付旭東 王巖松
(河南大學(xué)環(huán)境與規(guī)劃學(xué)院 河南開封 475004)
世界干旱半干旱區(qū)約占地球陸地表面的1/3[1],主要分布于副熱帶高壓帶控制下的低緯度地區(qū)[2]。中國(guó)的干旱半干旱區(qū)分布于中緯度的溫帶內(nèi)陸,它西與中亞干旱區(qū)相接,北與蒙古干旱區(qū)毗鄰,區(qū)域內(nèi)戈壁、沙漠、黃土呈有規(guī)律的空間分異[3],是全球粉塵排放的重要源區(qū)之一[4-5]。戈壁、沙漠帶的粉塵在大氣環(huán)流的控制下經(jīng)風(fēng)力吹揚(yáng),被搬運(yùn)至下風(fēng)向處的山前盆地、山麓、河谷、平原等地形區(qū)堆積,形成沉積連續(xù)的黃土和黃土狀沉積物,成為記錄陸地環(huán)境變遷的良好信息載體[6-9]。冰期時(shí),氣候冷干,強(qiáng)勁的風(fēng)力使被搬運(yùn)的粉塵顆粒變粗、排放通量增大;間冰期時(shí),氣候變得暖濕,風(fēng)力的減弱使得搬運(yùn)的粉塵顆粒變細(xì)、排放通量減少[10-12]。基于該假說,在過去幾十年里,研究人員利用沉積在黃土高原、天山、昆侖山、盆地邊緣、河谷等地貌單元內(nèi)的黃土—古土壤沉積序列,結(jié)合年代學(xué)和各種物理化學(xué)生物指標(biāo),反演了中國(guó)黃土的形成過程與機(jī)制、古大氣環(huán)流、古全球變化、亞洲內(nèi)陸干旱化和中國(guó)沙漠的形成時(shí)間,取得一系列重要的研究進(jìn)展[6-9,13-30]。然而,相對(duì)于成果豐碩的中國(guó)黃土研究,作為黃土和亞洲粉塵重要物源地的中國(guó)沙漠自身的物源研究則非常有限[3,31-38]。沙漠物源研究不僅在風(fēng)沙地貌學(xué)上有重大理論和實(shí)踐意義[39-41],而且對(duì)認(rèn)識(shí)大氣粉塵排放、黃土堆積、氣候系統(tǒng)和海洋生物地球化學(xué)循環(huán)也有重要的理論價(jià)值[4,42-47]。
本文的目的是:①總結(jié)中國(guó)沙漠物源研究的理論、方法和已有成果;②評(píng)述目前國(guó)際上沉積物物源分析的主要趨向;③指出中國(guó)沙漠物源研究存在的問題和未來發(fā)展趨勢(shì)。
中國(guó)沙漠主要分布于 35°~50°N,75°~125°E的范圍內(nèi),它呈一條弧形綿亙于中國(guó)的西北、內(nèi)蒙和東北西部,東西長(zhǎng)4 000 km,南北寬600 km,面積達(dá)80.89×104km2,約占整個(gè)國(guó)土總面積的 8.4%[31,39,41]。中國(guó)主要的沙漠有14個(gè),其中5個(gè)分布于沙漠帶東部,分別是呼倫貝爾沙地、松嫩沙地、科爾沁沙地、渾善達(dá)克沙地和毛烏素沙地,它們的年降水量介于200~400 mm,干燥度為 1.2~2.0,植被覆蓋度較高,以固定半固定沙丘為主;其余分布在沙漠帶西部,分別是庫(kù)布齊、烏蘭布和、騰格里、巴丹吉林、河西走廊的沙漠、柴達(dá)木盆地的沙漠、庫(kù)姆塔格、古爾班通古特和塔克拉瑪干沙漠,它們的年降水量為100~200 mm,有的甚至不足 50 mm,干燥度為 4.0~60.0,植被覆蓋稀疏,除古爾班通古特沙漠外,主要以流動(dòng)沙丘占優(yōu)勢(shì)[31,41]。
新中國(guó)成立初期,根據(jù)局部地區(qū)營(yíng)造防風(fēng)固沙林帶的需要,開展了一些小規(guī)模的沙漠研究,如毛烏素沙地南緣流動(dòng)沙丘的研究、科爾沁沙地東南緣章古臺(tái)和騰格里沙漠東南緣鐵路沿線流沙的固定試驗(yàn)[48]。1959年中國(guó)科學(xué)院成立了860多人的治沙隊(duì),采用航空相片判讀與野外考察的方法,對(duì)中國(guó)沙漠和戈壁進(jìn)行了大規(guī)模綜合考察,基本摸清了中國(guó)沙漠的自然條件與資源、沙丘特征與風(fēng)沙運(yùn)動(dòng)規(guī)律[49-51],并建立了20多個(gè)沙漠試驗(yàn)站,為此后中國(guó)沙漠的研究奠定了堅(jiān)實(shí)的基礎(chǔ)[51-53]。1966—1976年間,中國(guó)沙漠研究受到影響,轉(zhuǎn)入以治理沙害為中心的專題研究,如沙區(qū)的鐵路修建、水土資源開發(fā)利用等[49,53-54]。1977年聯(lián)合國(guó)荒漠化會(huì)議的召開,引起了全球?qū)ν恋鼗哪瘑栴}的關(guān)注,為順應(yīng)新形勢(shì),中國(guó)沙漠研究的重點(diǎn)轉(zhuǎn)入了以土地沙漠化問題為中心的綜合研究,開展了干旱半干旱區(qū)土地沙漠化與半濕潤(rùn)地帶風(fēng)沙化問題的成因、過程、預(yù)測(cè)、整治研究[53-55],進(jìn)行了土壤風(fēng)蝕的風(fēng)洞模擬實(shí)驗(yàn),加強(qiáng)了風(fēng)沙物理與風(fēng)沙工程的理論與實(shí)驗(yàn)研究,同時(shí)也開拓了沙漠地區(qū)的第四紀(jì)研究工作[56]。近10多年以來,隨著國(guó)家經(jīng)濟(jì)和科技投入的不斷增加,中國(guó)沙漠研究開始以沙區(qū)長(zhǎng)期野外試驗(yàn)站為平臺(tái),在不同時(shí)空尺度上對(duì)沙漠環(huán)境與風(fēng)沙物理、沙漠形成演變與全球變化、沙漠化過程及其防治、沙漠化監(jiān)測(cè)與信息系統(tǒng)等方面進(jìn)行多學(xué)科的交叉集成研究[57-60]。
沙漠地表最基本的特征是堆積了形態(tài)各異、大小不同的沙丘,它們是松散沉積物經(jīng)風(fēng)力搬運(yùn)在一定條件下堆積形成的[40,61]。這些沙丘沉積物的粒度、礦物組成、形態(tài)、顏色、地球化學(xué)、地質(zhì)年齡等屬性特征記錄了母巖風(fēng)化剝蝕、搬運(yùn)和后期改造過程的信息,受區(qū)域地質(zhì)構(gòu)造、氣候等因素控制。因此,沙漠物源研究的范疇屬于地質(zhì)學(xué),它的理論基礎(chǔ)是沉積學(xué)理論[62-63]。在中國(guó)沙漠物源研究中,傳統(tǒng)的方法是沙丘沉積物的粒度分析和重礦物分析,結(jié)合野外地貌調(diào)查、古地理與地質(zhì)資料來推斷沙漠的物源[31,40]。近10多年來,為跟蹤國(guó)外沉積物物源研究方法,開始嘗試地球化學(xué)、環(huán)境磁學(xué)和單顆粒鋯石定年的方法來探討沙漠物源。如石英的氧同位素[32-33]、電子自旋共振信號(hào)強(qiáng)度和結(jié)晶度[38]、釋光靈敏度[3],沉積物的磁化 率[64-65]、Pb 同 位 素[66]、Nd-Sr 同 位 素 和REE[36,67-68],單顆粒碎屑鋯石的形態(tài)[69]、U-Pb 年齡和Hf同位素[70]的研究。
