張苗苗,包翠芬,王艷,閔鶴鳴,秦書儉△
ZHX3基因沉默對BMSCs中成骨相關(guān)因子表達(dá)的影響
張苗苗1,包翠芬2,王艷3,閔鶴鳴4,秦書儉1△
目的探討鋅指蛋白和同源框3(ZHX3)基因沉默對骨髓間充質(zhì)干細(xì)胞(BMSCs)中smad3、smad4、RUNX2表達(dá)的影響。方法構(gòu)建ZHX3低表達(dá)慢病毒載體并轉(zhuǎn)染大鼠BMSCs(ZHX3沉默組),同時設(shè)空載病毒轉(zhuǎn)染BMSCs(載體對照組)及不做任何處理的BMSCs(空白對照組)。熒光顯微鏡下測定細(xì)胞轉(zhuǎn)染率并采用免疫印跡技術(shù)鑒定轉(zhuǎn)染是否成功;采用免疫熒光化學(xué)和免疫印跡技術(shù)定性定量檢測ZHX3沉默時smad3、smad4、RUNX2表達(dá)情況。結(jié)果(1)復(fù)蘇培養(yǎng)的細(xì)胞具有BMSCs表型。(2)轉(zhuǎn)染后,ZHX3沉默組和載體對照組均表達(dá)綠色熒光,空白對照組不表達(dá)熒光,且沉默組ZHX3基因表達(dá)顯著低于載體對照組。(3)免疫熒光結(jié)果顯示,smad3、smad4的陽性表達(dá)位于細(xì)胞核和細(xì)胞質(zhì),RUNX2的陽性表達(dá)主要定位于細(xì)胞核。3組細(xì)胞均可見陽性表達(dá)細(xì)胞,且空白對照組與載體對照組之間熒光強(qiáng)度未見顯著差異,但ZHX3基因沉默組的熒光強(qiáng)度顯著低于2個對照組。(4)免疫印跡檢測smad3、smad4、RUNX2的條帶于空白對照組和載體對照組中無顯著差異,但均顯著高于ZHX3沉默組(P<0.05)。結(jié)論ZHX3基因沉默后BMSCs體外成骨能力延遲,可能通過下調(diào)smad3、smad4、RUNX2來發(fā)揮作用。
DNA結(jié)合蛋白質(zhì)類;鋅指;基因,同源盒;轉(zhuǎn)錄因子;基因沉默;間質(zhì)干細(xì)胞;smad3;smad4;RUNX2;轉(zhuǎn)錄抑制因子-鋅指蛋白和同源框3
植骨材料不足是臨床骨缺損修復(fù)中所面臨的主要問題之一[1]。采用組織工程骨移植是解決植骨材料不足問題的主要方法之一。而植骨種子細(xì)胞是該研究的核心內(nèi)容。目前種子細(xì)胞最主要的來源為骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs),而BMSCs向成骨細(xì)胞的誘導(dǎo)分化是成骨的關(guān)鍵因素。研究顯示,誘導(dǎo)分化的關(guān)鍵步驟可能取決于早期調(diào)控的轉(zhuǎn)錄因子,其中鋅指蛋白和同源框3(zinc fingers and homeoboxes 3,ZHX3)是近年來發(fā)現(xiàn)的成骨分化早期標(biāo)志物,屬ZHX蛋白家族成員之一,含有2個鋅指結(jié)構(gòu)和5個同源結(jié)構(gòu)域[2-3]。研究顯示,與晚期出現(xiàn)的標(biāo)志物相比,ZHX3能夠更早、更快地識別干細(xì)胞的成骨潛能[3]。最近實驗證明,ZHX3基因過表達(dá)可促進(jìn)BMSCs體外成骨能力[4]。轉(zhuǎn)化生長因子(TGF)-β/smad通路是BMSCs向成骨細(xì)胞誘導(dǎo)分化的主要信號通路之一,而smad3、smad4、RUNX2是該通路中的主要調(diào)控因子[5]。ZHX3作為成骨分化早期的標(biāo)志物,是否通過調(diào)控上述通路發(fā)揮促進(jìn)成骨分化作用,有待于深入地探討。
1.1 材料ZHX3低表達(dá)慢病毒及陰性對照病毒(上海吉凱基因有限公司);smad3、smad4、RUNX2抗體(Abcam公司);TRITC標(biāo)記的熒光二抗(北京中杉公司);0.25%Trypsin-0.04%EDTA、SD大鼠BMSCs及干細(xì)胞培養(yǎng)基、OriCellTM間質(zhì)干細(xì)胞成骨誘導(dǎo)培養(yǎng)基試劑盒(廣州賽業(yè)公司)。
