郭航王志敏湯青林田時(shí)炳楊洋宋明
(1. 西南大學(xué)園藝園林學(xué)院 南方山地園藝學(xué)教育部重點(diǎn)實(shí)驗(yàn)室 重慶市蔬菜學(xué)重點(diǎn)實(shí)驗(yàn)室,重慶 400715;2. 重慶市農(nóng)業(yè)科學(xué)院蔬菜花卉所,重慶 400055)
茉莉酸調(diào)控花藥開(kāi)裂的研究進(jìn)展
郭航1王志敏1湯青林1田時(shí)炳2楊洋2宋明1
(1. 西南大學(xué)園藝園林學(xué)院 南方山地園藝學(xué)教育部重點(diǎn)實(shí)驗(yàn)室 重慶市蔬菜學(xué)重點(diǎn)實(shí)驗(yàn)室,重慶 400715;2. 重慶市農(nóng)業(yè)科學(xué)院蔬菜花卉所,重慶 400055)
茉莉酸(JA)是廣泛存在于植物中的生長(zhǎng)調(diào)節(jié)物質(zhì),JA及其衍生物茉莉酸甲酯(MeJA)在植物生命活動(dòng)中起著重要作用。JA參與調(diào)控雄蕊發(fā)育,影響花藥開(kāi)裂,從而影響植物育性。就JA的生物合成及相關(guān)基因的表達(dá)調(diào)控、JA在植物花藥發(fā)育尤其是后期花藥開(kāi)裂過(guò)程中相關(guān)基因以及信號(hào)轉(zhuǎn)導(dǎo)的分子機(jī)制研究進(jìn)行回顧總結(jié),并對(duì)JA調(diào)控花藥開(kāi)裂的分子機(jī)理研究提出展望。
茉莉酸;花藥開(kāi)裂;分子機(jī)制;調(diào)控
茉莉酸(Jasmonic acid,JA)及茉莉酸甲酯(Methyl jasmonate,MeJA)是亞麻酸衍生的具有環(huán)戊酮基團(tuán)的化合物,是廣泛存在于植物中的生長(zhǎng)調(diào)節(jié)物質(zhì)。JA最初從一種真菌中分離得到,早期主要通過(guò)外源施加JA或MeJA研究其生理功能,隨著分子生物學(xué)興起,人們開(kāi)始對(duì)JA和MeJA的生物合成和代謝的分子調(diào)控機(jī)理進(jìn)行研究。JA在植物機(jī)體中除了參與植物自身防御系統(tǒng),還參與植物生長(zhǎng)發(fā)育,調(diào)控種子的萌發(fā)和生長(zhǎng)、花和果實(shí)及花粉的育性等?;ㄋ幨切廴锏闹匾M成部分,花粉成熟后需要通過(guò)開(kāi)裂的花藥釋放散播,進(jìn)而完成授粉受精過(guò)程。若花藥不開(kāi)裂或開(kāi)裂過(guò)早過(guò)晚都會(huì)使花粉不能及時(shí)釋放,從而影響植物育性。JA參與調(diào)控植物花藥開(kāi)裂的相關(guān)研究始于1996年[1],在JA合成酶缺陷突變體中觀察到花藥延遲開(kāi)裂或不開(kāi)裂表型。本文從JA調(diào)控花藥開(kāi)裂的相關(guān)基因、JA信號(hào)轉(zhuǎn)導(dǎo)研究、JA誘導(dǎo)的基因表達(dá),以及JA與其他植物激素的相關(guān)性等方面,針對(duì)近些年來(lái)JA參與植物花藥開(kāi)裂過(guò)程的分子機(jī)制的最新進(jìn)展作以介紹。
JA的生物合成始于α-亞麻酸LA(Linolenic acid)(圖1),它由脂解酶DAD1(Defective in anther dehiscence1)從膜磷脂中釋放,在脂氧合酶LOX(lipoxygenase)作用下合成為13-氫過(guò)氧化亞麻酸(13-hydroperoxylinolenic acid),之后在丙二烯氧化合酶AOS(Allene oxide synthase)催化下轉(zhuǎn)化為12,13-環(huán)氧-十八碳三烯酸(12,13-epoxy-octadecatrienoic acid),接著在丙二烯氧化物環(huán)化酶AOC(Allene oxide cyclase)催化下形成12-氧代植二烯酸OPDA(12-oxophytodienoic acid),再經(jīng)過(guò)OPDA還原酶OPR3(12-oxophytodienoic acid reductase)還原和三步β氧化生成JA,最后由它衍生出各種茉莉酸鹽(Jasmonates)。
圖1 茉莉酸生物合成途徑及信號(hào)轉(zhuǎn)導(dǎo)模型
以上幾個(gè)JA合成途徑中的關(guān)鍵酶基因的表達(dá)對(duì)植物體內(nèi)JA含量影響很大,并且所有編碼JA生物合成酶的基因也都受到JA的誘導(dǎo),這表明JA的生物合成屬于正向調(diào)節(jié)[2]。
基于對(duì)JA生物合成或信號(hào)轉(zhuǎn)導(dǎo)突變體的大量研究,普遍認(rèn)為JA在調(diào)控花藥開(kāi)裂、花絲伸長(zhǎng)和花粉發(fā)育中扮演重要角色[3]。迄今關(guān)于JA調(diào)控花藥開(kāi)裂的研究多見(jiàn)于模式植物擬南芥;其次對(duì)白菜、油菜、小麥和番茄[4-8]等作物的研究也有相關(guān)報(bào)道。
2.1 DAD1
