高麗麗,李淞菲,曹天福,張 雪
(北華大學(xué)物理學(xué)院,吉林吉林132013)
N摻雜MgZnO薄膜的p型導(dǎo)電穩(wěn)定性研究
高麗麗?,李淞菲,曹天福,張 雪
(北華大學(xué)物理學(xué)院,吉林吉林132013)
利用磁控濺射技術(shù),以Mg0.06Zn0.94O為陶瓷靶材,制備了N摻雜p型Mg0.13Zn0.87O薄膜,薄膜的電阻率為42.45 Ω·cm,載流子濃度為3.70×1017/cm3,遷移率為0.40 cm2·V-1·s-1.研究了該薄膜p型導(dǎo)電性質(zhì)在室溫空氣下隨時(shí)間的變化情況.實(shí)驗(yàn)結(jié)果表明,薄膜的電阻率逐漸升高,載流子濃度降低,五個(gè)月以后,薄膜轉(zhuǎn)變?yōu)閚型導(dǎo)電,電阻率為85.58Ω·cm,載流子濃度為4.53×1016/cm3,遷移率為1.61 cm2·V-1·s-1.真空熱退火后重新轉(zhuǎn)變?yōu)閜型.結(jié)果顯示,其p型導(dǎo)電類型的轉(zhuǎn)變與在空氣中吸附H2O或H2等形成淺施主有關(guān).
射頻磁控濺射;MgZnO薄膜;p型;穩(wěn)定性
ZnO是新型寬禁帶半導(dǎo)體,由于室溫下禁帶寬度達(dá)3.37 eV,使其可能成為藍(lán)光LED器件的基礎(chǔ)材料[1-5].ZnO在平板顯示、高密度DVD存儲(chǔ)以及藍(lán)綠光對(duì)潛通信等方面都具有廣泛的應(yīng)用價(jià)值.六角纖鋅礦結(jié)構(gòu)的MgZnO是MgO和ZnO的合金,被看作是ZnO基異質(zhì)結(jié)構(gòu)的最適宜的壘層材料[6-11].在ZnO基材料的研究中,高質(zhì)量p型ZnO和MgZnO的獲得是目前尚未克服的難點(diǎn)之一,盡管很多研究組采用Ⅰ族如:Li、Na元素,或是采用Ⅴ族如:N、P、As、Sb等元素進(jìn)行摻雜,獲得了p型ZnO和MgZnO.但仍然存在p型摻雜效率低,p型導(dǎo)電的穩(wěn)定性較差,并且p型材料的晶體質(zhì)量不佳等問(wèn)題.而p型導(dǎo)電的穩(wěn)定性研究對(duì)ZnO和MgZnO材料的研究至關(guān)重要.
本文利用JGP-450A磁控濺射系統(tǒng),獲得了N摻雜p型MgZn O薄膜,研究了其電學(xué)性質(zhì)隨時(shí)間的變化情況,探討了p型導(dǎo)電穩(wěn)定性較差產(chǎn)生的原因.
使用射頻磁控濺射裝置,Mg0.06Zn0.94O陶瓷靶材,石英作為襯底.濺射氣體選用99.99%的N2和Ar,其中N2的流量為10 m L/min,Ar的流量為30 m L/min.實(shí)驗(yàn)開(kāi)始時(shí),生長(zhǎng)室預(yù)抽至5.0×10-4Pa,襯底溫度升至773 K.后充入預(yù)定流量的N2和Ar,混合氣體總壓強(qiáng)調(diào)節(jié)至1 Pa,濺射功率保持為100 W,濺射時(shí)間1 h.原生的Mg-ZnO薄膜送至管式真空爐中退火,其真空壓強(qiáng)為10-4Pa,熱退火溫度保持873 K,退火時(shí)間半小時(shí).
采用X射線散射能譜(EDS)測(cè)定MgZn O薄膜中Mg元素與Zn元素的組分,日本UV-3101PC型紫外可見(jiàn)分光光度計(jì)測(cè)定MgZn O薄膜的吸收光譜,LABRAM-UV紫外優(yōu)化的微區(qū)拉曼光譜儀測(cè)試MgZn O薄膜的光致發(fā)光光譜,場(chǎng)發(fā)射掃描顯微鏡(SEM)研究了MgZnO薄膜的形貌,霍爾效應(yīng)(Hall-effect)測(cè)定MgZn O薄膜的導(dǎo)電特性,X射線衍射譜表征MgZnO薄膜的結(jié)構(gòu).室溫Raman光譜是由Renishaw in Via顯微拉曼光譜儀測(cè)得,激發(fā)波長(zhǎng)為514.5 nm.