1.2 SD大鼠BMSCs的復(fù)蘇培養(yǎng)與傳代液氮中取出凍存的BMSCs迅速放入37℃水浴中快速晃動,直至凍存懸液完全融解。將其移入含完全培養(yǎng)基的離心管中,250×g離心5 min,去上清液,向細(xì)胞沉淀物加入2~3 mL完全培養(yǎng)基,吹打均勻后,將細(xì)胞按(2~4)×104個活細(xì)胞/cm2的密度接種到培養(yǎng)瓶中。37℃、5%CO2、80%相對濕度的培養(yǎng)箱中培養(yǎng)。隔日換液。當(dāng)細(xì)胞達(dá)80%~90%的匯合度,采用胰酶進(jìn)行消化和傳代。相差顯微鏡觀察細(xì)胞形態(tài)及生長情況。
1.3 BMSCs一般狀態(tài)的觀察及檢測細(xì)胞按0.5×104個/mL的密度接種于24孔培養(yǎng)板,每天每組細(xì)胞各選取3孔,連續(xù)測7 d,酶標(biāo)儀490 nm波長上測定光密度(OD)值,繪制生長曲線[6]。
1.4 慢病毒轉(zhuǎn)染BMSCs的效率測定及轉(zhuǎn)染鑒定設(shè)置3個不同梯度(10、50和100μL)的病毒添加孔及1個空白對照孔,以確定轉(zhuǎn)染的最佳感染復(fù)數(shù)(multiplicity of infection,MOI)。96 h后,熒光倒置顯微鏡下觀察細(xì)胞的轉(zhuǎn)染效果,計算轉(zhuǎn)染率,轉(zhuǎn)染率=綠色螢光蛋白(GFP)表達(dá)細(xì)胞/細(xì)胞總數(shù)× 100%[7-8]。選擇轉(zhuǎn)染率在80%以上的孔,此時的滴度為病毒最佳感染滴度。實驗分為空白對照組、載體對照組和ZHX3沉默組。轉(zhuǎn)染后觀察細(xì)胞狀態(tài),24 h后更換新鮮培養(yǎng)基。慢病毒轉(zhuǎn)染之后Western blot檢測ZHX3蛋白的表達(dá)情況,以鑒定是否轉(zhuǎn)染成功。
1.5 BMSCs的誘導(dǎo)分化取第3代大鼠BMSCs以2×104cells/cm2的細(xì)胞密度接種在事先包被0.1%明膠的6孔板中。當(dāng)細(xì)胞融合度達(dá)到60%~70%時,小心地將孔內(nèi)完全培養(yǎng)基吸走,向6孔板中加入2 mL成骨誘導(dǎo)分化培養(yǎng)基,繼續(xù)培養(yǎng)[9]。
1.6 免疫熒光法檢測smad3、smad4、RUNX2蛋白表達(dá)當(dāng)病毒轉(zhuǎn)染細(xì)胞達(dá)80%~90%的匯合度,胰酶消化,計數(shù)重懸細(xì)胞于完全培養(yǎng)基中,先在每個孔里滴少量完全培養(yǎng)基,使玻片與培養(yǎng)皿靠培養(yǎng)基的張力粘合到一起,然后放玻片,按照4×104/孔細(xì)胞密度種到6孔培養(yǎng)板。24 h細(xì)胞貼壁后,棄去完全培養(yǎng)基,加入成骨誘導(dǎo)培養(yǎng)基,24 h后棄去成骨誘導(dǎo)培養(yǎng)基,取出爬片采用免疫熒光檢測smad3、smad4、RUNX2表達(dá)情況。爬片棄廢液,PBS沖洗3次,每次3 min,4%多聚甲醛室溫固定30 min,PBS漂洗,0.5%Triton X-100孵育30 min,PBS沖洗,5%BSA室溫封閉30 min后,PBS沖洗。一抗?jié)窈蟹跤?℃過夜,PBS清洗,熒光標(biāo)記的二抗工作液孵育(濕盒)37℃30 min(注意避光),PBS沖洗,Hoechest33258染液復(fù)染細(xì)胞核,PBS沖洗,熒光顯微鏡下觀察smad3、smad4、RUNX2表達(dá)情況。