中國(guó)沙漠物源研究一直存在“就地起沙”和“外地來沙”的爭(zhēng)論。20世紀(jì)50年代初,嚴(yán)欽尚[71]和羅來興[72]對(duì)毛烏素沙地南緣陜北榆林、靖邊、定邊一帶流動(dòng)沙丘的考察和分析,提出了該地區(qū)沙源是由于人類不合理使用土地,破壞地表植被,使古沙翻新而成的,屬“就地起沙”。20世紀(jì)60年代至80年代,在對(duì)中國(guó)沙漠大規(guī)模野外調(diào)查的基礎(chǔ)上,結(jié)合地質(zhì)地貌和古地理資料分析,朱震達(dá)等[31]確定中國(guó)沙漠物源具有近源性,并按成因?qū)⑺鼈兊奈镌礆w為4種類型,即河流沖積物、沖積—湖積物、洪積—沖積物和基巖風(fēng)化的殘積、坡積物,否定了沙漠物源的“外地來沙”。此后,對(duì)塔克拉瑪干[73-76]、古爾班通古特[77]、庫(kù)姆塔格[78-79]、柴達(dá)木[80]、巴丹吉林[81-82]、騰格里[83-84]、庫(kù)布齊[85]、烏蘭布和沙漠[86-87]、毛烏素[88-89]、渾善達(dá)克[90]、科爾沁[91]、松嫩[92]、呼倫貝爾沙地[93]的粒度或重礦物分析也支持這一觀點(diǎn)。然而,近年來對(duì)中國(guó)沙漠帶東部4大沙地邊緣多個(gè)地層剖面的光釋光(OSL)測(cè)年表明:末次冰盛期(LGM)時(shí),這些沙地的東界和南界相對(duì)于全新世適宜期(HO)分別向東向南擴(kuò)張了幾百甚至上千公里[94],而中國(guó)沙漠帶西部的沙漠在LGM和HO時(shí)一直存在活動(dòng)沙丘[94-96]??紤]到戈壁、沙漠和黃土的同心圓狀分布格局,可以推測(cè)冰期時(shí)中國(guó)沙漠帶東部沙地有可能是其西部和北部沙漠不斷擴(kuò)展的產(chǎn)物[34],即這些沙地的沙源有可能是“外地來沙”。但隨后對(duì)渾善達(dá)克、科爾沁和呼倫貝爾沙地的重礦物分析[34]、碎屑鋯石U-Pb年齡和Hf同位素[70,97]分析顯示,西部沙漠對(duì)東部沙地沙源的貢獻(xiàn)很小,從而否定了東部沙地“外地來沙”的推斷。
近10多年來,隨著沉積物和單顆粒礦物的元素地球化學(xué)、同位素地球化學(xué)和定年分析技術(shù)的日臻成熟,同時(shí)借鑒國(guó)外沉積物物源分析方法,對(duì)中國(guó)沙漠物源展開了有益的探索。如付旭東等[32-33]利用沙丘沉積物中最常見的輕礦物―石英在表生過程中氧同位素基本保持不變的特性,對(duì)中國(guó)沙漠2個(gè)粗粒級(jí)的石英研究顯示,沙漠石英δ18O值存在“粒級(jí)依賴”(Grain-size dependence)且區(qū)域差異顯著。石英的電子自旋共振(ESR)信號(hào)強(qiáng)度和結(jié)晶度(CI)也可以用來示蹤物源[98-102],Sun 等[38,101]對(duì)中國(guó)西部沙漠和蒙古戈壁石英的ESR信號(hào)強(qiáng)度和CI研究表明,細(xì)顆粒石英比粗顆粒石英更能顯示它們的區(qū)域差異。基于石英晶體缺陷與其母巖的成巖條件有關(guān)[103],石英的釋光靈敏度被證明可以示蹤物源[104-106]。Lu等[3]對(duì)中國(guó)沙漠3個(gè)粒級(jí)的石英研究顯示,沙漠石英釋光靈敏度也存在“粒級(jí)依賴”和顯著區(qū)域差異,并且沙漠物源與其周圍的造山帶密切相關(guān)。盡管沉積物的磁學(xué)特征對(duì)戈壁、沙漠的物源有一定的指示意義[64-65],但是對(duì)中國(guó)沙漠沉積物磁化率的系統(tǒng)報(bào)道還很少。Pb同位素的物源示蹤研究主要用于風(fēng)塵沉積物[107-108],李鋒[66]對(duì)中國(guó)沙漠沉積物的全巖測(cè)定顯示,它們的Pb同位素比值區(qū)域差異明顯,但值得注意的是Pb同位素容易受沉積循環(huán)改造和人類排放Pb的影響[109]。Nd-Sr同位素(143Nd/144Nd 和87Sr/86Sr比值)在風(fēng)化、搬運(yùn)、沉積和成巖過程中相對(duì)穩(wěn)定[110],它是近幾年沙漠和黃土沉積物物源示蹤常用的方法[36,67-68,111-112]。中國(guó)沙漠表層沉積物 Nd-Sr 同位素測(cè)定顯示,它們具有顯著的區(qū)域差異且受地質(zhì)構(gòu)造背景控制,推斷其沙源主要來自鄰近的山脈和基底巖石[67,111]。盡管稀土元素(REE)也被用于沉積物的物源示蹤[36,68,113],但由于 REE 在陸殼中本身的變異不大,加之測(cè)試誤差較大,使REE很難區(qū)分地表沉積物之間的細(xì)微差別[37]。沉積物物源定量研究是今后主要的發(fā)展方向[114-115],重礦物鋯石在表生循環(huán)中非常穩(wěn)定且 U-Pb 同位素體系較為封閉[70,97,116],單顆粒鋯石U-Pb定年技術(shù)成為當(dāng)前定量厘定沉積物源區(qū)的熱點(diǎn)[35,117-119]。張瀚之等[69]對(duì)單顆粒碎屑鋯石的形態(tài)特征研究顯示中國(guó)沙漠鋯石形態(tài)具有明顯的區(qū)域差異,沙漠物源搬運(yùn)距離較短,具有近源性。最近對(duì)中國(guó)幾個(gè)沙漠單顆粒鋯石U-Pb年齡的測(cè)定顯示它們的鋯石年齡譜差異明顯[35,70,97,118-119],其物源來自周圍的造山帶。盡管單顆粒鋯石U-Pb年齡示蹤物源有很大優(yōu)勢(shì),但在實(shí)用上還存在局限性[37]。
總之,目前對(duì)中國(guó)沙漠的石英氧同位素、電子自旋共振信號(hào)強(qiáng)度和結(jié)晶度、釋光靈敏度以及沙丘沉積物的磁化率、元素地球化學(xué)、同位素地球化學(xué)和單顆粒鋯石U-Pb年齡的研究表明,各個(gè)沙漠的物源有顯著的區(qū)域差異且具有近源性。這與以往傳統(tǒng)的粒度分析、重礦物分析結(jié)合地質(zhì)地貌資料推斷的中國(guó)沙漠物源來自近源的觀點(diǎn)基本一致。然而,各種成因的近源物質(zhì)對(duì)各沙漠的供給比例有多大,為大氣粉塵、中國(guó)黃土和海洋沉積物提供多少物源,仍缺乏定量的數(shù)據(jù)。此外,中國(guó)各沙漠中細(xì)顆粒物質(zhì)的形成機(jī)制,是否具有近源性,是否存在“外地來沙”,以及它們對(duì)沙漠物源的貢獻(xiàn)比例仍是一個(gè)尚未解答的問題。
沙丘是沙漠地表最顯著的特征,它們是由松散沉積物堆積而成的[40]。這些沉積物與其源區(qū)母巖并不是一對(duì)一的對(duì)應(yīng)關(guān)系[114,120],它們現(xiàn)今的屬性特征反映的是母巖巖性及其被風(fēng)化、再旋回、搬運(yùn)、混合、沉積、成巖改造的全部歷史[114]。沉積物與其源區(qū)之間復(fù)雜的網(wǎng)絡(luò)關(guān)系很難被完全揭示,因?yàn)閺摹霸础钡健皡R”的過程中,各種各樣的因素都會(huì)改變母巖碎屑的成分和結(jié)構(gòu)[121-127],造成源區(qū)母巖信息的大量丟失,這也是沉積物物源定量分析一直存在的主要障礙[114]。最近 Weltje[115]提出的沉積物生成與物源定量研究的總體結(jié)構(gòu)框架(圖1),代表了當(dāng)前沉積物物源定量研究的最高水平和今后的發(fā)展方向?!霸础迸c“匯”可通過正演模型和反演模型刻畫,但正反演模型中的化學(xué)(C)、礦物(M)和巖石學(xué)(P)數(shù)據(jù)須通過CMP toolbox變換后才能輸入模型中,圖中的每個(gè)箭號(hào)代表了一系列的方法和過程。