利用X射線散射能譜測(cè)定退火后的MgZn O薄膜中Mg與Zn的組分比為13∶87,記作Mg0.13Zn0.87O∶N.Mg0.13Zn0.87O∶N薄膜的XRD測(cè)試結(jié)果如圖1所示.
圖1 Mg0.13Zn0.87O∶N薄膜的X射線衍射譜Fig.1 XRD patterns of Mg0.13Zn0.87O∶N film
由圖1可見(jiàn),XRD譜線中在34.59°存在著一最強(qiáng)鋒,位于72.97°有一弱小峰,分別可歸為ZnO的(002)和(004)衍射峰.這表明N摻雜Mg0.13Zn0.87O保持著Zn O的六角結(jié)構(gòu),并沒(méi)有其他的雜相出現(xiàn),Mg元素與N元素已經(jīng)擴(kuò)散到了Zn O的晶格當(dāng)中.
圖2為Mg0.13Zn0.87O∶N薄膜的吸收光譜.
圖2 Mg0.13Zn0.87O:N薄膜的吸收光譜Fig.2 Absorption spectra of Mg0.13Zn0.87O∶N film
由圖2可見(jiàn),N摻雜Mg0.13Zn0.87O薄膜在450 nm到350 nm左右有非常好的透射率,當(dāng)入射波長(zhǎng)小于350 nm后,出現(xiàn)陡峭的吸收邊,吸收系數(shù)迅速增大,透射率迅速下降,并且吸收邊較ZnO有明顯藍(lán)移,這是由于Mg的摻入所致[12].
N摻雜Mg0.13Zn0.87O薄膜的Raman光譜如圖3所示.
圖3 (a)石英襯底,(b)ZnO,(c)Mg0.13Zn0.87O:N薄膜的Raman光譜Fig.3 Room Raman spectra of,(a)quartz substrate,(b)ZnO,(c)Mg0.13Zn0.87O:N film
圖3的Raman光譜中,曲線(a)是石英襯底的Raman譜圖,在488 cm-1左右存在一微弱的振動(dòng)模(以★標(biāo)記).曲線(b)是ZnO薄膜的Raman譜圖,在436 cm-1左右存在一最強(qiáng)峰(以■標(biāo)記),是六角Zn O的特征振動(dòng)模E2high[13].在580cm-1左右存在一弱小峰(以■標(biāo)記),是Zn O的A1(LO)+E1(LO)的混合振動(dòng)模[11].曲線(c)是Mg0.13Zn0.87O:N薄膜的Raman譜圖,除了ZnO的本征振動(dòng)模外,位于272 cm-1左右存在一弱小的新的振動(dòng)模(以◆標(biāo)記),據(jù)文獻(xiàn)[14-16],它的出現(xiàn)與N的摻雜有關(guān),而且文獻(xiàn)[16]證明它的出現(xiàn)與NO受主有關(guān),說(shuō)明N已經(jīng)有效地?fù)诫s到Mg0.13Zn0.87O薄膜中,并形成了NO受主.
利用霍爾效應(yīng)測(cè)試了Mg0.13Zn0.87O∶N薄膜的電學(xué)性能,退火后,薄膜顯示p型導(dǎo)電,電阻率為42.45Ω·cm,載流子濃度為3.70×1017/ cm3,遷移率為0.40 cm2·V-1·s-1.文獻(xiàn)[7]曾指出當(dāng)Mg擴(kuò)散到ZnO晶格中后,可以增加VZn受主的濃度,同時(shí)也可能使導(dǎo)帶底上移,這樣電子躍遷到導(dǎo)帶的可能性就會(huì)減小,這些因素會(huì)使MgZnO薄膜由于Mg含量的增加而轉(zhuǎn)變?yōu)閜型導(dǎo)電.因此Mg0.13Zn0.87O薄膜的p型導(dǎo)電性一方面來(lái)源于上述原因,另一主要方面是來(lái)源于NO受主[8],這與Raman光譜測(cè)試的結(jié)果相一致.在室溫空氣中保存Mg0.13Zn0.87O∶N薄膜的情況下,對(duì)薄膜電學(xué)性質(zhì)進(jìn)行了穩(wěn)定性測(cè)試,發(fā)現(xiàn)持續(xù)五個(gè)月的測(cè)試中薄膜均表現(xiàn)出p型,第六個(gè)月其蛻變?yōu)閚型.Mg0.13Zn0.87O∶N薄膜的電學(xué)性質(zhì)變化如圖4所示.