1.7 免疫印跡法檢測smad3、smad4、RUNX2蛋白表達(dá)收集3組細(xì)胞,倒掉培養(yǎng)液,3 mL 4℃預(yù)冷的PBS洗滌細(xì)胞3次。用刮棒將細(xì)胞刮于培養(yǎng)瓶的一側(cè),然后用槍將細(xì)胞液移至1.5 mL離心管中,整個操作盡量在冰上進(jìn)行。在4℃下2 000 r/min離心5 min,加400μL含PMSF的裂解液,冰上裂解30 min,后靜置30 min,4℃、12 000 r/min離心20 min,留取上清液。用BCA法測定蛋白含量,并制樣,-20℃冰箱保存。灌膠與上樣、電泳、轉(zhuǎn)膜后加入一抗,4℃孵育過夜,TBST緩沖液洗脫3次,每次5 min;二抗室溫孵育1 h,TBST緩沖液洗脫3次,每次5 min;ECL發(fā)光法顯色;掃描電泳條帶,用凝膠圖像處理系統(tǒng)分析目標(biāo)帶的分子質(zhì)量和OD值。采用β-actin作為內(nèi)參。根據(jù)目的條帶與內(nèi)參照條帶OD的比值表示待測蛋白含量。
1.8 統(tǒng)計學(xué)方法應(yīng)用SPSS 17.0統(tǒng)計軟件。計量資料采用均數(shù)±標(biāo)準(zhǔn)差表示,多組間比較采用方差分析,組間多重比較采用LSD-t法,P<0.05為差異有統(tǒng)計學(xué)意義。
2.1 BMSCs的培養(yǎng)細(xì)胞于復(fù)蘇24 h后貼壁,呈長梭形,排列緊密,整體排列更趨于規(guī)律性,呈漩渦狀,見圖1A。傳代后細(xì)胞呈成纖維細(xì)胞樣形態(tài),以長梭形為主,細(xì)胞形態(tài)、大小均一,細(xì)胞呈典型的BMSCs樣,見圖1B。
2.2 BMSCs一般狀態(tài)觀察及檢測3組BMSCs細(xì)胞傳代培養(yǎng)后生長狀態(tài)良好,培養(yǎng)1 d處于潛伏期,空白對照組2 d后進(jìn)入對數(shù)增殖期,6~7 d后進(jìn)入平臺期。載體對照組和ZHX3沉默組傳代后3 d進(jìn)入對數(shù)增殖期,時間集中在3~5 d,6 d后進(jìn)入平臺期,見圖2。
Fig.1The recovery and subculture of BMSCs圖1 BMSCs復(fù)蘇和傳代培養(yǎng)(×200)
Fig.2Growth curves of BMSCsin three groups圖2 各組BMSCs生長曲線
2.3 慢病毒轉(zhuǎn)染BMSCs和轉(zhuǎn)染效率的測定及鑒定熒光顯微鏡下載體對照組和ZHX3沉默組均觀察到帶有較強(qiáng)綠色熒光的BMSCs,而空白對照組則未見到特異性熒光影像,見圖3。病毒轉(zhuǎn)染率:結(jié)果顯示MOI為10、50、100時,轉(zhuǎn)染率分別為(43.90± 3.60)%、(92.43±4.33)%、(93.40±2.80)%,轉(zhuǎn)染效率隨著滴度的增加而增加,差異有統(tǒng)計學(xué)意義(F= 182.286,P<0.05),而MOI 50和MOI 100時轉(zhuǎn)染率增加差異幅度不大,故選擇MOI 50為細(xì)胞最佳感染條件。免疫印跡結(jié)果顯示,3組均可見ZHX3陽性表達(dá)條帶,但ZHX3沉默組的表達(dá)條帶(50.63%± 4.13%)明顯弱于空白對照組(75.83%±4.80%)和載體對照組(71.69%±5.51%),差異有統(tǒng)計學(xué)意義(F= 23.334,P<0.05),提示ZHX3低表達(dá)的BMSCs轉(zhuǎn)染成功,見圖4。
2.4 免疫熒光檢測smad3、smad4、RUNX2的表達(dá)情況熒光顯微鏡下可見,smad3、smad4的陽性表達(dá)位于細(xì)胞核和細(xì)胞質(zhì),可見明顯的紅色熒光,3組細(xì)胞均可見陽性表達(dá)細(xì)胞,且空白對照組與載體對照組之間熒光強(qiáng)度未見顯著差異,但ZHX3沉默組的熒光強(qiáng)度顯著低于2個對照組。熒光顯微鏡下可見,RUNX2的陽性表達(dá)主要定位于細(xì)胞核,可見明顯的綠色熒光。3組細(xì)胞均可見陽性表達(dá)細(xì)胞,且空白對照組與載體對照組之間熒光強(qiáng)度未見顯著差異,但ZHX3沉默組的熒光強(qiáng)度顯著低于2個對照組,見圖5。