圖1 沉積物生成與物源定量研究的總體結(jié)構(gòu)框架圖[115]Fig.1 Schematic view of the overarching strategy in quantitative sediment-generation and provenance studies[115]
在當(dāng)前的沉積物物源分析中,絕大多數(shù)研究都屬于反演模型(Inverse models),即通過三種主要方法(全巖組份的化學(xué)、巖礦分析,重礦物的選擇性分析,單顆粒礦物的形態(tài)、化學(xué)和同位素分析)獲取沉積物的各種屬性數(shù)據(jù),然后統(tǒng)計(jì)各種指標(biāo)并制作圖表,再依據(jù)先驗(yàn)知識(shí)推斷物源[114]。這種研究范式在世界沙漠物源研究中得到廣泛應(yīng)用,如非洲的 Sahara[128-129]、Namib[130-133]、Kalahari desert[134-135],北美洲的 Great basin[136-137]、Mojave[138-139]、Sonoran desert[140-141]、Chihuahua desert[142],南 美 洲 的 Atacama[143-144]、Patagonia desert[145-146],大洋洲的澳大利亞沙 漠[147-149],亞 洲 的 Arabian desert[124]、Thar desert[150-151]和中國(guó)沙漠[3,31-38,64-70]。然而,目前這些基于沉積物組份屬性統(tǒng)計(jì)的反演模型在數(shù)據(jù)獲取與統(tǒng)計(jì)分析中,仍然存在幾方面明顯的問題:①沉積物取樣與實(shí)驗(yàn)樣品的代表性,如沉積物的隨機(jī)取樣是否能代表研究區(qū)域的整體水平,用量微少的化學(xué)、巖礦和同位素分析測(cè)試結(jié)果是否能代表每個(gè)實(shí)驗(yàn)樣品的整體,單顆粒礦物的統(tǒng)計(jì)與分析需計(jì)數(shù)多少顆粒才能代表一個(gè)沉積物樣品的整體[114],仍需要進(jìn)一步的深入研究;②消除“粒級(jí)依賴”對(duì)沉積物組份的影響,由于母巖風(fēng)化后的產(chǎn)物在搬運(yùn)和沉積過程中的分選作用會(huì)造成某些粒級(jí)的物質(zhì)優(yōu)先富集,沉積物成分與粒級(jí)存在一定的函數(shù)關(guān)系[114]。例如,在細(xì)粒物質(zhì)中SiO2/Al2O3的比值會(huì)隨著粒級(jí)或結(jié)構(gòu)成熟度的減小而減小;中國(guó)北方沙漠石英δ18O值隨著粒級(jí)的減小有增大的趨勢(shì)[32]。因此,選擇恰當(dāng)?shù)某练e物粒級(jí)進(jìn)行化學(xué)、巖礦和同位素分析對(duì)沉積物物源研究至關(guān)重要。盡管一些學(xué)者對(duì)沉積物的成分與粒級(jí)之間的關(guān)系進(jìn)行了有益的探討[125-127],但目前仍沒有任何方法能消除粒級(jí)效應(yīng)對(duì)成分的影響;③組份數(shù)據(jù)分析中的對(duì)數(shù)變換,組份數(shù)據(jù)常用百分比和含量來表示[115],但是為了消除數(shù)據(jù)間的“假相關(guān)”和“負(fù)偏置”問題,應(yīng)該對(duì)組份數(shù)據(jù)進(jìn)行等度量的對(duì)數(shù)變換處理[127];④Dickinson圖解適用的前提和存在的問題[114-115],目前某些沉積物物源研究只是簡(jiǎn)單的套用Dickinson圖解,并未考慮其正確使用需滿足的很多前提條件和問題。
基于沉積物生成過程的正演模型(Forward models)可預(yù)測(cè)屬性明確的源區(qū)能生成沉積物的數(shù)量、成分和結(jié)構(gòu),然而這種實(shí)用的定量正演模型目前還不存在[115]。構(gòu)建正演模型的最大障礙是缺乏母巖物理化學(xué)風(fēng)化的機(jī)理和速率方面的定量數(shù)據(jù),這些問題的解決既需要將母巖定量過程描述和強(qiáng)大的統(tǒng)計(jì)技術(shù)整合,還需要有充足的高質(zhì)量數(shù)據(jù)校正和驗(yàn)證模型。恰當(dāng)?shù)臄?shù)值方法和統(tǒng)計(jì)方法是未來定量正演模型發(fā)展的堅(jiān)實(shí)基礎(chǔ)[115]。
目前沉積物物源研究的案例主要集中于沉積物成分屬性統(tǒng)計(jì)的反演模型,而對(duì)基于過程的沉積物生成模型的研究較少。正反演模型都不是完美無缺的,未來沉積物定量物源分析需要改進(jìn)沉積物數(shù)據(jù)獲取與處理方法,加快構(gòu)建沉積物生成的正演模型研究。
中國(guó)沙漠物源研究基本上都是基于沉積物組份屬性統(tǒng)計(jì)的反演模型,然而此類模型在屬性數(shù)據(jù)的獲取與處理方面仍然存在缺陷:①沙丘沉積物的取樣設(shè)計(jì)并沒有嚴(yán)格的統(tǒng)計(jì)學(xué)意義,沉積物組份的粒度、化學(xué)、礦物、同位素測(cè)試分析僅僅取用了采樣樣品的微小部分,這樣的測(cè)試結(jié)果能否代表該樣品的整體狀況,其可靠性需要評(píng)估,用激光粒度儀分析沙丘沉積物的粒度存在很大誤差,重礦物分析需要多少樣品以及統(tǒng)計(jì)多少顆粒才能代表一個(gè)樣品;②消除“粒級(jí)依賴”對(duì)沉積物成分的影響,對(duì)沉積物組份的化學(xué)、礦物、同位素分析時(shí)應(yīng)該選用恰當(dāng)?shù)牧<?jí),而不是使用全巖分析;③處理組份數(shù)據(jù)時(shí),應(yīng)進(jìn)行對(duì)數(shù)變換,而不是直接使用含量或百分比。此外,在解釋組份數(shù)據(jù)時(shí),未能整合源區(qū)已有的地質(zhì)構(gòu)造、母巖、氣候、地貌等數(shù)據(jù)資料,多數(shù)研究仍是定性的推斷,缺乏定量物源研究的案例。
