程益民,鮑家馨,謝建武
(1.浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江金華321004;2.浙江省東陽市金鑫化學(xué)工業(yè)有限公司,浙江金華322100)
精細(xì)化工
基于新型的溴代試劑合成螺二氫呋喃衍生物
程益民1,2,鮑家馨1,謝建武1
(1.浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江金華321004;2.浙江省東陽市金鑫化學(xué)工業(yè)有限公司,浙江金華322100)
在溫和的條件下,以-溴代丙二酸二乙酯、三乙胺為溴代試劑和堿為原料,高效合成了螺二氫呋喃衍生物,并獲得了較好的收率(68%~91%)。該類化合通過核磁共振及單晶衍射(X-Ray)確定了結(jié)構(gòu),并對反應(yīng)機(jī)理進(jìn)行了推測。
二氫呋喃衍生物;溴代試劑;-溴代丙二酸二乙酯;環(huán)化反應(yīng)
眾所周知,羰基α位的溴代一般是用NBS(溴代丁二酰亞胺)或者液溴作為溴代試劑[1]。由于溴單質(zhì)具有一定的危險(xiǎn)性,所以其應(yīng)用受到了一定的限制[2]。NBS由于反應(yīng)條件溫和、使用方便,一直以來被當(dāng)作溴單質(zhì)的替代品[3]。但是由于NBS具有一定的氧化性,如可以將很多二級醇氧化成酮[4],所以在一些反應(yīng)中會增加副反應(yīng)。多取代的二氫呋喃類衍生物廣泛的存在于天然產(chǎn)物當(dāng)中,具有重要的生物活性[5]。特別是,螺二氫呋喃類衍生物被報(bào)道有各種各樣的藥物活性[6],由于其在有機(jī)合成中的重要應(yīng)用,其合成方法被人們廣泛研究[7]。本文研究發(fā)現(xiàn)溴代-1,3-二羰基化合物(1a~1b)可以作為一種新型的溴代試劑,并且將其成功的應(yīng)用于螺二氫呋喃類衍生物合成,該反應(yīng)條件溫和、使用方便、產(chǎn)率較高。
將化合物3a(36.8 mg/0.1 mmol)和TEA(14 μL/0.1 mmol)加入1 mL氯仿中,攪拌下加入1b(26 μL/0.15 mmol)。常溫?cái)嚢?,TLC跟蹤反應(yīng),反應(yīng)完全后柱層析分離(石油醚:乙酸乙酯=6:1)得到目標(biāo)產(chǎn)物。
化合物3a1H NMR(400 MHz,CDCl3)δ 7.41~7.23(m,3H),7.20~7.09(m,2H),4.44(s, 1H),3.08(d,J=14.6 Hz,1H),2.66(s,2H),2.52(dd,J=14.6,3.1 Hz,1H),2.24~2.10(m,3H),1.95(d,J=14.3 Hz,1H),1.15(s,6H),1.10(s,3H), 0.82(s,3H).13C NMR(100 MHz,CDCl3)δ 199.3, 198.9,193.1,176.6,136.0,128.9,128.6,128.5, 113.6,103.8,54.9,53.6,51.0,49.9,37.2,34.2, 30.5,30.4,28.8,28.4,26.3;IR(KBr)υ:3457, 2950,1711,1640,1395,1257,1136,799 cm-1; ESI-HRMS calcd for C23H26O4+Na 389.1723,found 389.1726.
Crystal data for 3a:C23H26O4(386.18),Monoclinic,space group P2(1)/c,a=a=10.4594(11)?, alpha=90 deg.b=5.9873(5)?,beta=105.320(7)deg..c=16.5045(16)?,gamma=90 deg.U=996.84,specimen 0.576 x 0.166×0.162 mm3,Z=4, T=296(2)K,SIEMENS P4diffractometer,absorption coefficient 0.083 mm-1,reflections collected 40523,unique 8794/4183[R(int)=0.0225],refinement by Full-matrix least-squares on F2,data/ restraints/parameters 4183/1/245,goodness-offit on F2=1.040,final R indices[I>2sigma(I)]R1=0.0433,wR2=0.1124,R indices(all data)R1= 0.0567,wR2=0.1218,largest diff.peak and hole 0.265 and-0.364e.