圖4 Mg0.13Zn0.87O∶N薄膜電學(xué)性質(zhì)對(duì)時(shí)間的關(guān)系Fig.4 Electrical properties of the Mg0.13Zn0.87O∶N film as a function of the preservation period
由圖4可見(jiàn),隨著時(shí)間的推移,p型樣品的電阻率逐漸升高,由42.45Ω·cm升至84.61Ω· cm;空穴載流子濃度由3.70×1017/cm3降至6.75× 1015/cm3.樣品制備第六個(gè)月轉(zhuǎn)變?yōu)閚型后,電阻率為85.58Ω·cm,電子濃度為4.53×1016/ cm3.隨后一個(gè)月里樣品仍然保持為n型.把此薄膜重新放回管式真空爐中進(jìn)行熱退火,真空度為10-4Pa,退火溫度673 K,退火時(shí)間20 min.樣品取出后,利用霍爾效應(yīng)測(cè)試了其電學(xué)性能,樣品重新轉(zhuǎn)變?yōu)閜型導(dǎo)電,電阻率為92.90Ω·cm,空穴載流子濃度為9.30×1016/cm3.據(jù)此,我們推斷p型Mg0.13Zn0.87O∶N導(dǎo)電類型的不穩(wěn)定主要來(lái)源于薄膜在空氣中更容易吸附H2O或H2等形成淺施主,與NO受主發(fā)生補(bǔ)償,因此薄膜由p型轉(zhuǎn)變?yōu)閚型,與文獻(xiàn)[17-18]中的觀點(diǎn)一致.
圖5是N摻雜Mg0.13Zn0.87O薄膜的室溫光致發(fā)光光譜.
圖5 Mg0.13Zn0.87O∶N薄膜的室溫PL譜Fig.5 Room photoluminescence spectra of Mg0.13Zn0.87O∶N films
圖6 Mg0.13Zn0.87O∶N薄膜的SEM圖Fig.6 SEM image of Mg0.13Zn0.87O∶N film
如圖5所示,N摻雜Mg0.13Zn0.87O薄膜的室溫光致發(fā)光譜主要由近帶邊紫外發(fā)射(NBE)和深能級(jí)(DL)發(fā)射這兩部分組成.其中近帶邊紫外發(fā)射(NBE)主要位于350 nm左右,是自由激子的復(fù)合發(fā)光[19],它的峰位波長(zhǎng)較Zn O有所減小,是Mg摻雜導(dǎo)致的藍(lán)移.Mg0.13Zn0.87O∶N薄膜的深能級(jí)發(fā)光峰位于可見(jiàn)光區(qū),它的產(chǎn)生與薄膜中的本征缺陷有關(guān).其中綠色發(fā)光峰的來(lái)源存在很多爭(zhēng)議,多數(shù)是認(rèn)為由導(dǎo)帶電子向一價(jià)VO+缺陷的躍遷[20].而對(duì)于波長(zhǎng)更長(zhǎng)的橙光和紅光產(chǎn)生的原因眾說(shuō)紛紜[21-22],不過(guò)這些可見(jiàn)光的出現(xiàn)與MgZnO:N沉積過(guò)程中產(chǎn)生的缺陷有關(guān)[22].對(duì)比深能級(jí)發(fā)射與近帶邊發(fā)射的強(qiáng)度可見(jiàn),前者的光強(qiáng)明顯大于后者,說(shuō)明薄膜的結(jié)晶質(zhì)量較差,內(nèi)部缺陷較多.
圖6是N摻雜Mg0.13Zn0.87O薄膜的場(chǎng)發(fā)射掃描顯微鏡(SEM)照片.