沉積物物源的研究需要沉積學(xué)、巖石學(xué)、礦物學(xué)、地球化學(xué)、構(gòu)造地質(zhì)學(xué)、地層學(xué)、數(shù)學(xué)地質(zhì)和地貌學(xué)等學(xué)科的交叉研究。今后中國(guó)沙漠物源研究應(yīng)做好以下幾方面的工作:①采用大面積網(wǎng)格隨機(jī)取樣法對(duì)中國(guó)各個(gè)沙漠的沙丘沉積物進(jìn)行系統(tǒng)采樣;用篩析法分析每個(gè)沙漠的粒度組成,然后對(duì)不同粒級(jí)的沉積物顆粒分別進(jìn)行礦物組成、地球化學(xué)、單顆粒鋯石年代學(xué)屬性的系統(tǒng)測(cè)試分析,建立每個(gè)沙漠沉積物組份的屬性數(shù)據(jù)庫(kù);依據(jù)沉積物在搬運(yùn)、沉積過程中遵守等效沉降原理,使用源巖平均密度指數(shù)(SRD)校正不同粒級(jí)沉積物組份的粒度、礦物和地球化學(xué)數(shù)據(jù),消除“粒級(jí)依賴”對(duì)沉積物成分的影響;基于沉積物組份屬性數(shù)據(jù)的等級(jí)結(jié)構(gòu)(巖石→礦物→化學(xué)成分),建立化學(xué)成分—礦物—巖石之間定量的數(shù)學(xué)關(guān)系(CMP toolbox),將沉積物組份的巖石、礦物、地球化學(xué)屬性間的關(guān)系用數(shù)學(xué)公式表達(dá),從而定量地反演沙漠的物源。②選擇若干典型沙漠,通過全球的地形、巖性、溫度、降水和植被蓋度圖獲取其沉積物源區(qū)的屬性特征;通過室內(nèi)實(shí)驗(yàn)和野外研究解決母巖和礦物的物理化學(xué)風(fēng)化機(jī)制及其速率,建立母巖物理風(fēng)化形成的礦物顆粒粒度分布模型;用CMP toolbox定量表達(dá)巖石—礦物—地球化學(xué)屬性間的關(guān)系,定量模擬源區(qū)生成沉積物的數(shù)量、成分和結(jié)構(gòu),構(gòu)建源區(qū)沉積物生成的正演模型,并用建成的沉積物組份屬性數(shù)據(jù)庫(kù)驗(yàn)證和校正模型;具體方法案例可參考文獻(xiàn)[152-155]。③研究中國(guó)各沙漠中細(xì)顆粒物質(zhì)的形成機(jī)制,是否具有近源性以及它們對(duì)沙漠物源的貢獻(xiàn)比例,對(duì)比研究中國(guó)沙漠與低緯度沙漠物源的形成機(jī)制,定量評(píng)估河流沖積物、沖積—湖積物、洪積—沖積物和基巖風(fēng)化的殘積、坡積物對(duì)中國(guó)各沙漠物源的貢獻(xiàn)率以及它們的遷移路徑,建立中國(guó)沙漠物源區(qū)劃圖,應(yīng)用到防沙治沙的工程實(shí)踐中。④基于山地構(gòu)造抬升—?dú)夂颉L(fēng)化剝蝕的相互作用以及沉積物從陸地—大氣—海洋遷移的內(nèi)在聯(lián)系,定量研究歷史和地質(zhì)時(shí)間尺度沙漠—黃土—深海沉積物物源的傳輸途徑及其驅(qū)動(dòng)因素,建立陸地—大氣—海洋物質(zhì)循環(huán)的機(jī)理模型,為深刻理解地球各圈層間物質(zhì)交換與地表過程提供依據(jù)。
References)
1 Reynolds J F,Smith D M S,Lambin E F,et al.Global desertification:building a science for dryland development[J].Science,2007,316(5826):847-851.
2 Goudie A S.Great Warm Deserts of the World:Landscapes and Evolution[M].Oxford:Oxford University Press,2002.
3 Lu T Y,Sun J M.Luminescence sensitivities of quartz grains from eolian deposits in northern China and their implications for provenance[J].Quaternary Research,2011,76(2):181-189.
4 Choobari O A,Zawar-Reza P,Sturman A.The global distribution of mineral dust and its impacts on the climate system:A review[J].Atmospheric Research,2014,138:152-165.
5 Goudie A S.Desert dust and human health disorders[J].Environment International,2014,63:101-113.
6 Liu T S.Loess and the Environment[M].Beijing:China Ocean Press,1985.
7 Sun J M.Source regions and formation of the loess sediments on the high mountain regions of Northwestern China[J].Quaternary Research,2002,58(3):341-351.
8 Song Y G,Chen X L,Qian L B,et al.Distribution and composition of loess sediments in the Ili Basin,Central Asia[J].Quaternary International,2014,334-335:61-73.
9 Vasiljevi c'D A,Markovi c'S B,Hose T A,et al.Loess-palaeosol sequences in China and Europe:Common values and geoconservation issues[J].Catena,2014,117:108-118.
10 Kukla G J.Pleistocene land-sea correlations I.Europe[J].Earth-Science Reviews,1977,13(4):307-374.
11 McGee D,Broecker W S,Winckler G.Gustiness:The driver of glacial dustiness?[J].Quaternary Science Reviews,2010,29(17/18):2340-2350.
12 Muhs D R.The geologic records of dust in the Quaternary[J].Aeolian Research,2013,9:3-48.
13 Heller F,Liu T S.Magnetostratigraphical dating of loess deposits in China[J].Nature,1982,300(5891):431-433.
14 Zhou L P,Oldfield F,Wintle A G,et al.Partly pedogenic origin of magnetic variations in Chinese loess[J].Nature,1990,346(6286):737-739.
15 An Z S,Kukla G J,Porter S C,et al.Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J].Quaternary Research,1991,36(1):29-36.
16 An Z S,Kutzbach J E,Prell W L,et al.Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J].Nature,2001,411(6833):62-66.