化合物3b1H NMR(400 MHz,CDCl3)δ 7.10(d,J=8.0 Hz,2H),7.03(d,J=8.0 Hz,2H),4.41(s,1H),3.08(d,J=14.6 Hz,1H),2.65(s,2H), 2.53(dd,J=14.6,3.1 Hz,1H),2.30(s,3H),2.24~ 2.12(m,3H),2.00(d,J=14.3 Hz,1H),1.15(s, 6H),1.12(s,3H),0.83(s,3H).13C NMR(100 MHz,CDCl3)δ 199.4,199.0,193.2,176.4,138.4, 132.9,129.7,128.3,113.7,103.8,54.8,53.7,51.1, 50.0,37.2,34.2,30.5,28.9,28.4,26.3,21.1;IR(KBr)υ:3449,2965,1709,1639,1394,1257, 1141,801 cm-1;ESI-HRMS calcd for C24H28O4+Na 403.1880,found 403.1877
化合物3c1H NMR(400 MHz,CDCl3)δ 7.06(d,J=8.6 Hz,2H),6.81(d,J=8.5 Hz,2H),4.41(s,1H),3.76(s,3H),3.07(d,J=14.6 Hz,1H), 2.64(s,2H),2.52(dd,J=14.6,2.9 Hz,1H),2.29~ 2.06(m,3H),1.99(d,J=14.4 Hz,1H),1.14(s, 6H),1.11(s,3H),0.82(s,3H).13C NMR(100 MHz,CDCl3)δ 199.4,199.1,193.2,176.3,159.6, 129.6,127.9,114.3,113.6,103.7,55.2,54.5,53.7, 51.1,50.0,37.2,34.2,30.5,30.5,28.9,28.4,26.3; IR(KBr)υ:3455,2966,1736,1642,1379,1236, 1143,797 cm-1;ESI-HRMS calcd for C24H28O5+Na 419.1829,found 419.1836.
化合物3d1H NMR(400 MHz,CDCl3)δ 7.28(d,J=8.6 Hz,2H),7.10(d,J=8.4 Hz,2H),4.41(s,1H),3.05(d,J=14.7 Hz,1H),2.65(s,2H), 2.54(dd,J=14.7,3.1 Hz,1H),2.27~2.09(m,3H), 1.97(d,J=14.3 Hz,1H),1.15(s,3H),1.13(d,J= 2.1 Hz,6H),0.84(s,3H).13C NMR(100 MHz, CDCl3)δ 199.0,198.6,193.1,176.8,134.6,129.8, 129.2,113.5,103.5,53.9,51.0,49.9,37.2,34.2, 30.6,30.4,28.8,28.3,26.2;IR(KBr)υ:3450, 2963,1705,1628,1389,1250,1131,803 cm-1; ESI-HRMS calcd for C23H25ClO4+Na 423.1334, found 423.1339.
化合物3f1H NMR(400 MHz,CDCl3)δ 7.19(t,J=7.5 Hz,1H),7.08(d,J=7.6 Hz,1H),6.95(d,J=9.4 Hz,2H),4.40(s,1H),3.08(d,J=14.6 Hz,1H),2.66(s,2H),2.53(dd,J=14.6,2.9 Hz, 1H),2.30(s,3H),2.24~2.11(m,3H),1.97(d,J= 14.3 Hz,1H),1.16(s,6H),1.12(s,3H),0.83(s, 3H).13C NMR(100 MHz,CDCl3)δ 199.4,198.8, 193.2,176.5,138.6,135.9,129.4,129.1,128.8, 125.6,113.6,55.0,53.6,51.1,50.0,37.2,34.2, 30.5,28.9,28.4,26.3,21.4;IR(KBr)υ:3452, 2957,1707,1636,1388,1251,1135,813 cm-1; ESI-HRMS calcd for C24H28O4+Na 403.1880,found 403.1881.
化合物3g1H NMR(400 MHz,CDCl3)δ 7.37~7.30(m,1H),6.32(dd,J=3.2,1.8 Hz,1H), 6.16(d,J=3.2 Hz,1H),4.67(s,1H),3.10(d,J= 14.5 Hz,1H),2.61(d,J=1.9 Hz,2H),2.54(dd,J =14.6,2.9 Hz,1H),2.32-2.18(m,4H),1.17(d,J =1.6 Hz,6H),1.15(s,3H),0.85(s,3H).13C NMR(100 MHz,CDCl3)δ 199.3,198.6,193.1,177.6, 142.8,111.3,110.1,109.9,52.6,51.1,50.1,48.1, 37.3,34.2,30.6,30.4,28.8,28.3,26.2;IR(KBr)υ: 3449,2961,1712,1642,1395,1256,1135,804 cm-1;ESI-HRMS calcd for C21H24O5+Na 379.1516, found 379.1512.