DAD1基因編碼葉綠體磷脂酶A1(PLA1),催化磷脂轉(zhuǎn)化成亞麻酸,是JA生物合成的初始步驟[9,10]。Ishiguro等[9]首次在擬南芥中克隆到DAD1基因,該DAD1序列無(wú)內(nèi)含子,編碼由447個(gè)氨基酸殘基組成的多肽,具有典型的脂肪酶特征?;ㄑ恐械腄AD1對(duì)JA產(chǎn)生起關(guān)鍵作用,其突變會(huì)降低花芽中的JA水平[11-13]。而dad1突變體的損傷葉片中仍有大量JA積累,也說(shuō)明DAD1并非是唯一參與JA合成的脂肪酶[14,15]。
Ishiguro等[9]通過(guò)DAD1 T-DNA插入獲得擬南芥雄性不育突變株,該突變體因花藥不開(kāi)裂無(wú)法釋放花粉,但其他花器包括花藥外型都與野生型無(wú)差異且雌性可育;回交試驗(yàn)證明該突變?yōu)楹嘶蚩刂频碾[性突變;花粉活力檢測(cè)表明dad1突變體花粉在三核期之前都發(fā)育正常,而在最后成熟階段出現(xiàn)缺陷導(dǎo)致不可育花粉,以上缺陷在對(duì)花芽簇施用外源MeJA后得到恢復(fù)。Sanders等[16]對(duì)擬南芥dad1突變體的研究表明,花藥僅在發(fā)育9-11階段響應(yīng)JA處理。Hatakeyama等[4]對(duì)白菜BrDAD1基因進(jìn)行反義抑制,3株反義基因改造的植株在開(kāi)花階段表現(xiàn)出花藥開(kāi)裂缺陷,并產(chǎn)生不能存活花粉;這些雄性不育和開(kāi)花表型也能通過(guò)施用JA和亞麻酸恢復(fù),并且這些特性可遺傳給下一代。Chen等[17]以花椰菜為材料研究該基因,也得到相似結(jié)果。
花絲中JA合成被認(rèn)為在一定程度上調(diào)節(jié)雄蕊和花瓣中水分運(yùn)輸。Ishiguro等[9]認(rèn)為,DAD1的作用是通過(guò)調(diào)節(jié)JA水平控制水分從藥室內(nèi)壁、結(jié)締組織和藥室組織進(jìn)入維管組織運(yùn)輸,這些依次影響花和花藥發(fā)育,從而有助于在正確時(shí)間花瓣打開(kāi)和花藥開(kāi)裂。同時(shí)提出,花絲和花瓣伸長(zhǎng)都是通過(guò)DAD1誘導(dǎo)花絲上部區(qū)域產(chǎn)生JA開(kāi)始,從而促進(jìn)這個(gè)區(qū)域從子囊腔、藥室內(nèi)壁和結(jié)締組織吸收水分。發(fā)育后期階段,花絲上部和下部的細(xì)胞表達(dá)DAD1,誘導(dǎo)JA合成并引起從花藥細(xì)胞壁到花絲的水分輸出,導(dǎo)致花絲伸長(zhǎng)及隨后的花朵開(kāi)放;推測(cè)這是花藥開(kāi)裂所需的細(xì)胞層脫水和擴(kuò)張的原因之一[18]。Ishiguro等[9]還認(rèn)為,JA通過(guò)誘導(dǎo)花藥中水分運(yùn)輸基因的表達(dá)起作用,如質(zhì)膜H離子-蔗糖的轉(zhuǎn)運(yùn)子AtSUC1;它在花藥結(jié)締組織周?chē)谋”诮M織中發(fā)現(xiàn),被認(rèn)為有助于花藥壁水分輸出[19]。
DAF(DAD1活化因子)編碼推定的環(huán)指E3泛素連接酶,抑制DAF的表達(dá)也會(huì)導(dǎo)致花藥不開(kāi)裂、改變花粉發(fā)育,從而引起不育。daf突變體花藥開(kāi)裂的細(xì)胞基礎(chǔ)與dad1突變體類似,DAF通過(guò)正向調(diào)控DAD1在JA生物合成途徑中的表達(dá)起作用[20]。
2.2 LOX
LOXs屬于雙加氧酶(Dioxygenase)家族,在其活性位點(diǎn)上有一個(gè)非血紅素鐵。植物中LOX在亞麻酸9或13位上氧化產(chǎn)生9或13-氫過(guò)氧化亞麻酸,分別由LOX-9和LOX-13家族催化[21]。LOX的抑制劑可降低JA的生物合成。Burow等[22]發(fā)現(xiàn)兩個(gè)擬南芥LOX基因,Atlox1在幼苗、花序、根、葉中均有表達(dá),在根和幼苗中表達(dá)較高;Atlox2在葉和花序中表達(dá)較高;Atlox2蛋白具有葉綠體導(dǎo)肽,被定位于葉綠體。Bannenberg等[23]在擬南芥中克隆到4個(gè)編碼13-LOXs家族的基因:LOX2、LOX3、LOX4和LOX6,其中LOX2作為合成JA的前體結(jié)合次生代謝產(chǎn)物[24,25],LOX2和LOX6的功能與植物育性無(wú)關(guān);而LOX3與LOX4參與花藥特異性JA合成[26]和花序構(gòu)成,它們共享近乎相同的底物結(jié)合袋,并且在JA合成上功能冗余[27]。Caldelari等[27]構(gòu)建擬南芥lox3、lox4雙突變體以及aos突變體,lox3、lox4雙重突變體和aos突變體都表現(xiàn)出花絲短、柱頭長(zhǎng)、花藥不開(kāi)裂等花藥異常表型,且花粉不可育。而lox3或lox4單突變體具有正常育性。雙突變體的雄性不育可通過(guò)補(bǔ)充LOX3或LOX4 cDNA的遺傳互補(bǔ)來(lái)恢復(fù),也可通過(guò)外源JA恢復(fù)。此外,該雙重突變體還表現(xiàn)出異常的花器官發(fā)育,這可能是影響到花序分生組織活化終止信號(hào)造成的。
