徐瑋瑋
(南京信息工程大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,南京 210044)
任意矩陣特征值的秩1修正擾動界
徐瑋瑋*
(南京信息工程大學(xué)數(shù)學(xué)與統(tǒng)計學(xué)院,南京 210044)
設(shè)A是一個n階的任意復(fù)矩陣且E是A的Hermite秩1擾動,即E=xx′,其中x是n維的復(fù)列向量,x′是x的共軛轉(zhuǎn)置向量.則A+E為矩陣A的Hermite秩1修正矩陣.基于矩陣分析理論中Hermite矩陣特征值分布的性質(zhì),研究得到了矩陣A特征值的任意Hermite秩1修正擾動的上下界限,即給出了矩陣A+E特征值的上下界限:
且
λmin(-SH(A)τ)≤S(λi(A+xx′))≤ λmax(-SH(A)τ)(1≤i≤n),
其中
gapi=λi-1(A)-λi(A),i=2,…,n,
特征值; 上下界; 秩1修正
and
λmin(-SH(A)τ)≤S(λi(A+xx′))≤ λmax(-SH(A)τ)(1≤i≤n),
where
Keywords:eigenvalue;two-sidebounds;rank-oneupdate
xi:j≡(vi,…,vj)*x(i≤j).
令
且
(i=1,…,n-1),
其中 gapi為特征值和它的右鄰特征值之間的距離, 即gapi=λi-1(A)-λi(A)(i=2,…,n).
下面將介紹一些有用的引理.
且
λi(A)+li(x)≤ λi(A+xx*)≤
min{λi(A)+ui(x), λi-1(A)}(2≤i≤n-1).
本節(jié)將考慮任意矩陣特征值的Hermite秩1修正擾動界. 首先定義矩陣復(fù)特征值的順序: 令λi(B)(i=1,…,n)為B的特征值, λi(B)?λj(B)代表R(λi(B))≤R(λj(B))(i λi(H(A))+li(x)+δi≤R(λi(A+xx*))≤ (1) λi(H(A))+li(x)+δi≤R(λi(A+xx*))≤ (2≤i≤n-1) (2) 且 λmin(-SH(A)τ)≤S(λi(A+xx*))≤ λmax(-SH(A)τ)(1≤i≤n), (3) Δz=z-φ(z), ω1=Δz*(H(A)+xx*)z, ω2=φ(z)*(H(A)+xx*)Δz, ω3=z*SH(A)z. 那么 λi(A+xx*)=z*(A+xx*)z= z*(H(A)+xx*)z+z*SH(A)z=(φ(z)+Δz)*(H(A)+xx*)(φ(z)+Δz)+z*SH(A)z= φ(z)*(H(A)+xx*)φ(z)+ω1+ω2+ω3= λi(H(A)+xx*)+ω1+ω2+ω3. (4) 注意到R(ω3)=0和 S(Δz*(H(A)+xx*)Δz)=0. 由式(4)有 R(λi(A+yx*))= λi(H(A)+xx*)+ R(ω1)+R(ω2) (5) 和 S(λi(A+yx*))=S(ω3). (6) 易知R(ω1)+R(ω2)=z*H(A)z-λi(H(A)+xx*)+z x x*z. (7) 若A是Hermite的, 那么Xi=Yi.由式(7)可知R(ω1)+R(ω2)=0.否則, 結(jié)合式(7)和引理1可得λmin(H(A))-λi-1(H(A))-ui(x)≤R(ω1)+R(ω2)≤ 因此, α(λmin(H(A))-λi-1(H(A))-ui(x))≤ R(ω1)+R(ω2)≤α(λmax(H(A))- (8) λmin(-SH(A)τ)≤S(ω3)≤ λmax(-SH(A)τ). (9) 由引理1和式(5)~(9)可得式(1)~(3). [1]Li R C. Relative perturbation theory:I.Eigenvalue and singular value variations[J].Siam Journal on Matrix Analysis and Applications,1998,19:956-982. [2]Sun J G. Perturbation analysis of generalized singular subspaces[J].Numerical Mathematics,1998,79:615-641. [3]陳小山, 黎穩(wěn). 關(guān)于特征值的Hoffman-Wielandt型相對擾動界[J]. 應(yīng)用數(shù)學(xué)學(xué)報, 2003(3):396-410. Chen X S, Li W.On relative perturbation bounds of hoffman-wielandt type for eigenvalues[J].Acta Mathematicae Applicatae Sinica,2003(3):396-410. [4]陳小山, 黎穩(wěn). 正定Hermite矩陣特征值的相對擾動界[J]. 工程數(shù)學(xué)學(xué)報, 2003(4):140-142. Chen X S, Li W. Relative perturbation bounds of eigenbalaues for positive definite hermite matrices[J].Chinese Journal of Engineering Mathematics, 2003(4):140-142. [5]陳小山. 矩陣特征空間和奇異空間相對擾動界[J]. 華南師范大學(xué)學(xué)報:自然科學(xué)版, 2005(1):6-10. Chen X S. Additive relative perturbation bounds for eigenspace and singular subspace[J].Journal of South China Normal University:Natural Science Edition, 2005(1):6-10. [6]Chen X S. Two perturbation bounds for singular values and eigenvalues[J].BIT Numerical Mathematics,2008,3:493-497. [7]陳小山. 矩陣酉極因子的擾動界[J]. 華南師范大學(xué)學(xué)報:自然科學(xué)版, 2002(2):79-83. Chen X S. perturbation bounds for the unitary polar factor[J]. Journal of South China Normal University:Natural Science Edition, 2002(2):79-83. [8]Ipsen I C F,Nadler B.Refined perturbation bounds for eigenvalues of Hermitian and non-Hermitian matrices[J].Siam Journal on Matrix Analysis and Applications,2009,31:40-53. [9]Dickson K I,Kelley C T,Ipsen I C F,et al.Condition estimation for pseudo-arclength continuation[J].SIAM Journal on Numerical Analysis,2007,45:263-276. [10]Li R C. On perturbation bounds of matrix pencils with real spectra, a revist[J]. Mathematics of Computation,2002,72:715-728. 【中文責(zé)編:莊曉瓊英文責(zé)編:肖菁】 Eigenvalue Variations for Rank-one Update of Arbitrary Matrices Xu Weiwei* (School of Mathematics and Statistics, Nanjing University of information Science and Technology, Nanjing 210044,China) Assume that matrix A is an arbitrary complex matrix of ordernand E is a Hermitian rank-one matrix, i.e., E=xx′, wherexis a complex column vector of ordernandx′ is the conjugate transpose vector ofx. So, A+E is called Hermitian rank-one update of matrix A. Based on the properties of matrix analysis theory in Hermitian matrix eigenvalue distribution, Hermitian rank-one perturbation bounds of an arbitrary matrix is given and two-side bounds for eigenvalues of A+E are presented as follows: 2014-07-11《華南師范大學(xué)學(xué)報(自然科學(xué)版)》網(wǎng)址:http://journal.scnu.edu.cn/n 江蘇省自然科學(xué)青年基金項目(BK2013098);江蘇省高校自然科學(xué)基金項目(13KJB110020) 徐瑋瑋,講師,Email:wwx19840904@sina.com. O241.6 A 1000-5463(2015)02-0158-03