17 Ding Z L,Derbyshire E,Yang S L,et al.Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J].Paleoceanography,2002,17(3):5-1-5-21,doi:10.1029/2001PA000725,2002.
18 Fang X M,Shi Z T,Yang S L,et al.Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern Xinjiang[J].Chinese Science Bulletin,2002,47(16):1381-1387.
19 Fang X M,Lü L Q,Yang S L,et al.Loess in Kunlun Mountains and its implications on desert development and Tibetan Plateau uplift in west China[J].Science in China(Series D),2002,45(4):289-299.
20 Guo Z T,Ruddiman W F,Hao Q Z,et al.Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J].Nature,2002,416(6877):159-163.
21 Stevens T,Armitage S J,Lu H Y,et al.Sedimentation and diagenesis of Chinese loess:implications for the preservation of continuous,highresolution climate records[J].Geology,2006,34(10):849-852.
22 Sun J M,Liu T S.The age of the Taklimakan desert[J].Science,2006,312(5780):1621.
23 Sun J M,Zhang Z Q,Zhang L Y.New evidence on the age of the Taklimakan Desert[J].Geology,2009,37(2):159-162.
24 Sun J M,Ye J,Wu W Y,et al.Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J].Geology,2010,38(6):515-518.
25 Yang S L,F(xiàn)ang X M,Shi Z T,et al.Timing and provenance of loess in the Sichuan Basin,southwestern China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2010,292(1/2):144-154.
26 Hao Q Z,Wang L,Oldfield F,et al.Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability[J].Na-ture,2012,490(7420):393-396.
27 Zhang H Y,Lu H Y,Jiang S Y,et al.Provenance of loess deposits in the Eastern Qinling Mountains(central China)and their implications for the paleoenvironment[J].Quaternary Science Reviews,2012,43:94-102.
28 Miao Y F,Herrmann M,Wu F L,et al.What controlled Mid-Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift:A review[J].Earth-Science Reviews,2012,112(3/4):155-172.
29 Ge J Y,Dai Y,Zhang Z S,et al.Major changes in East Asian climate in the mid-Pliocene:Triggered by the uplift of the Tibetan Plateau or global cooling?[J].Journal of Asian Earth Sciences,2013,69:48-59.
30 Lehmkuhl F,Schulte P,Zhao H,et al.Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau[J].Catena,2014,117:23-33.
31 朱震達(dá),吳正,劉恕,等.中國(guó)沙漠概論(修訂版)[M].北京:科學(xué)出版社,1980.[Zhu Zhenda,Wu Zheng,Liu Shu,et al.An Outline of Chinese Deserts[M].Beijing:Science Press,1980.]
32 付旭東,楊小平.中國(guó)北方沙漠石英δ18O值的初步測(cè)定與分析[J].第四紀(jì)研究,2004,24(2):243-243.[Fu Xudong,Yang Xiaoping.δ18O in the quartz grains of desert sand in northern China[J].Quaternary Sciences,2004,24(2):243-243.]
33 Yang X P,Zhang F,F(xiàn)u X D,et al.Oxygen isotopic compositions of quartz in the sand seas and sandy lands of northern China and their implications for understanding the provenances of aeolian sands[J].Geomorphology,2008,102(2):278-285.
34 Xie J,Ding Z L.Compositions of heavy minerals in Northeastern China sandlands and provenance analysis[J].Science China Earth Sciences,2007,50(11):1715-1723.
35 Stevens T,Palk C,Carter A,et al.Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons[J].Geological Society of America Bulletin,2010,122(7/8):1331-1344.
36 Rao W B,Chen J,Tan H B,et al.Sr-Nd isotopic and REE geochemical constraints on the provenance of fine-grained sands in the Ordos deserts,north-central China[J].Geomorphology,2011,132(3/4):123-138.
37 Chen J,Li G J.Geochemical studies on the source region of Asian dust[J].Science China Earth Sciences,2011,54(9):1279-1301.
38 Sun Y B,Chen H Y,Tada R,et al.ESR signal intensity and crystallinity of quartz from Gobi and sandy deserts in East Asia and implication for tracing Asian dust provenance[J].Geochemistry Geophysics Geosystems,2013,14(8):2615-2627.
39 王濤.中國(guó)沙漠與沙漠化[M].石家莊:河北科學(xué)技術(shù)出版社,2003.[Wang Tao.Desert and Desertification in China[M].Shijiazhuang:Hebei Science and Technology Press,2003.]
40 吳正.風(fēng)沙地貌與治沙工程學(xué)[M].北京:科學(xué)出版社,2003.[Wu Zheng.Geomorphology of Wind-drift Sands and Their Controlled Engineering[M].Beijing:Science Press,2003.]
41 吳正.中國(guó)沙漠及其治理[M].北京:科學(xué)出版社,2009.[Wu Zheng.Sandy Deserts and Its Control in China[M].Beijing:Science Press,2009.]
42 Chase B.Evaluating the use of dune sediments as a proxy for palaeoaridity:A southern African case study[J].Earth-Science Reviews,2009,93(1/2):31-45.
43 Maher B A,Prospero J M,Mackie D,et al.Global connections between Aeolian dust,climate and ocean biogeochemistry at the present day and at the last glacial maximum[J].Earth-Science Reviews,2010,99(1/2):61-97.
44 Crouvi O,Amit R,Enzel Y,et al.Active sand seas and the formation of desert loess[J].Quaternary Science Reviews,2010,29(18):2087-2098.
45 Shao Y P,Wyrwoll K-H,Chappell A,et al.Dust cycle:An emerging core theme in Earth system science[J].Aeolian Research,2011,2(4):181-204.
46 Vandenberghe J.Grain size of fine-grained windblown sediment:A powerful proxy for process identification[J].Earth-Science Reviews,2013,121:18-30.
47 Serno S,Winckler G,Anderson R F,et al.Eolian dust input to the Subarctic North Pacific[J].Earth and Planetary Science Letters,2014,387:252-263.
48 朱震達(dá).三十年來中國(guó)沙漠研究的進(jìn)展[J].地理學(xué)報(bào),1979,34(4):305-314.[Zhu Zhenda.Thirty years in research works on Chinese sandy deserts[J].Acta Geographica Sinica,1979,34(4):305-314.]
49 朱震達(dá).中國(guó)沙漠化研究的進(jìn)展[J].中國(guó)沙漠,1989,9(1):1-13.[Zhu Zhenda.Advance in desertification research in China[J].Journal of Desert Research,1989,9(1):1-13.]
50 吳正.中國(guó)風(fēng)沙地貌學(xué)研究的新進(jìn)展——慶賀黃秉維教授80華誕[J].地理研究,1993,12(l):10-17.[Wu Zheng.New progresses in the geomorphological research of sand desert in China——Presented for the celebration of Professor Huang Bingwei’s 80-year-old birthday[J].Geographical Research,1993,12(l):10-17.]
51 夏訓(xùn)誠(chéng),樊勝岳.中國(guó)沙漠科學(xué)研究進(jìn)展[J].科學(xué)通報(bào),2000,45(18):1908-1912.[Xia Xuncheng,F(xiàn)an Shengyue.Research progress of desert science in China[J].Chinese Science Bulletin,2000,45(18):1908-1912.]
52 董治寶,王濤,屈建軍.100 a來沙漠科學(xué)的發(fā)展[J].中國(guó)沙漠,2003,23(1):1-5.[Dong Zhibao,Wang Tao,Qu Jianjun.The history of desert science over the last 100 years[J].Journal of Desert Research,2003,23(1):1-5.]