Fig.3Virus transfection of BMSCs in three groups圖3 各組細(xì)胞病毒轉(zhuǎn)染情況
Fig.4The expression of ZHX3 protein in three groups圖4 各組細(xì)胞ZHX3蛋白表達(dá)情況
Fig.5Expressions of smad3,smad4 and RUNX2 in three groups of cells(immunofluorescence staining,×400)圖5 各組細(xì)胞smad3、smad4、RUNX2的蛋白表達(dá)(免疫熒光染色,×400)
2.5 免疫印跡檢測smad3、smad4、RUNX2蛋白表達(dá)smad3、smad4、RUNX2的條帶于空白對照組和載體對照組中差異無統(tǒng)計學(xué)意義(P>0.05),但均顯著高于ZHX3沉默組(P<0.05),見圖6、表1。
Fig.6The expressions of smad3,smad4 and RUNX2 in three groups of cells圖6 3組細(xì)胞smad3、smad4、RUNX2的表達(dá)
Tab.1The Comparison of expressions of smad3,smad4 and RUNX2 between three groups of cells表1 各組細(xì)胞smad3、smad4、RUNX2表達(dá)量比較(n=3,)
Tab.1The Comparison of expressions of smad3,smad4 and RUNX2 between three groups of cells表1 各組細(xì)胞smad3、smad4、RUNX2表達(dá)量比較(n=3,)
**P<0.01;a與ZHX3沉默組比較,P<0.05
組別空白對照組載體對照組Z H X 3沉默組F s m a d 3 2 9 . 3 1 ± 0 . 9 9 a 3 0 . 8 3 ± 1 . 0 5 a 1 9 . 2 6 ± 3 . 2 5 2 8 . 2 1 1**s m a d 4 5 7 . 4 0 ± 4 . 5 2 a 5 3 . 1 7 ± 1 . 6 9 a 2 8 . 6 6 ± 0 . 6 6 9 1 . 3 4 0**R U N X 2 1 1 . 1 9 ± 1 . 2 3 a 1 0 . 1 5 ± 1 . 3 7 a 3 . 9 4 ± 1 . 5 2 2 4 . 2 1 8**
種子細(xì)胞誘導(dǎo)分化為成骨細(xì)胞的關(guān)鍵可能取決于早期調(diào)控的轉(zhuǎn)錄因子。ZHX3作為2003年新克隆的轉(zhuǎn)錄抑制因子[2],是成骨分化早期的標(biāo)志物。Suehiro等[3]研究發(fā)現(xiàn),采用siRNA技術(shù)敲減ZHX3基因,轉(zhuǎn)染至BMSCs內(nèi),誘導(dǎo)后6~21 d的成骨能力(堿性磷酸酶含量、骨基質(zhì)礦化情況)均呈明顯的減弱和延遲現(xiàn)象,此研究結(jié)果提示ZHX3在成骨分化過程中起著重要的作用,可能是BMSCs從未分化階段向成骨分化過程的轉(zhuǎn)換開關(guān)。ZHX3作為成骨分化早期的標(biāo)志物,與晚期出現(xiàn)的標(biāo)志物相比能夠更早、更快地識別干細(xì)胞的成骨潛能。
