亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        具有分布時滯脈沖Cohen-Grossberg神經(jīng)網(wǎng)絡的穩(wěn)定性分析

        2015-12-07 02:53:52蘇亞坤
        關鍵詞:時滯時刻神經(jīng)元

        張 韜,蘇亞坤,朱 進

        (渤海大學 數(shù)理學院,遼寧錦州 121000)

        Cohen-Grossberg神經(jīng)網(wǎng)絡是由Cohen和Crossberg于1983年提出的[1],被廣泛地應用于模式識別、記憶與信號處理、圖象處理與計算技術等領域。然而,在實際應用中時滯、脈沖是不可避免的,且時滯、脈沖對神經(jīng)網(wǎng)絡的穩(wěn)定性有著巨大的影響[2-8],因此有關時滯脈沖Cohen-Crossberg神經(jīng)網(wǎng)絡的研究[9-19]已逐漸引起人們的關注,研究脈沖型時滯神經(jīng)網(wǎng)絡具有極其重要的意義。

        1 問題描述及相關假設

        神經(jīng)網(wǎng)絡模型如下:

        初始條件x(t0+s)=φ(s),0≤τij(t)<τij(t)≤η<1,其中:x(t)=(x1(t),x2(t),…,xn(t))表示神經(jīng)元狀態(tài)向量;ai(·)表示放大函數(shù);bi(·)表示適當?shù)男袨楹瘮?shù);fj,hj為神經(jīng)元的激勵函數(shù);C=(cij)n×n,D=(dij)n×n,W=(wij)n×n分別表示連接權矩陣、時滯連接權矩陣和分布時滯連接權矩陣。固定時刻tk滿足t1<t2<t3<…,且在 tk時刻,Δ x(t )Rn」表示在tk時刻的狀態(tài)變化,對所有的k∈N,Ik(0)=0。

        要求神經(jīng)網(wǎng)絡模型滿足以下假設:

        1)存在正常數(shù) Lj,Hj,j=1,2,…,n 使得

        4)?σk≥0,k∈N,有

        5)?μ >1,有 μτ≤inf{tk-tk-1};

        6)max{ θk}≤M < e2λμτ,M 是常數(shù),θk=1+(2σk+);

        7)延遲核函數(shù) Kij,i,j=1,2…n是定義在[0,∞)上的實值非負函數(shù),滿足,其中λ是正常數(shù)。

        2 主要結果

        定理 在假設1)~7)下,如果?λ>0,正對角矩陣Q=diag(q1,…,qn),使得

        其中

        那么模型(1)的零解是全局指數(shù)穩(wěn)定的。

        證明 構造如下Lyapunov-Krasovskii泛函:

        當 t≠tk時

        利用條件1)~3)和2ab≤a2+b2得

        由V'<0 知函數(shù) V(t,x(t))是單調遞減的,有 V(t,x(t))≤V(t0,x(t0)),

        又因為

        當t=tk時,根據(jù)假設4)~6)和指數(shù)穩(wěn)定定義,有

        由模型的任意解x(t,t0,x0)可得

        由于μτ≤inf{tk-tk-1},μτ≤t1-t0,μτ≤t2-t1,…,μτ≤tk-1-tk-2,求和得 (k-1)μτ≤t1-t0+t2-t1+…

        3 數(shù)值算例

        考慮下面的系統(tǒng)

        其中 a1(x1(t))=3+sinx1(t),a2(x2(t))=4+cosx1(t)。

        [1]Cohen M A,Grossberg S.Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J].IEEE Trans Syst Man Cybern,1983,13(5):815-826.

        [2]Liao X,Li C.Global attractivity of Cohen-Grossberg model with finite and infinite delays[J].Math Anal Appl,2006,315(1):244-262.

        [3]Huang T,Chan A,Huang Y,et al.Stability of Cohen-Grossberg neural networks with time varying delays[J].Neural Networks,2007,20(8):868-873.

        [4]Li T,F(xiàn)ei S.Stability analysis of Cohen-Grosserg neural networks with timevarying and distributed delays[J].Neurocomputing,2008,71:1069-1081.

        [5]Li K.Stability analysis for impulsive Cohen-Grossberg neural networks with time-varying delays and distributed delay[J].Nonlinear Anal Real World Appl,2009,10(5):2784-2798.

        [6]Zheng C D,Shan Q H,Wang Z.Novel stability criteria of Cohen-Grossberg neural networks with time-varying delays[J].Int J Circuit Theory Appl,2012,40(3):221-235.

        [7]Huang C X,Huang L H,He Y G.Mean square exponential stability of stochastic Cohen-Grossberg neural networks with unbounded distributed delays[J].Discrete Dynamics in Nature and Society,2010(20):1-15.