53 王濤,趙哈林.中國(guó)沙漠科學(xué)的五十年[J].中國(guó)沙漠,2005,25(2):145-165.[Wang Tao,Zhao Halin.Fifty-year history of China desert science[J].Journal of Desert Research,2005,25(2):145-165.]
54 王濤.我國(guó)沙漠與沙漠化科學(xué)發(fā)展的戰(zhàn)略思考[J].中國(guó)沙漠,2008,28(1):1-7.[Wang Tao.Strategic consideration on desert and desertification sciences development in China[J].Journal of Desert Research,2008,28(1):1-7.]
55 吳正.中國(guó)沙漠與治理研究50年[J].干旱區(qū)研究,2009,26(l):1-7.[Wu Zheng.Deserts in China and their management over the last 50 years[J].Arid Zone Research,2009,26(1):1-7.]
56 董光榮.中國(guó)沙漠形成演化氣候變化與沙漠化研究[M].北京:海洋出版社,2002.[Dong Guangrong.Study on the Formation and Evolution,Climate Change and Desertification in Deserts of China[M].Beijing:China Ocean Press,2002.]
57 慈龍駿.中國(guó)的荒漠化及其防治[M].北京:高等教育出版社,2005.[Ci Longjun.Desertification and Its Control in China[M].Beijing:Higher Education Press,2005.]
58 王濤,陳廣庭,趙哈林,等.中國(guó)北方沙漠化過程及其防治研究的新進(jìn)展[J].中國(guó)沙漠,2006,26(4):507-516.[Wang Tao,Chen Guangting,Zhao Halin,et al.Research progress on aeolian desertification process and controlling in north of China[J].Journal of Desert Research,2006,26(4):507-516.]
59 王濤.干旱區(qū)綠洲化、荒漠化研究的進(jìn)展與趨勢(shì)[J].中國(guó)沙漠,2009,29(1):1-9.[Wang Tao.Review and prospect of research on oasification and desertification in arid regions[J].Journal of Desert Research,2009,29(1):1-9.]
60 王濤,宋翔,顏長(zhǎng)珍,等.近35a來中國(guó)北方土地沙漠化趨勢(shì)的遙感分析[J].中國(guó)沙漠,2011,31(6):1351-1356.[Wang Tao,Song Xiang,Yan Changzhen,et al.Remote sensing analysis on Aeolian desertification trends in Northern China during 1975-2010[J].Journal of Desert Research,2011,31(6):1351-1356.]
61 McKee E D.A Study of Global Sand Seas[M].Washington:United States Government Printing Office,1979.
62 Friedman G M,Sanders J E.Principles of Sedimentology[M].New York:Wiley,1978.
63 Pettijohn F J,Potter P E,Siever R.Sand and Sandstone.2nd ed[M].New York:Springer-Verlag,1987.
64 Maher B A,Mutch T J,Cunningham D.Magnetic and geochemical characteristics of Gobi Desert surface sediments:Implications for provenance of the Chinese Loess Plateau[J].Geology,2009,37(3):279-282.
65 Li C,Yang S Y,Zhang W G.Magnetic properties of sediments from major rivers,aeolian dust,loess soil and desert in China[J].Journal of Asian Earth Sciences,2012,45:190-200.
66 李鋒.中國(guó)北方沙塵源區(qū)鉛同位素分布特征及其示蹤意義的初步研究[J].中國(guó)沙漠,2007,27(5):738-744.[Li Feng.Distribution characteristics of lead isotope in dust source areas and its trace significance in the north of China[J].Journal of Desert Research,2007,27(5):738-744.]
67 Chen J,Li G J,Yang J D,et al.Nd and Sr isotopic characteristics of Chinese deserts:Implications for the provenances of Asian dust[J].Geochimica et Cosmochimica Acta,2007,71(15):3904-3914.
68 Rao W B,Chen J,Tan H B,et al.Nd-Sr isotopic and REE geochemical compositions of Late Quaternary deposits in the desert-loess transition,north-central China:Implications for their provenance and past wind systems[J].Quaternary International,2014,334-335:197-212.
69 張瀚之,鹿化煜,弋雙文,等.中國(guó)北方沙漠/沙地鋯石形態(tài)特征及其對(duì)物源的指示[J].第四紀(jì)研究,2013,33(2):334-344.[Zhang Hanzhi,Lu Huayu,Yi Shuangwen,et al.Zircon typological analysis of the major deserts/sand fields in northern China and its implication for identifying sediment source[J].Quaternary Sciences,2013,33(2):334-344.]
70 謝靜,吳福元,丁仲禮.渾善達(dá)克沙地的碎屑鋯石U-Pb年齡和Hf同位素組成及其源區(qū)意義[J].巖石學(xué)報(bào),2007,23(2):523-528.[Xie Jing,Wu Fuyuan,Ding Zhongli.Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance[J].Acta Petrologica Sinica,2007,23(2):523-528.]
71 嚴(yán)欽尚.陜北榆林定邊間流動(dòng)沙丘及其改造[J].科學(xué)通報(bào),1954(11):28-34.[Yan Qinshang.Mobile sand dune and its control along Yuling and Dingbian,Shanbei[J].Chinese Science Bulletin,1954(11]:28-34.]
72 羅來興.陜北榆林靖邊間的風(fēng)沙問題[J].科學(xué)通報(bào),1954,11:40-46.[Luo Laixing.Aeolian sand dune along Yuling and Jingbian,Shanbei[J].Chinese Science Bulletin,1954,11:40-46.]
73 朱震達(dá),陳治平,吳正,等.塔克拉瑪干沙漠風(fēng)沙地貌研究[M].北京:科學(xué)出版社,1981.[Zhu Zhenda,Chen Zhiping,Wu Zheng,et al.A Study on the Sand Dune Geomorphology of Taklimakan Desert[M].Beijing:Science Press,1981.]
74 錢亦兵,吳兆寧,石井武政,等.塔克拉瑪干沙漠沙物質(zhì)成分特征及其來源[J].中國(guó)沙漠,1993,13(4):32-38.[Qian Yibing,Wu Zhaoning,Ishii T,et al.The constituent cheracteristics of sand materials and sand sources of the Taklamakan desert[J].Journal of Desert Research,1993,13(4):32-38.]
75 Honda M,Shimizu H.Geochemical,mineralogical and sedimentological studies on the Taklimakan Desert sands[J].Sedimentology,1998,45(6):1125-1143.
76 Wang X M,Dong Z B,Zhang J W,et al.Grain size characteristics of dune sands in the central Taklimakan Sand Sea[J].Sedimentary Geology,2003,161(1/2):1-14.
77 Qian Y B,Zhou X J,Wu Z N,et al.Multi-sources of desert sands for the Junggar Basin[J].Journal of Arid Environments,2003,53(2):241-256.
78 Xu Z W,Lu H Y,Zhao C F,et al.Composition,origin and weathering process of surface sediment in Kumtagh Desert,Northwest China[J].Journal of Geographical Sciences,2011,21(6):1062-1076.
79 Liu B L,Qu J J,Ning D H,et al.Grain-size study of aeolian sediments found east of Kumtagh Desert[J].Aeolian Research,2014,13:1-6.