smad3和smad4是TGF-β1信號轉(zhuǎn)導(dǎo)通路中的重要因子,在成骨細(xì)胞分化過程中發(fā)揮重要作用。smad3受體磷酸化后與smad4結(jié)合,將TGF-β1信號直接由細(xì)胞膜轉(zhuǎn)導(dǎo)入細(xì)胞核內(nèi),誘導(dǎo)對TGF-β1信號的轉(zhuǎn)錄應(yīng)答[10],進(jìn)一步發(fā)揮促成骨作用。研究發(fā)現(xiàn),野生型smad3基因能夠抑制BMSCs增殖,通過非細(xì)胞外信號激酶通路促進(jìn)BMSCs向成骨方向分化和成熟[11]。既往研究證實,smad3的缺少導(dǎo)致成骨標(biāo)志物降低[12-13]。說明smad3不僅是促進(jìn)骨形成的成分,而且在介導(dǎo)TGF-β1調(diào)控骨形成、成骨分化過程中發(fā)揮關(guān)鍵作用。smad4復(fù)合物通過影響RUNX2的表達(dá),從而影響成骨靶基因轉(zhuǎn)錄[14]。通過siRNA干擾smad4表達(dá)使重要成骨細(xì)胞分子標(biāo)志物和調(diào)節(jié)分子表達(dá)水平下調(diào)[15]。RUNX2是成骨細(xì)胞特異性轉(zhuǎn)錄因子,直接參與調(diào)控Ⅰ型膠原和骨鈣蛋白成骨相關(guān)基因的表達(dá),刺激成骨細(xì)胞分化。此外,smad4作用于與堿性磷酸酶表達(dá)有關(guān)的RUNX2基因,外源性smad4可以促進(jìn)表達(dá)RUNX2的C2C12細(xì)胞的堿性磷酸酶活性,但該基因突變后,堿性磷酸酶活性也檢測不出,說明smad4與RUNX2之間有協(xié)同作用。
本實驗通過BMSCs慢病毒轉(zhuǎn)染,建立ZHX3低表達(dá)模型,進(jìn)一步觀察ZHX3低表達(dá)時對成骨誘導(dǎo)通路中smad3、smad4、RUNX2的調(diào)控作用。免疫熒光、免疫印跡實驗結(jié)果顯示,當(dāng)ZHX3基因沉默時,smad3、smad4、RUNX2的表達(dá)強(qiáng)度呈明顯的減弱趨勢,顯著低于未經(jīng)處理的BMSCs,由此筆者推測當(dāng)ZHX3基因含量表達(dá)下降時,可引起TGF-β1/smad通路中的smad3、smad4的表達(dá)下調(diào),進(jìn)一步引起下游轉(zhuǎn)錄因子RUNX2的表達(dá)下降,從而影響B(tài)MSCs的成骨分化能力,導(dǎo)致成骨分化能力延遲。但是,ZHX3基因究竟處于TGF-β1/smad通路的何種位置,究竟是ZHX3基因沉默直接抑制了smad3、smad4的表達(dá),還是ZHX3基因沉默后通過負(fù)反饋方式抑制了兩者的表達(dá),即ZHX3究竟是位于smad3、smad4的上游還是下游,還需進(jìn)一步深入研究來證實。
[1]Wang Y,Li YZ.Bone marrow mesenchymal stem cells in the bone defect in between is reviewed[J].Chinese Journal of Bone and Joint Damage,2015,30(5):555-556.[王元,李屹洲.骨髓間充質(zhì)干細(xì)胞在骨缺損中的研究進(jìn)展[J].中國骨與關(guān)節(jié)損傷雜志,2015,30(5): 555-556].doi:10.7531/j.issn.1672-9935.2015.05.046.
[2]Yamada K,Kawata H,Shou Z,et al.Analysis of zinc-fingers and homeoboxes(ZHX)-1-interacting proteins molecular cloning and characterization of a member of the ZHX family,ZHX3[J].Biochem J,2003,373(Pt 1):167-178.