化合物3h1H NMR(400 MHz,CDCl3)δ 7.18 ~7.10(m,2H),7.01(t,J=8.6 Hz,2H),4.43(s, 1H),3.05(d,J=14.7 Hz,1H),2.66(d,J=1.1 Hz, 2H),2.55(dd,J=14.7,3.1 Hz,1H),2.27~2.12(m, 3H),1.96(d,J=14.3 Hz,1H),1.16(d,J=4.3 Hz, 6H),1.14(s,3H),0.85(s,3H).13C NMR(100 MHz,DMSO)δ 199.06,198.79,193.14,176.68, 130.24,130.16,116.15,115.93,113.64,54.19, 53.87,51.08,50.02,37.28,34.26,30.57,30.50, 29.70,28.85,28.41,26.26;IR(KBr)υ:3449,2957, 1707,1635,1390,1250,1130,809 cm-1;ESIHRMS calcd for C23H25FO4+Na 407.1629,found407.1622.
化合物3l1H NMR(400 MHz,CDCl3)δ 3.42(dd,J=7.8,4.4 Hz,1H),3.00(d,J=14.5 Hz, 1H),2.79(d,J=14.2 Hz,1H),2.66(dd,J=14.1, 3.2 Hz,1H),2.55~2.41(m,3H),2.21(s,2H), 1.40~1.23(m,7H),1.12(s,6H),0.86(dd,J= 12.7,5.3 Hz,6H).13C NMR(100 MHz,CDCl3)δ 199.79,199.34,194.19,177.31,113.66,103.78, 54.70,51.23,49.95,47.53,37.32,34.02,33.67, 30.75,30.46,28.65,28.49,25.85,19.74,14.26;IR(KBr)υ:3453,2957,1709,1644,1397,1251, 1136,807 cm-1;ESI-HRMS calcd for C20H28O4+Na 355.1880,found 355.1885.
2.1 條件優(yōu)化
表1 反應(yīng)條件的優(yōu)化
由表1可以看出:α-溴代丙二酸二乙酯1b做溴代試劑比α-溴代環(huán)己二酮1a反應(yīng)的時(shí)間要短一些,得到收率較高(表1,編號1~2)。而用NBS作為溴代試劑時(shí),該反應(yīng)劇烈,并有大量的熱放出,長時(shí)間反應(yīng)導(dǎo)致反應(yīng)體系變得比較復(fù)雜,NBS消耗大,收率偏低(表1,編號3)。因此,α-溴代丙二酸二乙酯相對于NBS來說反應(yīng)條件較為溫和,而且收率較高。隨后對溶劑進(jìn)行了篩選。氯仿作為溶劑時(shí)產(chǎn)率最高,收率達(dá)到91%(表1,編號4)。以乙醇作為反應(yīng)溶劑時(shí),反應(yīng)速度較慢,相同時(shí)間收率不高,只有60%(表1,編號6);不過值得注意的是,產(chǎn)物在乙醇的溶解性較差,可以簡單過濾、洗滌,就可以得到純度為95%以上的產(chǎn)物。四氫呋喃(THF)作溶劑反應(yīng)很干凈,但是反應(yīng)不能進(jìn)行徹底(表1,編號5)。最后,對堿進(jìn)行了篩選,以無機(jī)堿代替三乙胺后,收率明顯下降(表1,編號7,8)。通過篩選,該反應(yīng)的優(yōu)化條件是:以α-溴代丙二酸二乙酯1b為溴代試劑,三乙胺(TEA)為堿,反應(yīng)物在室溫下攪拌8 h。
2.2 底物擴(kuò)展
表2 底物的擴(kuò)展
根據(jù)此優(yōu)化條件,對底物的適用性進(jìn)行了研究,實(shí)驗(yàn)結(jié)果表2。實(shí)驗(yàn)結(jié)果說明,腦文格/邁克爾加成產(chǎn)物2上的芳基的取代基對該反應(yīng)的收率有一定的影響;對苯環(huán)上取代基的改變,可以看出當(dāng)苯環(huán)上具有給電子基團(tuán)時(shí),產(chǎn)率變化不是很大,如圖1中的產(chǎn)物3a~3c,收率達(dá)85%~91%;即使給電子基團(tuán)取代基在芳環(huán)上的間位時(shí),產(chǎn)物3f同樣可以獲得很好的收率。但是取代基變?yōu)槔娮踊鶊F(tuán)時(shí),產(chǎn)率明顯下降,產(chǎn)物3d,3h,收率為中等偏上(77%,73%)。以脂肪鏈代替芳環(huán)時(shí),在相同的條件下,也取得了很好的收率(3I,80%)。此外,以雜環(huán)呋喃環(huán)代替芳環(huán)時(shí),反應(yīng)也能順利進(jìn)行,并獲得較好的收率(3g,80%)。