2.3 AOS
AOS基因編碼的AOS酶是一種羥脂通道酶,是細(xì)胞色素P450酶家族成員(CYP74A)。亞麻AOS是第一個(gè)被克隆到的該酶的基因,具有葉綠體導(dǎo)肽序列,編碼55 kD的蛋白;擬南芥AOS全長(zhǎng)基因編碼含517個(gè)氨基酸、分子量為58.7 kD的蛋白,該基因同樣具有葉綠體導(dǎo)肽序列[28]。Maucher等[29]在大麥中克隆到AOS基因AOS1、AOS2,這兩個(gè)大麥AOS基因不含有葉綠體轉(zhuǎn)運(yùn)肽,但它們編碼的蛋白均共分離于葉綠體。在發(fā)育的幼苗中,AOS mRNA大量積累于小盾片的節(jié)中,而葉基部積累量很少。
Von Malek等[30]在擬南芥中發(fā)現(xiàn)一株花藥開(kāi)裂異常突變株,其突變正是由于AOS酶基因序列內(nèi)部發(fā)生移碼造成,該突變株因花藥不開(kāi)裂導(dǎo)致雄性不育,但花粉發(fā)育正常,且其育性能被外源JA恢復(fù)。Park等[13]對(duì)擬南芥AOS敲除突變體和AOS重組表達(dá)的研究得出相似結(jié)果,在外源施用MeJA和JA生物合成中間產(chǎn)物OPDA后,突變株的雄性不育表型得到恢復(fù),但雄性不育性狀在后代中可遺傳。Bae等[31]采用RNA干擾技術(shù)抑制內(nèi)源AOS表達(dá),構(gòu)建花藥特異性啟動(dòng)子Osc4和Osg6b控制下的OsAOS1和OsAOS2轉(zhuǎn)基因水稻,部分轉(zhuǎn)基因株表現(xiàn)出嚴(yán)重的雄性不育,分析顯示轉(zhuǎn)基因株中AOS在花藥中的表達(dá)量非常低,認(rèn)為AOS在花藥和花粉發(fā)育中起到重要作用。
2.4 AOC
已知的AOC酶催化在9s、13s位上形成12-氧代植二烯酸的專一的對(duì)映異構(gòu)體。Ziegler等[8]在番茄中克隆到AOC基因,其cDNA全長(zhǎng)1 kb,編碼245個(gè)氨基酸的蛋白,分子量約為26 kD,N末端含一個(gè)葉綠體導(dǎo)肽。Stenzel等[32]發(fā)現(xiàn)受到JA誘導(dǎo)的野生型擬南芥AOC的表達(dá)量增加,反之缺乏JA的野生型擬南芥AOC表達(dá)量減少,表明JA的生物合成是一個(gè)正向反饋調(diào)控。
Hause等[33]分析蛋白印跡發(fā)現(xiàn)AOC蛋白出現(xiàn)在花原基的所有細(xì)胞和組織中。但在開(kāi)花前不久,AOC蛋白優(yōu)先出現(xiàn)在胚珠、柱頭細(xì)胞和維管束中,而在花藥和花粉中未檢測(cè)到。AOC蛋白的積累表明該組織可能合成JA以及JA在花發(fā)育的早期階段起作用,但AOC蛋白未在花藥和花粉中積累的原因以及這是否與突變體雄性不育缺陷有關(guān)并未明確。
2.5 OPR3
OPR3也稱為delayed dehiscence 1(DDE1)[34],編碼OPDA還原酶[(12-oxophytodienoic acid reductase(OPR)]。一些OPDA異構(gòu)體的生化研究表明,OPR3是擬南芥中唯一能將OPDA還原成JA的OPR酶類[12]。與擬南芥OPR3同源的玉米OPR7和OPR8,被確定為玉米JA生物合成OPR酶[35]。Sanders等[16]的研究表明DDE1(OPR3)基因由4個(gè)外顯子組成,長(zhǎng)1 176 bp,編碼391個(gè)氨基酸的蛋白序列。野生型植物中,DDE1的mRNA在花藥開(kāi)裂啟動(dòng)前在雌蕊、花瓣和花絲中特異性積累。Li等[36]采用GUS融合技術(shù)研究OPR3的時(shí)間和空間表達(dá)發(fā)現(xiàn),OPR3在根、葉和所有花器中均有表達(dá),主要在葉脈的韌皮部細(xì)胞中檢測(cè)到CUS信號(hào),而在MeJA處理下OPR3表達(dá)量大量增加。
擬南芥opr3突變體的花藥裂口不正常脫水和開(kāi)裂延遲,造成雄性不育。研究發(fā)現(xiàn)opr3突變體因缺少JA合成所必要OPDA還原酶亞型,使得JA的合成在OPDA和dnOPDA步驟之后受阻。其花藥開(kāi)裂延遲和花粉發(fā)育的缺陷可通過(guò)施用外源JA得到恢復(fù),施用OPDA則不能,這也說(shuō)明JA是雄性配子發(fā)育所需的活性物質(zhì)[12,37]。Sanders等[16]的研究中,dde1(opr3)突變體花藥開(kāi)裂延遲或不開(kāi)裂,花粉具有育性;該突變體花藥裂口細(xì)胞退化晚于野生型,裂口退化是花藥開(kāi)裂的最后一步,認(rèn)為是裂口退化延遲引起花藥開(kāi)裂延遲。Sanders等[16,38]還提出JA或其衍生物直接或間接參與調(diào)控花藥開(kāi)裂的時(shí)間:存在一個(gè)花芽感受JA信號(hào)的“窗口”,該靶細(xì)胞只在花藥發(fā)育的特定時(shí)期(階段10和11)識(shí)別JA信號(hào),從而使花藥在開(kāi)花同時(shí)開(kāi)裂。對(duì)DDE1 mRNA的定位檢測(cè)表明,花藥發(fā)育后期,DDE1的mRNA大量存在于在雌蕊、花瓣和花絲中,而花藥開(kāi)裂時(shí)在參與開(kāi)裂的組織和細(xì)胞,如裂口、隔膜、結(jié)締組織、壁層和表皮中未檢測(cè)到DDE1的表達(dá),若內(nèi)源JA在花藥中產(chǎn)生,則其是花藥發(fā)育早期階段合成的;否則雄蕊、花瓣、花絲也可能是花藥中JA信號(hào)來(lái)源的站點(diǎn)?;ㄋ庨_(kāi)裂程序啟動(dòng)前就需要JA信號(hào),其作用是定時(shí)裂口退化,但在導(dǎo)致裂口退化的一系列過(guò)程中,其他步驟或分子機(jī)制還有待確定。