80 Fang X M,Zhang W L,Meng Q Q,et al.High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau,Qinghai province,China and its implication on tectonic uplift of the NE Tibetan Plateau[J].Earth and Planetary Science Letters,2007,258(1/2):293-306.
81 Yang X P.Landscape evolution and precipitation changes in the Badain Jaran Desert during the last 30,000 years[J].Chinese Science Bulletin,2000,45(11):1042-1047.
82 Dong Z B,Qian G Q,Lv P,et al.Investigation of the sand sea with the tallest dunes on Earth:China’s Badain Jaran Sand Sea[J].Earth-Science Reviews,2013,120:20-39.
83 哈斯.騰格里沙漠東南緣格狀沙丘粒度特征與成因探討[J].地理研究,1998,17(2):178-184.[Hasi.Grain-size characteritics and mechanism of network dune in the southeastern Tengger desert[J].Geographical Research,1998,17(2):178-184.]
84 Li Z J,Sun D H,Chen F H,et al.Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China[J].Quaternary Science Reviews,2014,85:85-98.
85 Fan Y X,Chen X L,F(xiàn)an T L,et al.Sedimentary and OSL dating evidence for the development of the present Hobq desert landscape,northern China[J].Science China Earth Sciences,2013,56(12):2037-2044.
86 Fan Y X,Chen F H,F(xiàn)an T L,et al.Sedimentary documents and Optically Stimulated Luminescence(OSL)dating for formation of the present landform of the northern Ulan Buh Desert,northern China[J].Science China Earth Sciences,2010,53(11):1675-1682.
87 Chen F H,Li G Q,Zhao H,et al.Landscape evolution of the Ulan Buh Desert in northern China during the Late Quaternary[J].Quaternary Research,2014,81(3):476-487.
88 Sun J M.Origin of eolian sand mobilization during the past 2300 years in the Mu Us desert,China[J].Quaternary Research,2000,53(1):78-88.
89 Stevens T,Carter A,Watson T P,et al.Genetic linkage between the Yellow River,the Mu Us desert and the Chinese Loess Plateau[J].Quaternary Science Reviews,2013,78:355-368.
90 李孝澤,董光榮.渾善達(dá)克沙地的形成時(shí)代與成因初步研究[J].中國(guó)沙漠,1998,18(1):16-21.[Li Xiaoze,Dong Guangrong.Preliminary studies on formative age and causes of Otindag sandy land in China[J].Journal of Desert Research,1998,18(1):16-21.]
91 裘善文.試論科爾沁沙地的形成與演變[J].地理科學(xué),1989,9(4):317-328.[Qiu Shanwen.Study on the formation and evolution of Horqin sandy land[J].Scientia Geographica Sinica,1989,9(4):317-328.]
92 李取生.松嫩沙地的形成與環(huán)境變遷[J].中國(guó)沙漠,1991,11(3):36-43.[Li Qusheng.The formation of Songnen sandy land and the changes of the environment[J].Journal of Desert Research,1991,11(3):36-43.]
93 韓廣,張桂芳,楊文斌.呼倫貝爾沙地沙丘砂來源的定量分析——逐步判別分析(SDA)在粒度分析方面的應(yīng)用[J].地理學(xué)報(bào),2004,59(2):189-196.[Han Guang,Zhang Guifang,Yang Wenbin.A quantitative analysis for the provenance of dune sand in the Hulun Buir sandy land:Application of stepwise discriminant analysis to granulometric data[J].Acta Geographica Sinica,2004,59(2):189-196.]
94 Sun J M,Ding Z L,Li T S.Desert distributions during the glacial maximum and climatic optimum:Example of China[J].Episodes,1998,21(1):28-31.
95 Li S H,Sun J M,Zhao H.Optical dating of dune sands in the northeastern deserts of China[J].Palaeogeography Palaeoclimatology Palaeoecology,2002,181(4):419-429.
96 Lu H Y,Yi S W,Xu Z W,et al.Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum[J].Chinese Science Bulletin,2013,58(23):2775-2783.
97 Xie J,Yang S L,Ding Z L.Methods and application of using detrital zircons to trace the provenance of loess[J].Science China Earth Sciences,2012,55(11):1837-1846.
98 Ono Y,Naruse T,Ikeya M,et al.Origin and derived courses of eolian dust quartz deposited during marine isotope stage 2 in East Asia,suggested by ESR signal intensity[J].Global Planetary Change,1998,18(3/4):129-135.
99 Murata K J,Norman M B.An index of crystallinity for quartz[J].A-merican Journal of Science,1976,276(9):1120-1130.
100 Nagashima K,Tada R,Tani A,et al.Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz[J].Geochemistry Geophysics Geosystems,2007,8(2):Q02Q04.doi:10.1029/2006GC001364.
101 Sun Y B,Tada R,Chen J,et al.Distinguishing the sources of Asian dust based on electron spin resonance signal intensity and crystallinity of quartz[J].Atmospheric Environment,2007,41(38):8537-8548.
102 Sun Y B,Tada R,Chen J,et al.Tracing the provenance of finegrained dust deposited on the central Chinese loess plateau[J].Geophysical Research Letters,2008,35(1):L01804,doi:10.1029/2007GL031672.
103 Fitzsimmons K.An assessment of the luminescence sensitivity of Australian quartz with respect to sediment history[J].Geochronometria,2011,38(3):199-208.
104 Li S H,Chen Y Y,Li B,et al.OSL dating of sediments from deserts in northern China[J].Quaternary Geochronology,2007,2(1-4):23-28.
105 Zheng C X,Zhou L P,Qin J T.Difference in luminescence sensitivity of coarse-grained quartz from deserts of northern China[J].Radiation Measurements,2009,44(5/6):534-537.
106 Tsukamoto S,Nagashima K,Murray A S,et al.Variations in OSL components from quartz from Japan sea sediments and the possibility of reconstructing provenance[J].Quaternary International,2011,234(1/2):182-189.
107 Pettke T,Halliday A N,Rea D K.Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3[J].Paleoceanography,2002,17:1031.doi:1010.1029/2001PA000673.
108 Sun J M,Zhu X K.Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma:Implications for provenance change[J].Earth and Planetary Science Letters,2010,290(3/4):438-447.
109 Grousset F E,Biscaye P E.Tracing dust sources and transport patterns using Sr,Nd and Pb isotopes[J].Chemical Geology,2005,222(3/4):149-167.
110 Rao W B,Yang J D,Chen J,et al.Sr-Nd isotope geochemistry of eolian dust of the arid-semiarid areas in China:implications for loess provenance and monsoon evolution[J].Chinese Science Bulletin,2006,51(12):1401-1412.
111 Yang J D,Li G J,Rao W B,et al.Isotopic evidence for provenance of East Asian dust[J].Atmospheric Environment,2009,43(29):4481-4490.
112 Chen Z,Li G J.Evolving sources of eolian detritus on the Chinese Loess Plateau since Early Miocene:Tectonic and climatic controls[J].Earth and Planetary Science Letters,2013,371-372:220-225.
113 Ferrat M,Weiss D J,Strekopytov S,et al.Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau[J].Geochimica et Cosmochimica Acta,2011,75(21):6374-6399.
114 Weltje G J,von Eynatten H.Quantitative provenance analysis of sediments:review and outlook[J].Sedimentary Geology,2004,171(1/2/3/4):1-11.
