李茜,羅美金
?
一類雙色有向圖的本原指數(shù)
李茜1,羅美金2
(1.山西運城農(nóng)業(yè)職業(yè)技術(shù)學院 基礎(chǔ)部,山西 運城 044000;2.河池學院 數(shù)學與統(tǒng)計學院,廣西 宜州 546300)
一個雙色有向圖是本原的,如果存在非負整數(shù)和,且,使得中的每對頂點都存在從到的途徑. 定義的最小值為雙色有向圖的本原指數(shù). 研究了一類雙圈雙色有向圖,給出了該雙色有向圖的本原條件和本原指數(shù)的上界,并對極圖進行了刻畫.
雙色有向圖;本原指數(shù);極圖
1 引言與預(yù)備知識
目前關(guān)于雙色有向圖的本原指數(shù)的研究已經(jīng)取得了一些成果[1-7],本文研究一類含有兩個圈的雙色有向圖,其基礎(chǔ)有向圖如圖1所示.
圖1 基礎(chǔ)有向圖
2 本原條件
引理1[1]280至少包含一條紅弧和一條藍弧的雙色有向圖是本原的,當且僅當是強連通的,并且.
3 本原指數(shù)上界
采用四向最小二乘改善迭代速度和填充效果,但其固有的過度平滑和迭代過程中誤差的傳遞問題仍需進一步解決,將最大相位梯度質(zhì)量圖和相位導(dǎo)數(shù)偏差質(zhì)量圖相結(jié)合,為四向最小二乘法的相位數(shù)據(jù)設(shè)置權(quán)重.最大相位梯度質(zhì)量圖能測量一定區(qū)域內(nèi)包裹相位數(shù)據(jù)的梯度最大值,具有一定的殘差點敏感性, 但它有時會將沒有殘差點的坡度變化快的相位數(shù)據(jù)可靠區(qū)域標記為低質(zhì)量.相位導(dǎo)數(shù)方差質(zhì)量圖利用一定模板內(nèi)的統(tǒng)計信息克服最大相位梯度圖的缺點, 是一種相對可靠的質(zhì)量圖[16-19].利用兩種方法的優(yōu)點,彌補原有單一方法的不足,得到了一種新的可靠的質(zhì)量圖法.
證明 與定理2類似可證.
4 極圖刻畫
證明 充分性. 由定理2,只需證明.
花五奇略一抱拳:“搜神手,請了。”不待秦鐵崖回禮,刷刷刷連出數(shù)招。也不知道他使的是何種兵器,但見兵刃閃閃有光,攻勢既凌厲又飄忽。
.
5年前的開鎖儀式上,姥爺贈與我一份“大禮”——兩本匯集了他多年收藏成果的集錢冊《中國歷代錢幣》。就我所知,姥爺在退休后成了一個對古錢幣的狂熱愛好者,收藏也成了他興趣中最喜好的一個??衫褷敻嬖V我,他和銅錢的緣分從他很小的時候就開始了。
證明 與定理4類似可證.
[1] SHADER B L,SUWILO S. Exponents of nonnegative matrix pairs [J]. Linear Algebra and Its Applications, 2003, 363: 275-293.
[2]SHAO Yanling, GAO Yubin, SUN Liang. Exponents of a class of two-colored digraphs [J]. Linear and Multilinear Algrbra, 2005, 53(3): 175-188.
[3] GAO Yubin, SHAO Yanling. Exponents of two-colored digraphs with two cycles [J]. Linear Algebra and Its Applications, 2005, 407: 263-276.
[4] GAO Yubin, SHAO Yanling. Exponents of two-colored double directed cycles [J]. Journal of Natural Science of Heilongjiang University, 2004, 21(4): 55-58.
[5]羅美金,高玉斌. 一類雙色有向圖的本原指數(shù)[J]. 中北大學學報(自然科學版),2008, 29(2): 95-100.
[6] 李茜. 一類特殊雙色有向圖的本原指數(shù)[J]. 江蘇師范大學學報(自然科學版),2012, 30(4): 6-8.
[7]羅美金. 一類雙色有向圖的本原指數(shù)上界[J]. 數(shù)學的實踐與認識,2013, 43(23): 142-150.
[責任編輯:熊玉濤]
Primitive Exponents of a Class of Special Two-Colored Digraphs
LIXi1, LUOMei-jin2
(1. Department of Basic Subjects, Yuncheng Vocational College of Agriculture, Yuncheng 044000, China;2. School of Mathematics and Statistics, Hechi University, Yizhou 546300, China)
A two-colored digraphis primitive if there exist nonnegative integersandwithsuch that for each pairof vertices there exists apath fromtoinand the minimum value ofis defined as the exponent of the primitive two-colored digraph. In this paper, a class of two-colored digraphs with two cycles is studied, some primitive conditions of a two-colored digraphand the upper bound of the exponents are given, and the extremal two-colored digraphs are characterized.
two-colored digraphs; primitive exponents; extremal digraphs
1006-7302(2015)03-0012-04
O157.5
A
2015-01-09
山西省高等學??萍紕?chuàng)新項目(20151113,項目名稱:非負矩陣對的本原指數(shù));廣西高??蒲许椖浚╕B2014335,項目名稱:雙色及多色有向圖本原指數(shù)的研究)
李茜(1983—),女,山西永濟人,講師,碩士,主要從事組合數(shù)學方面的研究.