Biesgen等[39]則認(rèn)為這種裂口細(xì)胞退化和開(kāi)裂延遲可能是由于另外兩個(gè)OPR同工酶OPR1和OPR2的作用,它們主要在擬南芥的根中表達(dá),而在花中表達(dá)水平很低;Sanders等[16]也認(rèn)為這可能是由于JA途徑不完全受阻,JA可通過(guò)異常的OPR基因家族成員逐步積累;而Farmer等[40]認(rèn)為這可能與從16∶3脂肪酸合成JA的替代途徑有關(guān)。
此外,JA代謝途徑相關(guān)基因脂肪酸脫飽和酶基因FAD(fatty acid desaturase)也直接或間接參與花藥開(kāi)裂的調(diào)節(jié):α-亞麻酸是JA合成的前體,一個(gè)擬南芥fad3、fad7和fad8三重突變體,缺失將α-亞油酸脫飽和轉(zhuǎn)變?yōu)棣?亞麻酸的關(guān)鍵同工酶FAD3、FAD7、FAD8,其三烯脂肪酸含量極低,出現(xiàn)花藥開(kāi)裂異常引起雄性不育[2]。
JA信 號(hào) 轉(zhuǎn) 導(dǎo) 突 變 體coronatine insensitive 1(coi1)也支持JA參與花藥開(kāi)裂的觀點(diǎn)。JA受體CORONATINE INSENSITIVE 1(COI1)是一個(gè)F-box蛋白,它感知JA,募集茉莉酸ZIM結(jié)構(gòu)域蛋白(Jasmonate ZIM-domain protein,JAZs),形成SCFCOI1-JA-Ile-JAZ三元復(fù)合物。JAZ蛋白抑制JA響應(yīng)基因的轉(zhuǎn)錄,三元復(fù)合物中的JAZ蛋白泛素化,并通過(guò)26S蛋白酶體降解,從而釋放下游的轉(zhuǎn)錄因子,這些轉(zhuǎn)錄因子包括MYB轉(zhuǎn)錄因子(MYB21、MYB24和MYB57),bHLH轉(zhuǎn)錄因子(MYC2、MYC3和MYC4)及WD-repeat/bHLH/MYB轉(zhuǎn)錄復(fù)合物,引起下游防御反應(yīng)或發(fā)育調(diào)節(jié)的轉(zhuǎn)錄激活[41](圖1)。COI1蛋白是迄今發(fā)現(xiàn)唯一的JA受體[42,43],JA-ILE也是唯一的SCFCOI1E3泛素連接酶復(fù)合物的配體[44]。
coi1突變體花藥不開(kāi)裂引起的不育性不能夠通過(guò)外源JA恢復(fù)[10,45,46]。這是因?yàn)镴A蛋白在這些信號(hào)的存在下不會(huì)降解,從而coi1突變體不能響應(yīng)JAZ和COI1[42]。
Huang等[47]對(duì)COI1氨基酸替換突變體的研究表明,不同COI1等位基因突變使不同氨基酸被替換,并對(duì)COI1調(diào)控雄性育性的功能有不同程度的影響:其中7個(gè)替換突變株完全雄性不育,出現(xiàn)花絲不伸長(zhǎng)、花藥不開(kāi)裂和花粉敗育的表型;coi1-2 突變株育性明顯降低;而coi1-8突變株仍保持50%的育性;其原因是由于不同位置氨基酸的改變打亂了COI1的C端結(jié)構(gòu),影響COI1的穩(wěn)定性,而不同的突變對(duì)COI1穩(wěn)定性的影響不同,從而影響COI1調(diào)解雄性育性的功能。16℃低溫處理下,coi1-2突變株的育性得到恢復(fù),雖然低溫處理對(duì)這些coi1突變體內(nèi)COI1蛋白水平無(wú)明顯影響,推測(cè)可能是低溫調(diào)整了突變體COI1的功能(如改變其構(gòu)型),但是低溫是如何調(diào)整其構(gòu)型以形成有功能的COI1來(lái)調(diào)節(jié)雄性育性的還有待進(jìn)一步明確。
SHI-RELATED SEQUENCE7(SRS7)的活化標(biāo)記突變體也表現(xiàn)出混亂的花藥開(kāi)裂,產(chǎn)生可育花粉,但不發(fā)生絨氈層破裂和花藥開(kāi)裂,這表明絨氈層退化和花藥開(kāi)裂之間有一定的關(guān)聯(lián);SRS7主要在花絲中表達(dá),并與DAD1在同一時(shí)期,SRS7可能參與了JA信號(hào)傳輸[48]。擬南芥中JAR1(JASMONATE RESISTANT 1)是JA信號(hào)途徑中COI1和MYB21/ MYB24的上游基因,編碼JA-氨基酸(JA-amino acid)合成,將JA轉(zhuǎn)變?yōu)榫哂袃?nèi)源生物活性的Jasmonoyl-L-Isoleucine(JA-Ile)[49,50]。Xiao等[51]研究?jī)蓚€(gè)水稻JAR1突變體,osjar1-2和osjar1-3,發(fā)現(xiàn)由于控制開(kāi)花的漿片不能及時(shí)萎縮,這兩個(gè)osjar1突變體的穎花在開(kāi)花期間一直保持開(kāi)放;充滿可育花粉的花藥開(kāi)裂受損,育性降低。從而認(rèn)為OsJAR1是水稻花朵開(kāi)閉和花藥開(kāi)裂所必須的。