[3]Suehiro F,Nishimura M,Kawamoto T,et al.Impact of zinc fingers and homeoboxes 3(ZHX3)on the regulation of mesenchymal stem cell osteogenic differentiation[J].Stem Cells,2010,20(9):1539-1547.doi:10.1089/scd.2010.0279.
[4]Li J,Qin SJ,Bao CF,et al.Gene transfection ZHX3 BMSCs and the experimental study of in vitro osteogenesis ability[J].Chinese Journal of Clinical Anatomy,2014,32(2):174-178.[李季,秦書儉,包翠芬,等.ZHX3基因轉(zhuǎn)染BMSCs及對體外成骨能力的實驗研
[5]Yang JH,Kim HJ,Kim SE,et al.The effect of bone morphogenic protein-2-coated tri-calcium phosphate/hydroxyapatite on new bone formationin in a rat model of femoral distraction osteogenesis[J].Cytotherapy,2012,14(3):315-326.doi:10.3109/1465324 9.2011.630728.
[6]Zhu XL,Yan T,Yao WJ,et al.Rat bone marrow mesenchymal stem cells between the isolation and culture method of optimization[J]. Journal of Southern Medical University,2014,11:1621-1626,1631.[祝旭龍,顏譚,姚維杰,等.大鼠骨髓間充質(zhì)干細(xì)胞的分離與培養(yǎng)方法優(yōu)化[J].南方醫(yī)科大學(xué)學(xué)報,2014,11:1621-1626,1631].doi 10.3969/j.issn.1673-4254.2014.11.13.
[7]Li QQ,Wang DP,Xiong JY,et al.Research of lentiviral-mediated Runx-2 transfered into bone marrow mesenchymal stem cells promoting osteogenic differentiation[J].Chinese Journal of Clinical Anatomy,2015,33(3):311-315.[李慶慶,王大平,熊建義,等. Runx2重組慢病毒感染骨髓間充質(zhì)干細(xì)胞并促進(jìn)其成骨分化的研究[J].中國臨床解剖學(xué)雜志,2015,33(3):311-315].doi: 10.13418/j.issn.1001-165x.2015.03.017.
[8]Muruganandan S,Sinal CJ.The impact of bone marrow adipocytes on osteoblast and osteoclast differentiation[J].IUBMB Life,2014 Mar 17.doi:10.1002/iub.1254.[Epub ahead of print]
[9]Fu HY,Du HY,Bao CF.Rehmannia polysaccharide and induce cell differentiation to neurons in the rat BMSCs samples of Notch1 and Jagged1 protein expression[J].Med J Chin PLA,2014,39(6): 448-453.[付海燕,杜紅陽,包翠芬.地黃多糖誘導(dǎo)大鼠BMSCs向神經(jīng)元樣細(xì)胞分化及對Notch1和Jagged1蛋白表達(dá)的影響[J].解放軍醫(yī)學(xué)雜志,2014,39(6):448-453].doi:10.11855/j. issn.0577-7402.2014.06.05.
[10]Wang YT,Zheng QX,Wu XT,et al.Smad3 selective adjustment TGF-beta 1 to promote differentiation of rat bone marrow mesenchymal stem cells between development of experimental research[J].Acta Med Univ Sci Technol Huazhong,2007,36(5):625-629,701.[王運濤,鄭啟新,吳小濤,等.Smad3選擇性調(diào)節(jié)TGF-β1促進(jìn)大鼠骨髓間充質(zhì)干細(xì)胞成骨分化的實驗研究[J].華中科技大學(xué)學(xué)報(醫(yī)學(xué)版),2007,36(5):625-629,701].doi:10.3870/j. issn.1672-0741.2007.05.018.
[11]Wang YT,Zheng QX,Guo XD.Wild type Smad3 gene promote the differentiation of rat bone marrow mesenchymal stem cells between development of experimental research[J].Natl Med J China,2004,84(18):31-35.[王運濤,鄭啟新,郭曉東.野生型Smad3基因促進(jìn)大鼠骨髓間充質(zhì)干細(xì)胞成骨分化的實驗研究[J].中華醫(yī)學(xué)雜志,2004,84(18):31-35].doi:0.3760/j:issn:0376-2491.2004.18.008.