為了對化合物3的結(jié)構(gòu)進(jìn)行確證,我們對化合物3a進(jìn)行單晶培養(yǎng),順利得到了單晶,并通過單晶衍射儀進(jìn)行了測定,確定了化合物3a的結(jié)構(gòu)(圖2)。
圖2 化合物3a的晶體衍射
本文通過α-溴代丙二酸二乙酯作為一種溴代試劑成功的引發(fā)了由芳香醛和5,5-二甲基-1,3-環(huán)己二酮的腦文格/邁克爾加成物(2a~2g)的自身環(huán)化反應(yīng),高效的合成了螺二氫呋喃衍生物,該反應(yīng)條件溫和,收率高,并通過單晶衍射測定了化合物的結(jié)構(gòu)。此外,發(fā)展了一類新的溴代試劑(1a~1b),這類溴代試劑相對于單質(zhì)溴和NBS來說具有更加溫和的特性,有望應(yīng)用于活性較高、對單質(zhì)溴和NBS較敏感的化合物的溴代反應(yīng)中。
[1]Tanemura K,Suzuki T,Nishida Y,et al.A mild and efficient procedure forα-bromination of ketones using N-bromosuccinimide catalysed by ammonium acetate[J]. Chem.Commun.,2004:470-473.
[2]王海濤,吳瑛,吳廷華.乙烷溴氧化制溴乙烷的研究[J].廣州化工,2008,36(2):34-36.
[3]吳警,裴文.N-溴代丁二酰亞胺在有機(jī)反應(yīng)中的研究進(jìn)展[J].廣州化工,2011,39(9):31-34.
[4]Sharma V B,Jain S L,Sain B.An efficient cobalt(II) catalyzed oxidation of secondary alcohols to carbonyl compounds with N-bromosuccinimide[J].J Mol Catal., 2005:227-231.
[5]Eicher T,Hauptmann S.The chemistry of heterocycles: structure,reactions,syntheses and applications[M].Wiley-VCH:Weinheim,2003:103-127.
[6]Cousins D J.Medicinal,essential oil,culinary herb,and pesticidal plants of the Labiatae[M].CAB International: Wallingford,1994:78-96.
[7]Devi P S,Santosh K G,Vandana V,et al.Single-pot synthesis of spiroannulated dihydrofurans by iodineammonium acetate-mediated reaction of dimedone with aldehydes[J].Synthetic Commun.,2009,39:3406-3419.
Synthesis of Spiro Dihydrofurans Based on a Novel Bromination Reagent
CHENG Yi-min1,2,BAO Jia-xin1,XIE Jian-wu1
(1.College of Chemistry and Life Science,Zhejiang Normal University,Jinhua,Zhejiang 321004,China;2.Zhejiang Dongyang Jinxin Chemical Industry Co.,Ltd.,Jinhua,Zhejiang 322100,China)
An efficient method for the synthesis of spiro dihydrofuran derivatives was demonstrated, based on a novel bromination reagent(diethyl-bromomalonate)and base under mild conditions.The products were obtained in excellent yield(68%~91%).The structure of spiro dihydrofuran derivatives was established by NMR and X-ray.A possible mechanism of this unusual reaction process was proposed.
dihydrofurans;bromination reagent;diethyl α-bromomalonate;cyclization reaction
1006-4184(2015)8-0026-04
2015-00-00
程益民(1972—),男,浙江東陽人,工程師,研究方向:農(nóng)藥合成。E-mail:liuyxzjnu@qq.com。