由Mg0.13Zn0.87O∶N薄膜的SEM圖可見(jiàn),在放大100k后,薄膜表面有很多的孔洞和縫隙,這說(shuō)明薄膜結(jié)晶質(zhì)量較差,而且孔洞更容易造成氣體的吸附,從而導(dǎo)致Mg0.13Zn0.87O∶N薄膜更容易轉(zhuǎn)變成n型.
利用磁控濺射技術(shù),Mg0.06Zn0.94O陶瓷靶材,獲得了p型Mg0.13Zn0.87O∶N薄膜,通過(guò)hall、Raman及SEM的測(cè)試,結(jié)果發(fā)現(xiàn),在空氣中,薄膜的電阻率逐漸升高,由最初的42.45Ω· cm,升至84.61Ω·cm;空穴載流子濃度由3.70× 1017/cm3降至6.75×1015/cm3.第六個(gè)月,薄膜轉(zhuǎn)變?yōu)閚型導(dǎo)電,真空熱退火后重新轉(zhuǎn)變?yōu)閜型.薄膜的表面布滿孔洞和縫隙,我們推斷薄膜的p型導(dǎo)電類型的轉(zhuǎn)變與在空氣中吸附H2O或H2等形成淺施主有關(guān).
[1] 申德振,梅增霞,梁會(huì)力,等.氧化鋅基材料、異質(zhì)結(jié)構(gòu)及光電器件[J].發(fā)光學(xué)報(bào),2014,35(1):1-60.
Shen D Z,Mei Z X,Liang H L,et al.ZnO-based material,heterojunction and photo-electronic device[J].Chin.J. Lumin.,2014,35(1):1-60.(in Chinese)
[2] Bagnall D M,Chen Y F,Zhu Z,et al.Optically pumped lasing of ZnO at room temperature[J].Appl.Phys.Lett.,1997,70(17):2230-2232.
[3] Tang Z K,Wong G K L,Yu P,et al.Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J].Appl.Phys.Lett.,1998,72(25):3270-3272.
[4] 王玉超,吳天準(zhǔn),蘇龍興,等.高質(zhì)量ZnO及BeZnO薄膜的發(fā)光性質(zhì)[J].發(fā)光學(xué)報(bào),2013,34(8):1035-1039.
Wang Y C,Wu T Z,Su L X,et al.luminescence characteristics of high-quality Zn O and BeZnO films[J].Chin.J. Lumin.,2013,34(8):1035-1039(in Chinese).
[5] 趙鵬程,張振中,姚斌,等.通過(guò)交替生長(zhǎng)氣氛調(diào)控N摻雜ZnO薄膜電學(xué)特性[J].發(fā)光學(xué)報(bào),2014,35(4):399-403.
Zhao P C,Zhang Z Z,Yao B,et al.p-type doping of Zno:N thin fims by alternating the growth atmosphere[J].Chin.J.Lumin.,2014,35(4):399-403.(in Chinese)
[6] 魏志鵬,吳春霞,呂有明,等.MgxZn1-xO合金制備及MgZnO/ZnO異質(zhì)結(jié)構(gòu)的光學(xué)性質(zhì)[J].發(fā)光學(xué)報(bào),2006,27(5):831-833.
Wei Z P,Wu C X,Lu Y M,et al.MgxZn1-xO alloy grown by p-MBE and optical properties of MgZn O/ZnO heterostructure[J].Chin.J.Lumin.,2006,27(5):831-833.(in Chinese)
[7] Li Y F,Yao B,Lu Y M,et al.Realization of p-type conduction in undoped MgxZn1-xthin films by controlling Mg content[J].Appl.Phys.Lett.,2007,91(2):232115.
[8] Wei Z P,Yao B,Zhang Z Z,et al.Formation of p-type MgZnO by Nitrogen Doping[J].Appl Phys Lett,2006,89(10):102104.
[9] Kong J Y,Li L,Yang Z,et al.Ultraviolet light emissions in MgZnO/ZnO double heterojunction diodes by molecular beam epitaxy[J].J.Vac.Sci.Technol.B,2010,28(3):C3D10-C3D12.
[10] 翟英嬌,李金華,陳新影,等.鎘摻雜氧化鋅納米花的制備及其光催化活性[J].中國(guó)光學(xué),2014,7(1):124-130.