JA合成和信號(hào)傳輸在雄蕊發(fā)育后期的時(shí)序協(xié)調(diào)中起重要作用。除作用于花原基早期和初期發(fā)育的發(fā)生[18],Ito等[52]發(fā)現(xiàn)AGAMOUS(AG)在雄蕊發(fā)育后期對(duì)花藥形態(tài)發(fā)生和開(kāi)裂、花絲形成和伸長(zhǎng)起調(diào)節(jié)作用;后期發(fā)育階段,AG在一定程度上通過(guò)直接調(diào)節(jié)DAD1的轉(zhuǎn)錄和JA的生物合成起作用。
opr3突變體的表達(dá)分析在雄蕊中確定了821個(gè)基因,有13個(gè)轉(zhuǎn)錄因子響應(yīng)JA調(diào)控,其中兩個(gè)轉(zhuǎn)錄因子MYB21和MYB24以重疊方式作用調(diào)節(jié)花藥開(kāi)裂,發(fā)現(xiàn)這兩個(gè)R2R3 MYB蛋白,MYB21和MYB24,是JA引發(fā)雄蕊發(fā)育過(guò)程的關(guān)鍵調(diào)節(jié)器[53]。擬南芥myb24突變體表型正常;myb21突變體花粉可育,但花絲短、花藥開(kāi)裂延遲,育性降低;myb21、myb24雙突變體花絲短,花藥和花瓣不打開(kāi),可見(jiàn)myb21突變的引入加劇了育性缺陷,外源JA不能恢復(fù)myb21和myb21、myb24突變株的育性,這表明作為JA信號(hào)元件MYB21和MYB24調(diào)解雄蕊發(fā)育過(guò)程的JA響應(yīng)[54];而MYB21過(guò)量表達(dá)的col1-1或opr3突變體可部分恢復(fù)育性[55]。AtMYB21還顯示出被光信號(hào)運(yùn)輸因子CONSTITUTIVE PHOTOMORPHOGENIC1(COP1)抑 制,COP1是MYB21組織特異性正確表達(dá)所需;MYB21直接調(diào)節(jié)苯丙氨酸裂解酶(PAL)和交替氧化酶(AOX)的表達(dá)[56]。AtMYB24在花藥發(fā)育中的表達(dá)受到嚴(yán)格調(diào)控,過(guò)量表達(dá)會(huì)導(dǎo)致包括花藥發(fā)育延遲和不開(kāi)裂在內(nèi)的花器缺陷。AtMYB24過(guò)量表達(dá)株的裂口和隔膜不發(fā)生裂解,藥室內(nèi)壁次生增厚量減少,苯丙氨酸途徑中基因的表達(dá)被破壞[57]。
有些研究者認(rèn)為生長(zhǎng)素通過(guò)JA調(diào)節(jié)花藥開(kāi)裂。生長(zhǎng)素響應(yīng)因子ARF6和ARF8冗余調(diào)節(jié)雄蕊發(fā)育的晚期階段[58],缺失ARF6和ARF8會(huì)擾亂JA的生產(chǎn),從而導(dǎo)致花藥開(kāi)裂延遲或不開(kāi)裂。arf6-2、afr8-3雙突變體的花發(fā)育停滯在階段12,出現(xiàn)花絲不伸長(zhǎng)、花藥不開(kāi)裂和花粉敗育,這與JA突變體col1-1和opr3的雄性不育表型相同;ARF6和ARF8通過(guò)調(diào)控DAD1、LOX2、AOS和OPR3基因的表達(dá)調(diào)節(jié)花芽中JA的合成[58-61],以此影響花藥開(kāi)裂和花粉成熟。經(jīng)外源JA處理的arf6、arf8雙突變體的花芽,其花藥發(fā)育缺陷可得到恢復(fù),但仍不能使花絲伸長(zhǎng)[58,62]。TIR1是一種生長(zhǎng)素受體,AFB是生長(zhǎng)素信號(hào)F-box蛋白,有研究表明,tir1、afb1、afb2和afb3四重突變體花藥開(kāi)裂過(guò)早及花粉早熟可能是MYB26和JA積累導(dǎo)致[63,64]。也有人認(rèn)為上調(diào)或下調(diào)GT三螺旋DNA-結(jié)合轉(zhuǎn)錄子的PETAL LOSS-D(PTL-D),通過(guò)改變生長(zhǎng)素介導(dǎo)途徑作用于JA途徑[65]。
赤霉素(GA)也通過(guò)JA調(diào)控后期雄蕊發(fā)育。GA受體GID1感知GA信號(hào)募集DELLA蛋白泛素化,DELLA蛋白通過(guò)26S蛋白酶降解從而激活下游途徑響應(yīng)GA[41]。擬南芥GA缺陷四重突變體ga1-3、gai-t6、rgat2、rgl1-1的小花芽中JA含量比野生型低很多[55],可見(jiàn)GA通過(guò)JA作用,上調(diào)DAD1和LOX1,促進(jìn)JA合成來(lái)控制MYB21、MYB24和MYB57的表達(dá),而這些轉(zhuǎn)錄因子是花發(fā)育12階段后雄蕊晚期發(fā)育所必需的[41,66]。水稻花藥發(fā)育的基因表達(dá)芯片分析表明,314個(gè)基因響應(yīng)GA或JA處理,24個(gè)GA和82個(gè)JA響應(yīng)基因在減數(shù)分裂和花藥成熟階段的表達(dá)量顯著變化[67];GA介導(dǎo)的DELLA蛋白與JAZ蛋白競(jìng)爭(zhēng)MYC2結(jié)合位點(diǎn),從而影響轉(zhuǎn)錄因子MYB21/24/57的活化[26,68],這些都表明JA和GA途徑之間存在相互串?dāng)_[26,67-69]。
