

        [105]Zhang J,Cui X,Shen Y,et al.Distinct expression profiles of LncRNAs between brown adipose tissue and skeletal muscle[J].Biochem Bioph Res Co,2013,443(3):1028-1034.

        [106]Chen J,Cui X,Shi C,et al.Differential lncRNA expression profiles in brown and white adipose tissues[J].Mol Genet Genomics,2015,290(2):699-707.

        [107]Liu S,Sheng L,Miao H,et al.SRA gene knockout protects against diet-induced obesity and improves glucose tolerance[J].J Bio Chem,2014,289(19):13000-13009.

        [108]Ruiz-Lopez N,Haslam R P,Napier J A,et al.Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop[J].Plant J,2014,77(2):198-208.

        [109]Betancor M B,Sprague M,Usher S,et al.A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish[J].Sci Rep-UK,2015,5.Doi:10.1038/srep08104.

        [110]Kabeya N,Takeuchi Y,Yazawa R,et al.Transgenic modification of the n-3 HUFA biosynthetic pathway in nibe croaker larvae:improved DPA(docosapentaenoic acid;22:5n-3)production[J]. Aquacult Nutrition,2015.DOI:10.1111/anu.12273

        [111]Le Boucher R,Dupont-Nivet M,Vandeputte M,et al.Selection for adaptation to dietary shifts: towards sustainable breeding of carnivorous fish[J].Plos One,2012,7(9):e44898.

        Advance in the Regulatory M echanism s of LC-PUFA Biosynthetic M etabolism of Teleost

        XIE Dizhi1,2,CHEN Fang1,2,ZHANG Qinghao2,CHEN Junliang2,DONG Yewei2,WANG Shuqi2,YOU Cuihong2,NIE Guoxing1,LI Yuanyou2
        (1.College of Fisheries,Henan Normal University,Xinxiang 453007,China;2.Marine Biology Institute&Guangdong Provincial Key Laboratory of Marine Biotechnology,Shantou University,Shantou 515063,China)

        Fish is the main source of high quality protein,especially of LC-PUFA,for human health.The increasing demand of human for aquatic products will mainly depend on aquaculture.However,the lack of fish oil resource and its high price seriously restrict the sustainable development of aquaculture industry.The illumination of regulatory mechanisms of LC-PUFA biosynthetic metabolism in teleost will be helpful for resolving the negative effects of replacing fish oil with vegetable oil in diets,so as to reduce or get rid of the dependence on fish oil in aquatic feeds.This review summaries the advance in studies on regulatory mechanisms of LC-PUFA biosynthesis in teleost from transcriptional,post-transcriptional and epigenetic level,and wishes to provide a reference for researchers in this field.

        Teleost;LC-PUFA;Biosynthesis;Regulatory mechanisms;Fish oil substitution

        TN 104.3

        A

        1001-4217(2015)02-0003-17

        2015-04-22

        謝帝芝(1986-),男,講師,研究方向:魚類營養(yǎng)與飼料學.

        李遠友(1964-),男,教授、博士生導師.研究方向:魚類生理及分子營養(yǎng)學.E-mail:yyli@stu.edu.cn

        國家自然科學基金重大國際合作研究項目(31110103913)和面上項目(41276179),河南師范大學博士啟動基金(qd14180),河南省高等學校重點科研項目(15A240004)

        猜你喜歡
        魚油黃斑魚類
        基于MFCC和ResNet的魚類行為識別
        眾說紛紜話“魚油”
        裂孔在黃斑
        眾說紛紜話“魚油”
        中海海洋耕魚油全產(chǎn)業(yè)鏈
        商周刊(2017年6期)2017-08-22 03:42:51
        奇妙的古代動物 泥盆紀的魚類
        探索科學(2017年5期)2017-06-21 21:16:16
        魚類是怎樣保護自己的
        微膠囊魚油蛋黃醬的研究
        食品界(2016年4期)2016-02-27 07:36:48
        魚類怎樣呼吸
        TA與Bevacizumab玻璃體腔注射治療BRVO黃斑水腫的對照研究
        女同在线网站免费观看| 亚洲日韩中文字幕在线播放 | 无遮挡边摸边吃奶边做视频免费 | 色偷偷88888欧美精品久久久| 伊人久久中文大香线蕉综合| 婷婷综合缴情亚洲狠狠| 久久久99精品国产片| 亚洲av天堂免费在线观看| 久久精品国产99国产精偷| 国产人妻无码一区二区三区免费| 国产精品麻豆成人AV电影艾秋| 成人国产在线观看高清不卡| 免费的黄网站精品久久| 久久综合亚洲鲁鲁五月天| 亚洲av高清一区二区三| 4hu四虎永久在线观看| 性一交一乱一伦| 超碰Av一区=区三区| 成人综合亚洲国产成人| 91乱码亚洲精品中文字幕| 午夜dy888国产精品影院| 国产一区二区精品久久| 亚洲欧洲高潮| 亚洲成AV人久久| 亚洲专区一区二区三区四区五区| 男女啪啪视频高清视频| 久久精品亚洲精品国产色婷 | 女女同性av一区二区三区免费看| 精品粉嫩av一区二区三区| 成年无码av片在线| 日韩成人无码v清免费| 日韩精品国产一区二区| 麻婆视频在线免费观看| 亚洲va久久久噜噜噜久久天堂| 99精品热这里只有精品| 麻豆国产巨作AV剧情老师| 久久免费网站91色网站| 国产三级视频不卡在线观看| 久久国产劲暴∨内射| 在线av野外国语对白| 国产成人高清视频在线观看免费 |