Zhai Y J,Li J H,Chen X Y,et al.Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity[J].Chinese Optics,2014,7(1):124-130.(in Chinese)
[11] 張吉英,蔣大勇,鞠振剛,等.用于日盲波段的MgZnO薄膜材料和紫外探測(cè)器[J].中國(guó)光學(xué)與應(yīng)用光學(xué),2008,1(1):80-84.Zhang J Y,Jiang D Y,Ju Z G,et al.MgxZn1-x O thin film and UV detector for solar blind wavelength[J].Chinese Journal of Optics and Applied Optics,2008,1(1):80-84.(in Chinese)
[12] Ohtomo A,Kawasaki M,Koida T,et al.MgxZn1-xO as aⅡ-Ⅵwide gap semiconductor alloy[J].Appl.Phys. Lett.,1998,72(19):2466-2468.
[13] Decremps F,Pellicer-porres J,Saitta A M,et al.High-pressure Raman spectroscopy study of wurtzite ZnO[J]. Phys.Rev.B,2002,65(9):092101.
[14] Kaschner A,Haboeck U,Strassburg M,et al.Nitrogen-related local vibrational modes in ZnO∶N[J].Appl. Phys.Lett.,2002,80(11):1909-1911.
[15] Friedrich F,Gluba M A,Nickel N H.Identification of nitrogen and zinc related vibrational modes in ZnO[J]. Appl.Phys.Lett.,2009,95(14):141903.
[16] Gao L L,Yao B,Liu B,et al.Effects of Mg concentration on solubility and chemical state of N in N-doped MgZ-nO alloy[J].J Chem Phys.,2010,133(20):204501.
[17] Teresa M B,Kyle O,Colin A W.On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J].Appl.Phys.Lett.,2005,86:112112.
[18] Look D C,Reynolds D C,Litton C W,et al.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J].Appl.Phys.Lett.,2002,81:1830-1832.
[19] Cho S,Ma J,Kim Y,et al.Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn[J].Appl.Phys.Lett.,1999,75(18):2761-2763.
[20] Vanheusden K,Warren W L,Seager C H,et al.Mechanisms behind green photoluminescence in ZnO phosphor powders[J].J.Appl.Phys.,1996,79(10):7983.
[21] Studenikin S A,Nickolay G,Michael C.Fabrication of green and orange photoluminescent,undoped ZnO films using spray pyrolysis[J].J.Appl.Phys.,1998,84(4):2287-2294.
[22] Minami T,Nanto H,Takata S.Luminescent properties of sputtered ZnO thin films[J].Journal of Luminescence,1981,24-25:63-66.
Stability of P-type conductivity in nitrogen-doped MgZnO thin film
GAO Li-li?,LI Song-fei,CAO Tian-fu,ZHANG Xue
(College of Physics,Beihua University,Jilin 132013,China)
Using radio frequency magnetron sputtering,p-type N doped Mg0.13Zn0.87O film was deposited on quartz substrate with Mg0.06Zn0.94O target.The film has resistivity of 42.45Ω·cm,Hall mobility of 0.40 cm2·V-1·s-1and carrier concentration of 3.70×1017/cm3.The stability of p-type conductivity in this film preserved in room temperature air ambient was studied.It is found that the resistivity increased and the carrier concentration decreased with time.The film transformed from p-type to n-type semiconductor with resistivity of 85.58Ω·cm,Hall mobility of 1.61 cm2·V-1·s-1and carrier concentration of 4.53×1016/cm3after preservation for five months.The film transformed to ptype semiconductor again after thermal annealing under 10-4Pa.It can be deduced that,the p-type film reverts to n-type conductivity because hydrogen and water were adsorbed by film to create shallow donors in air ambient.
radio frequency magnetron sputtering;thin MgZnO films;p type;stability
O472
A doi:10.3788/YJYXS20153006.0925
1007-2780(2015)06-0925-05
高麗麗(1972-),女,吉林人,博士,副教授,2011年于吉林大學(xué)獲得凝聚態(tài)物理專業(yè)博士學(xué)位,主要從事半導(dǎo)體光電材料的制備、性能表征和應(yīng)用等方面的研究.E-mail:gaolili000@sina.com
2015-02-10;
2015-03-07.
吉林省教育廳“十二五”科學(xué)技術(shù)研究項(xiàng)目(No.2013181)
Supported by Scientific and Technological Research Project of Jilin Provincial Eduction Department(No. 2013181)
?通信聯(lián)系人,E-mail:gaolili000@sina.com