JA與植物生長(zhǎng)發(fā)育和防御相關(guān)。大量研究表明,JA在植物花藥發(fā)育和最終開(kāi)裂中起重要調(diào)控作用。就目前花藥開(kāi)裂突變體的研究,一般情況下JA途徑中任何階段的缺陷都會(huì)引起類似花絲伸長(zhǎng)減少、花藥開(kāi)裂延遲或不開(kāi)裂的表型。對(duì)JA生物合成和花藥開(kāi)裂分子調(diào)控機(jī)制的探討為JA的研究和揭示植物生殖發(fā)育中花藥發(fā)育機(jī)理奠定了一定基礎(chǔ),然而仍有很多值得探索的內(nèi)容,如已發(fā)現(xiàn)和克隆的JA合成和信號(hào)轉(zhuǎn)導(dǎo)相關(guān)基因只是有限的一部分,仍有大量未知基因;一些JA調(diào)控花藥發(fā)育的作用機(jī)理尚屬猜測(cè)缺少有利證據(jù);JA相關(guān)基因、蛋白、酶和轉(zhuǎn)錄因子的功能作用尚未詳盡闡明;JA途徑相關(guān)酶的體內(nèi)定位以及JA受體的研究;JA與生長(zhǎng)素、乙烯、赤霉素等生長(zhǎng)物質(zhì)相互的作用機(jī)制等,并且目前JA在花藥開(kāi)裂上的研究?jī)H限于少數(shù)幾種植物且其調(diào)控網(wǎng)絡(luò)還不完整,這些都需要更進(jìn)一步的探索和研究。
[1] McConn M, Browse J. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant[J]. The Plant Cell, 1996, 8:403-416.
[2] Hause B, Mrosk C, Isayenkov S, et al. Jasmonates in arbuscular mycorrhizal interactions[J]. Phytochemistry, 2007, 68:101-110.
[3] Scott RJ, Spielman M, Dickinson HG. Stamen structure and function[J]. The Plant Cell, 2004, 16(Suppl 1):46-60.
[4] Hatakeyama K, Ishiguro S, Okada K, et al. Antisense inhibition of a nuclear gene, BrDAD1, in Brassica causes male sterility that is restorable with jasmonic acid treatment[J]. Molecular Breeding,2003, 11:325-336.
[5] 華水金, 王學(xué)德, 孟華兵, 等. 油菜控制花藥開(kāi)裂基因的分子克隆[C]. 第十二屆國(guó)際油菜大會(huì)論文集, 2007.
[6] 向群, 張立平, 趙昌平, 等. 外源茉莉酮酸甲酯通過(guò)調(diào)節(jié)相關(guān)基因表達(dá)誘導(dǎo)光溫敏雄性不育小麥BS366 離體花藥開(kāi)裂[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào), 2010, 26(11):1028-1035.
[7] 馬驊. 茉莉酸甲酯(MeJA)誘導(dǎo)光溫敏雄性不育小麥花藥開(kāi)裂的研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學(xué), 2011.
[8] Ziegler J, Stenzel I, Hause B, et al. Molecular cloning of allene oxide cyclase the enzyme establishing the stereochemistry of octadecanoids and jasmonates[J]. J Biol Chem, 2000, 275:19132-1913.
[9] Ishiguro S, Kawai-Oda A, Ueda J, et al. The DEFECTIVE IN ANTHER DEHISCENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis[J]. The Plant Cell, 2001, 13:2191-2209.
[10] Richmond GS, Smith TK. Phospholipases A1[J]. International Journal of Molecular Sciences, 2011, 12(1):588-612.