115 Weltje G J.Quantitative models of sediment generation and provenance:State of the art and future developments[J].Sedimentary Geology,2012,280:4-20.
116 Fedo C M,Sircombe K N,Rainbird R H.Detrital zircon analysis of the sedimentary reord[J].Reviews in Mineralogy and Geochemistry,2003,53(1):277-303.
117 Xiao G,Zong K,Li G,et al.Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau[J].Geophysical Research Letters,2012,139(20):L20715, doi:10.1029/2012GL053304.
118 Pullen A,Kapp P,McCallister A T,et al.Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J].Geology,2011,39(11):1031-1034.
119 Che X D,Li G J.Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon[J].Quaternary Research,2013,80(3):545-551.
120 Cox R,Lowe D R.A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover[J].Journal of Sedimentary Research,1995,65(1A):1-12.
121 Morton A C,Hallsworth C R.Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J].Sedimentary Geology,1994,90(3/4):241-256.
122 Morton A C,Hallsworth C R.Processes controlling the composition of heavy mineral assemblages in sandstones[J].Sedimentary Geology,1999,124(1/2/3/4):3-29.
123 Amorosi A,Zuffa G G.Sand composition changes across key boundaries of siliciclastic and hybrid depositional sequences[J].Sedimentary Geology,2011,236(1/2):153-163.
124 Garzanti E,Vermeesch P,Andò S,et al.Provenance and recycling of Arabian desert sand[J].Earth-Science Reviews,2013,120:1-19.
125 Garzanti E,Andò S,Vezzoli G.Settling equivalence of detrital minerals and grain-size dependence of sediment composition[J].Earth and Planetary Science Letters,2008,273(1/2):138-151.
126 Garzanti E,Andò S,Vezzoli G.Grain-size dependence of sediment composition and environmental bias in provenance studies[J].Earth and Planetary Science Letters,2009,277(3/4):422-432.
127 Tolosana-Delgado R.Uses and misuses of compositional data in sedimentology[J].Sedimentary Geology,2012,280:60-79.
128 Schuster M,Duringer P,Ghienne J-F,et al.The age of the Sahara desert[J].Science,2006,311(5762):821.
129 Muhs D R,Roskin J,Tsoar H,et al.Origin of the Sinai-Negeverg,Egypt and Israel:mineralogical and geochemical evidence for the importance of the Nile and sea level history[J].Quaternary Science Reviews,2013,69:28-48.
130 Lancaster N.Grain size characteristics of Namib Desert linear dunes[J].Sedimentology,1981,28(1):115-122.
131 White K,Walden J,Gurney S D.Spectral properties,iron oxide content and provenance of Namib dune sands[J].Geomorphology,2007,86(3/4):219-229.
132 Vermeesch P,F(xiàn)enton C R,Kober F F,et al.Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides[J].Nature Geoscience,2010,3:862-865.
133 Garzanti E,Andò S,Vezzoli G,et al.Petrology of the Namib Sand Sea:Long-distance transport and compositional variability in the wind-displaced Orange Delta[J].Earth-Science Reviews,2012,112(3/4):173-189.
134 Lancaster N.Grain-size characteristics of linear dunes in the southwestern Kalahari[J].Journal of Sedimentary Research,1986,56(3):395-400.
135 Thomas D S G,Knight M,Wiggs G F S.Remobilization of southern African desert dune systems by twenty-first century global warming[J].Nature,2005,435(7046):1218-1221.
136 Muhs D R.Mineralogical maturity in dunefields of North America,Africa and Australia[J].Geomorphology,2004,59(1/2/3/4):247-269.
137 Hanson P R,Arbogast A F,Johnson W C,et al.Megadroughts and Late Holocene dune activation at the eastern margin of the Great Plains,north-central Kansas,USA[J].Aeolian Research,2010,1(3/4):101-110.
138 Kocurek G,Lancaster N.Aeolian system sediment state:theory and Mojave Desert Kelso dune field example[J].Sedimentology,1999,46(3):505-515.
139 Bateman M D,Bryant R G,F(xiàn)oster I D L,et al.On the formation of sand ramps:A case study from the Mojave Desert[J].Geomorphology,2012,161-162:93-109.
140 Roy P D,Caballero M,Lozano S,et al.Provenance of sediments deposited at paleolake San Felipe,western Sonora Desert:Implications to regimes of summer and winter precipitation during last 50 cal kyr BP[J].Journal of Arid Environments,2012,81:47-58.
141 Ortega B,Schaaf P,Murray A,et al.Eolian deposition cycles since AD 500 in Playa San Bartolo lunette dune,Sonora,Mexico:Paleoclimatic implications[J].Aeolian Research,2013,11:1-13.
142 Castiglia P J,F(xiàn)awcett P J.Large Holocene lakes and climate change in the Chihuahuan Desert[J].Geology,2006,34(2):113-116.
143 Dunai T J,González López G A,Juez-Larré J.Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of e-rosion-sensitive landforms[J].Geology,2005,33(4):321-324.
144 Garreaud R D,Molina A,F(xiàn)arias M.Andean uplift,ocean cooling and Atacama hyperaridity:A climate modeling perspective[J].Earth and Planetary Science Letters,2010,292(1/2):39-50.
145 Potter P E.Modern sands of South America:composition,provenance and global significance[J].Geologische Rundschau,1994,83(1):212-232.
146 Tripaldi A,Ciccioli P L,Alonso M S,et al.Petrography and geochemistry of Late Quaternary dune fields of western Argentina:Provenance of aeolian materials in southern South America[J].Aeolian Research,2010,2(1):33-48.
147 Pell S D,Chivas A R,Williams I S.The Great Victoria Desert:development and sand provenance[J].Australian Journal of Earth Sciences,1999,46(2):289-299.
148 Pell S D,Chivas A R,Williams I S.The Simpson,Strzelecki and Tirari Deserts:development and sand provenance[J].Sedimentary Geology,2000,130(1/2):107-130.
149 Fitzsimmons K E,Magee J W,Amos K J.Characterisation of aeolian sediments from the Strzelecki and Tirari Deserts,Australia:Implications for reconstructing palaeoenvironmental conditions[J].Sedimentary Geology,2009,218(1/2/3/4):61-73.
150 Singhvi A K,Williams M A J,Rajaguru S N,et al.A ~200 ka record of climatic change and dune activity in the Thar Desert,India[J].Quaternary Science Reviews,2010,29(23/24):3095-3105.
151 Padmakumar G P,Srinivas K,Uday K V,et al.Characterization of aeolian sands from Indian desert[J].Engineering Geology,2012,139-140:38-49.
152 Garzanti E,Resentini A,Vezzoli G,et al.Forward compositional modelling of Alpine orogenic sediments[J].Sedimentary Geology,2012,280:149-164.
153 Bloemsma M R,Zabel M,Stuut J B W,et al.Modelling the joint variability of grain size and chemical composition in sediments[J].Sedimentary Geology,2012,280:135-148.
154 Caracciolo L,Tolosana-Delgado R,Le Pera E,et al.Influence of granitoid textural parameters on sediment composition:implications for sediment generation[J].Sedimentary Geology,2012,280:93-107.
155 von Eynatten H,Tolosana-Delgado R,Karius V.Sediment generation in modern glacial settings:Grain-size and source-rock control on sediment composition[J].Sedimentary Geology,2012,280:80-92.