[12]Yang X,Chen L,Xu X,et al.TGF beta/smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage[J].J Cell Biol,2001,153:35-46.
[13]Borton AJ,F(xiàn)rederick JP,Datto MB,et al.The loss of smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis[J].J Bone Miner Res,2001,16:1754-1764.
[14]Miyazono K.Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer[J].Proc Jpn Acad Ser B Phys Biol Sci,2009,85(8):314-323.
[15]Yang X.Smad4 mediated transforming growth factor beta signal regulating bone development and the function of the steady state to maintain[J].Chinese Bulletion of Life Science,2008,20(2):165-170.[楊曉.Smad4介導(dǎo)轉(zhuǎn)化生長因子-β信號調(diào)節(jié)骨骼發(fā)育和穩(wěn)態(tài)維持的功能[J].生命科學(xué),2008,20(2):165-170].doi:10.3969/j. issn.1004-0374.2008.02.002.
(2015-08-11收稿 2015-09-15修回)
(本文編輯 魏杰)
Effects of ZHX3 gene silence on the expression of osteoblast-related factors in BMSCs
ZHANG Miaomiao1,BAO Cuifen2,WANG Yan3,MIN Heming4,QIN Shujian1△
1 Department of Human Anatomy and Histology and Embryology,2 Key Lab of Molecular Cell Biology and New Drug Development,3 Department of Neurology,F(xiàn)irst Affiliated Hospital of Jinzhou City;4 Department of Cell Biology,Liaoning Medical University,Jinzhou 121000,China△
ObjectiveTo investigate the effects of zinc fingers and homeoboxes 3(ZHX3)silence on expressions of smad3,smad4 and RUNX2 in bone marrow mesenchymal stem cells(BMSCs).MethodsZHX3 low expression vector(ZHX3 silent group)was constructed and was transfected to rat BMSCs.Empty vector was transfected into BMSCs and was used as vehicle control group,and wild type BMSCs was used as the control group.The cell transfection rate was measured under a fluorescence microscope,and then the successful transfection was identified.The immunocytochemistry and immunoblotting methods were used to detect the expression levels of smad3,smad4 and RUNX2.Results(1)Cells with BMSCs phenotype can be obtained by recovery culturing.(2)After transfection,the green fluorescent protein was found in ZHX3 silence group and vehicle control group.Blank control group showed no significant fluorescence.The expression level of ZHX3 was significantly lower in ZHX3 silence group than that of vehicle control group.(3)Results of immunofluorescence asssay showed that the positive expressions of smad3 and smad4 were located in nucleus and cytoplasm,the positive expression of RUNX2 was mainly located in nucleus.Positive cells were observed in three groups.There was no significant difference in fluorescence intensity between the control group and the vehicle control group,but the fluorescence intensity was significantly lower in ZHX3 gene silence group than that of two control groups.(4)There were no significant differences in expressions of smad3,smad4 and RUNX2 betweem control group and the vehicle control group,but they were significantly higher than those of ZHX3 silence group(P<0.05).ConclusionZHX3 gene silence can delay vitro osteogenesis of BMSCs,which may play a role by the down-regulated expression levels of smad3,smad4 and RUNX2.
DNA-binding proteins;zinc fingers;genes,homeobox;transcription factors;gene silencing;mesenchymal stem cells;smad3;smad4;RUNX2;zinc fingers and homeoboxes 3
R392.12
A DOI:10.11958/j.issn.0253-9896.2015.12.004
J].中國臨床解剖學(xué)雜志,2014,32(2):174-178].
10.13418/j.issn.1001-165x.2014.02.014.
國家自然科學(xué)基金資助項目(31170930,81202783)
1錦州,遼寧醫(yī)學(xué)院人體解剖與組織胚胎教研室(郵編121000);2遼寧省高校分子生物與新藥開發(fā)重點實驗室;3遼寧醫(yī)學(xué)院附屬第一醫(yī)院神經(jīng)內(nèi)科;4遼寧醫(yī)學(xué)院細(xì)胞生物學(xué)教研室
張苗苗(1989),女,碩士在讀,主要從事骨組織工程方面研究
△通訊作者E-mail:mianyizuhua@aliyun.com