[11] Feys B, Benedetti CE, Penfold CN, et al. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen[J]. The Plant Cell, 1994, 6:751-759.
[12] Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3,lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis[J]. Proc Nat Acad Sci USA, 2000, 97:10625-10630.
[13] Park JH, Halitschke R, Kim HB, et al. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis[J]. Plant J, 2002, 31:1-12.
[14] Hyun Y, Choi S, Hwang HJ, et al. Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis[J]. Dev Cell, 2008, 14:183-192.
[15] Ellinger D, Stingl N, Kubigsteltig II, et al. DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis:redundant lipases contribute to jasmonate formation[J]. Plant Physiol, 2010, 153:114-127.
[16] Sanders PM, Lee PY, Biesgen C, et al. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic synthesis pathway Ellinger[J]. The Plant Cell, 2000, 12:1041-1061.
[17] Chen GJ, Cao BH, XuF, et al. Development of adjustable male sterile plant in broccoli by antisense DAD1 fragment transformation[J]. AJB, 2010, 9:4534-4541.
[18] Wilson ZA, Song J, Taylor B, et al. The final split:the regulation of anther dehiscence[J]. J Exp Bot, 2011, 62(5):1633-1649.
[19] Stadler R, Truernit E, et al. The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollentube growth in Arabidopsis[J]. Plant J, 1999, 19:269-278.
[20] Peng YP, Shih CF, Yang JY, et al. A RING-type E3 ligase controls anther dehiscence by activating the jasmonate biosynthetic pathway gene DEFECTIVE IN ANTHER DEHISCENCE1 in Arabidopsis[J]. Plant J, 2013, 74:310-327.
[21] Andreou A, Brodhun F, Feussner I. Biosynthesis of oxylipins in non-mammals[J]. Prog Lipid Res, 2009, 48:148-170.
[22] Burow GB, Gardner HW, Keller NP. A peanut seed lipoxygenase responsive to Aspergillus colonization[J]. Plant Molecular Biology, 2000, 42:689-701.
[23] Bannenberg G, Martínez M, Hamberg M, et al. Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana[J]. Lipids, 2009, 44:85-95.
[24] Glauser G, Dubugnon L, et al. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidospsis[J]. J Biol Chem, 2009, 284:34506-34513.
[25] Seltmann MA, Stingl NE, Lautenschlaeger JK, et al. Differential impact of lipoxygenase 2 and jasmonates on natural and stressinduced senescence in Arabidopsis thaliana[J]. Plant Physiol,2010, 152:1940-1950.
[26] Wasternack C, Hause B. Jasmonates:biosynthesis, perception,signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany[J]. Annals of Botany, 2013, 111:1021-1058.
[27] Caldelari D, Wang G, Farmer EE, et al. Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest[J]. Plant Molecular Biology, 2011, 75:25-33.
[28] 吳勁松, 種康. 茉莉酸作用的分子生物學(xué)研究[J]. 植物學(xué)通報(bào), 2002, 19(2):164-170.
[29] Maucher H, Hause B, Feussner I, et al. Allene oxide synthases of barley(Hordeum vulgare. Salome):tissue specific regulation in seedling development[J]. Plant J, 2000, 21:199-213.
[30] Von Malek B, Van der Graaff E, Schneitz K, et al. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway[J]. Planta, 2002, 216:187-192.
[31] Bae HK, Kang HG, et al. Transgenic rice plants carrying RNA interference constructs of AOS(allene oxide synthase) genes show severe male sterility[J]. Plant Breeding, 2010, 129:647-651.
[32] Stenzel I, Hause B, Miersch O, et al. Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana[J]. Plant Molecular Biology, 2003, 51(6):895-911.
[33] Hause B, Stenzel I, Miersch O, et al. Occurrence of the allene oxide cyclase in different organs and tissues of Arabidopsis thaliana[J]. Phytochemistry, 2003, 64:971-980.
[34] Weber H. Fatty acid-derived signals in plants[J]. TRENDS in Plant Science, 2002, 7(5):217-224.
[35] Yan Y, Christensen S, Isakeit T, et al. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense[J]. Plant Cell, 2012, 24:1420-1436.
[36] Li S, Ma J, Liu P. OPR3 is expressed in phloem cells and is vital for lateral root development in Arabidopsis[J]. Canadian Journal of Plant Science, 2013, 93(2):165-170.
[37] Schaller F, Biesgen C, Müssig C, et al. 2-Oxophytodienoate reductase 3(OPR3) is the isoenzyme involved in jasmonate biosynthesis[J]. Planta, 2000, 210:979-984.
[38] Sanders PM, Bui AQ, Weterings K, et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants[J]. Sex Plant Reprod, 1999, 11:297-322.
[39] Biesgen C, Weiler EW. Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxophytodienoic acid-10, 11-reductases[J]. Planta, 1999, 208:155-165.
[40] Farmer EE, Weber H, Vollenweider S. Fatty acid signaling in Arabidopsis[J]. Planta, 1998, 206:167-174.
[41] Song S, Qi T, Huang H, et al. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis[J]. Molecular Plant, 2013, 6(4):1065-1073.
[42] Katsir L, Schilmiller AL, Staswick PE, et al. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine[J]. The PNAS, 2008, 105:7100-7105.
[43] Yan J, Zhang C, Gu M, et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor[J]. Plant Cell,2009, 21:2220-2236.
[44] Thines B, Katsir L, Melotto M, et al. JA repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling[J]. Nature, 2007, 448:661-665.
[45] Xie DX, Feys BF, James S, et al. COI1:an Arabidopsis gene required for jasmonate-regulated defense and fertility[J]. Science, 1998, 280:1091-1094.