        [8]Wan L,Zhou Q.Exponential stability of stochastic reaction diffusion Cohen-Grossberg neural networks with delays[J].Applied Mathematics and Computation,2008,206(2):818-824.

        [9]Chen Y.Global Asymptotic Stability of Delayed Cohen-Grossberg Neural Networks[J].IEEE Transactions on Circuit and Systems-I:Fundamental Theory and Applications,2006,53(2):351-357.

        [10]Yang Z C,Xu D Y.Impulsive effects on stability of Cohen-Grossberg neural nettworks with variable delays[J].Applied Mathematics and Cumputation,2006,177(1):63-78.

        [11]Bai C Z.Stability analysis of Cohen-Grossberg BAM neural networks with delays and impulses[J].Chaos,Solitons and Fractals,2008,35(2):263-267.

        [12]Ping Z W,Lu J G.Global exponential stability of impulsive Cohen-Grossberg neural networks with continuously distributed delays[J].Chaos,Solitons and Fractals,2009,41(1):164-174.

        [13]Luo W P,Zhong S M,Yang J.Global exponential stability of impulsive Cohen-Grossberg neural networks with delays[J].Chaos,Solitons and Fractals,2009,42(2):1084-1091.

        [14]Li K L.Stability analysis for impulsive Cohen Grossberg neural networks with time varying delays and distributed delays[J].Nonlinear Analysis:Real World Applications,2009,10(5):2784-2798.

        [15]Lou X Y,Cui B T.Global exponential stability analysis of delayed Cohen-Grossberg neural networks with distributed delay[J].International Journal of Systems Science,2007,38(7):601-609.

        [16]Song Q K,Cao J D.Robust Stability in Cohen Grossberg Neural Network with both Time Varying and Distributed Delays[J].Neural Process Lett,2008,27(2):179-196.

        [17]Wang B X,Jian J G,Jiang M H.Stability in Lagrange sense for Cohen-Grossberg neural networks with time-varying delays and finite distributed delays[J].Nonlinear AnaIysis:Hybrid Systems,2010,4(1):65-78.

        [18]Wu W,Cui B T,Lou X Y.Global exponential stability of Cohen-Grossberg neural networks with distributed delays[J].Mathematical and Computer Modelling,2008,47(9):868-873.

        [19]Lu K,Xu D,Yang Z.Global attraction and stability for Cohen-Grossberg neural networks with delays[J].Neural Networks,2006,19(10):1538-1549.

        猜你喜歡
        時滯時刻神經(jīng)元
        冬“傲”時刻
        《從光子到神經(jīng)元》書評
        自然雜志(2021年6期)2021-12-23 08:24:46
        捕獵時刻
        帶有時滯項的復Ginzburg-Landau方程的拉回吸引子
        躍動的神經(jīng)元——波蘭Brain Embassy聯(lián)合辦公
        基于二次型單神經(jīng)元PID的MPPT控制
        電源技術(2015年5期)2015-08-22 11:18:38
        街拍的歡樂時刻到來了
        毫米波導引頭預定回路改進單神經(jīng)元控制
        一階非線性時滯微分方程正周期解的存在性
        一類時滯Duffing微分方程同宿解的存在性
        职场出轨的人妻中文字幕| 无码人妻少妇久久中文字幕| 亚洲av一二三四又爽又色又色| 日本五十路人妻在线一区二区| 牛牛在线视频| 国产午夜福利精品久久2021| 99亚洲乱人伦精品| 中文字幕色资源在线视频| 少妇裸体性生交| 国产香蕉97碰碰视频va碰碰看| 国产精品国产自线拍免费| 亚洲一区二区自偷自拍另类| 国产欧美性成人精品午夜| 人人妻人人澡人人爽曰本| 黄色录像成人播放免费99网| 欧美日本道免费二区三区| 色婷婷精久久品蜜臀av蜜桃| 国产内射爽爽大片| 乌克兰粉嫩xxx极品hd| 欧美高清视频一区| 日本久久久精品免费免费理论| 亚洲av男人电影天堂热app| 国产乱人伦精品一区二区| 97视频在线播放| 国产成版人性视频免费版| 精品一区二区三区芒果| 国产精选污视频在线观看| 亚洲欧美日韩国产综合久| 99久久久69精品一区二区三区| 天天做天天摸天天爽天天爱| 免费又黄又爽又猛的毛片| 成美女黄网站18禁免费| 久久精品国产亚洲av成人文字| 成l人在线观看线路1| 亚洲av日韩aⅴ无码电影| 麻豆国产精品伦理视频| 国产播放隔着超薄丝袜进入| 欧美极品美女| 日韩一二三四区免费观看| 亚洲av无码专区国产乱码4se| 日韩电影一区二区三区|