[46] Devoto A, Nieto-Rostro M, Xie D, et al. COI1 links jasmonatesignalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis[J]. Plant J, 2002, 32:457-466.
[47] Huang H, Wang C, Tian H, et al. Amino acid substitutions of GLY98, LEU245 and GLU543 in COI1 distinctively affect jasmonate-regulated male fertility in Arabidopsis[J]. Science China Life Sciences, 2014, 57(1):145-154.
[48] Kim SG, Lee S, et al. Activation tagging of an Arabidopsis SHIRELATED SEQUENCE gene produces abnormal anther dehiscence and floral development[J]. Plant Mol Biol, 2010, 74:337-351.
[49] Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis[J]. Plant Cell, 2004, 16:2117-2127.
[50] Fonseca S, Chini A, Hamberg M, et al. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate[J]. Nature Chemical Biology, 2009, 5:344-350.
[51] Xiao YG, Chen Y, Charnikhova T, et al. OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice[J]. Plant Molecular Biology, 2014, 86(1-2):19-33.
[52] Ito T, Ng KH, Lim TS, et al. The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis[J]. The Plant Cell, 2007, 19:3516-3529.
[53] Mandaokar A, Thines B, Shin B, et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling[J]. Plant J, 2006, 46:984-1008.
[54] Mandaokar A, Browse J. MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis[J]. Plant Physiology, 2009, 149:851-862.
[55] Cheng H, Song S, Xiao L, et al. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis[J]. PLoS Genet,2009, 5:e1000440.
[56] Shin B, Choi G, Yi H, et al. AtMYB21, a gene encoding a flowerspecific transcription factor, is regulated by COP1[J]. Plant J,2002, 30:23-32.
[57] Yang C, Xu Z, et al. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence[J]. Plant Cell, 2007, 19:534-548.
[58] Nagpal P, Ellis CM, Weber H, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation[J]. Development, 2005, 132:4107-4118.
[59] Tabata R, Ikezaki M, Fujibe T, et al. Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes[J]. Plant Cell Physiol, 2010, 51:164-175.
[60] Reeves PH, Ellis CM, et al. A regulatory network for coordinated flower maturation[J]. PLoS Genet, 2012, 8:e1002506.
[61] Wang J, Yan D, Yuan T, et al. A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level[J]. Plant Molecular Biology, 2013, 82:71-83.
[62] Cecchetti V, Altamura MM, Serino G, et al. ROX1, a gene induced by rolB, is involved in procambial cell proliferation and xylem differentiation in tobacco stamen[J]. Plant J, 2007, 49:27-37.
[63] Cecchetti V, Altamura MM, Falasca G, et al. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation[J]. Plant Cell, 2008, 20:1760-1774.
[64] Cecchetti V, Altamura MM, Brunetti P, et al. Auxin controls Arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis[J]. Plant J, 2013, 74:411-422.
[65] Li X, Qin G, Chen Z, et al. A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis[J]. Plant Mol Biol, 2008, 66:315-327.
[66] Song S, Qi T, Huang H, Ren Q, et al. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J]. Plant Cell, 2011, 23:1000-1013.
[67] Wang Z, Liang Y, Li C, et al. Microarray analysis of gene expression involved in anther development in rice(Oryza sativa L.) [J]. Plant Molecular Biology, 2005, 58:721-737.
[68] Kazan K, Manners JM. MYC2:the master in action[J]. Molecular Plant, 2013, 6:686-703.
[69] Wasternack C. Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie’s lab and the Chuanyou Li’s lab[J]. Plant Cell Reports, 2014, 33:707-718.
(責(zé)任編輯 狄艷紅)
Progress on Regulation of Anther Dehiscence by Jasmonic Acid
Guo Hang1Wang Zhimin1Tang Qinglin1Tian Shibing2Yang yang2Song Ming1
(1. College of Horticulture and Landscape Architecture,Southwest University;Key Laboratory of Horticulture Science for Southern Mountainous Regions,Ministry of Education;Chongqing Key Laboratory of Olericulture,Chongqing 400715;2. The Institute of Vegetables and Flowers,Chongqing Academy of Agricultural Sciences,Chongqing 400055)
Jasmonic acid(JA) is a ubiquitously occurring plant growth regulator. JA and methyl jasmonate(MeJA) play important role in plant life. JA is involved in stamen development, regulates anther dehiscence and affects plant fertility. This paper reviewed and summarized the JA biosynthesis pathway and the regulation of gene expression, and the molecular research on JA regulates plant anther development,especially anther dehiscence at the late stage. Finally it puts forward some prospects for future study.
jasmonic acid;anther dehiscence;molecular research;regulation
10.13560/j.cnki.biotech.bull.1985.2015.02.002
2014-05-23
國(guó)家農(nóng)業(yè)部“大宗蔬菜產(chǎn)業(yè)技術(shù)體系——茄子育種崗位”項(xiàng)目(ARS-25-13C1),中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)(XDJK2014C0 92),重慶市自然科學(xué)基金重點(diǎn)項(xiàng)目(CSTC,2011BA1032)
郭航,女,碩士研究生,研究方向:蔬菜遺傳育種與生物技術(shù);E-mail:379639956@qq.com
宋明,男,教授,研究方向:蔬菜遺傳育種與生物技術(shù);E-mail:swausongm@163.com王志敏,女,副教授,研究方向:蔬菜遺傳育種與生物技術(shù);E-mail:minzniwang_555@163.com