萬軒,張萬里,趙克全
(1.重慶電訊職業(yè)學(xué)院基礎(chǔ)部,重慶402247;2.重慶師范大學(xué)數(shù)學(xué)學(xué)院,重慶401331)
基于改進(jìn)集的集值Ekeland變分原理
萬軒1,張萬里2,趙克全2
(1.重慶電訊職業(yè)學(xué)院基礎(chǔ)部,重慶402247;2.重慶師范大學(xué)數(shù)學(xué)學(xué)院,重慶401331)
Ekeland變分原理在最優(yōu)化理論及應(yīng)用研究中具有十分重要的作用.利用非線性標(biāo)量化函數(shù)及相應(yīng)的非凸分離定理建立了基于改進(jìn)集的集值Ekeland變分原理.新的Ekeland變分原理包含了一些經(jīng)典的Ekeland變分原理作為其特例.
改進(jìn)集;Ekeland變分原理;集值映射;非線性標(biāo)量化函數(shù)
眾所周知,經(jīng)典的Ekeland變分原理在最優(yōu)化理論及應(yīng)用,控制理論和非線性分析等很多領(lǐng)域中都具有十分廣泛的應(yīng)用[1-2].近年來,許多學(xué)者對經(jīng)典的Ekeland變分原理進(jìn)行了深入研究,獲得了一系列具有重要理論意義與價(jià)值的研究成果[3-9].特別地,文獻(xiàn)[3]分別基于完備序空間和完備度量空間建立了廣義集值Ekeland變分原理.文獻(xiàn)[4]建立了局部凸空間中的一類變形的集值Ekeland變分原理,即Ha型集值Ekeland變分原理,并研究了這類集值Ekeland變分原理的穩(wěn)定性.文獻(xiàn)[5]基于完備度量空間利用集值度量等概念對向量值Ekeland變分原理進(jìn)行推廣,得出了一類新的帶集值度量的Ekeland變分原理.隨后,Guti′errez等人又在文獻(xiàn)[6]中基于度量空間(不必完備)利用一類近似解建立了一類集值Ekeland變分原理.此外,文獻(xiàn)[8]對文獻(xiàn)[4]中所建立的Ha型集值Ekeland變分原理進(jìn)行了推廣,并建立了相應(yīng)的等價(jià)性結(jié)果.文獻(xiàn)[9]中利用集值擬度量進(jìn)一步推廣了文獻(xiàn)[5]中獲得的主要結(jié)果,建立了集值擬度量的集值Ekeland變分原理,并由此獲得了向量優(yōu)化問題近似解的一些相關(guān)研究結(jié)果.
文獻(xiàn)[10]基于comprehensive集提出了有限維空間中改進(jìn)集的概念,并研究了改進(jìn)集的一些拓?fù)湫再|(zhì).文獻(xiàn)[11]將改進(jìn)集及E-有效解概念推廣到了一般實(shí)分離局部凸拓?fù)渚€性空間并研究了它們的一些性質(zhì).目前,改進(jìn)集已成為研究向量優(yōu)化問題近似解,特別是統(tǒng)一形式的近似解的重要工具之一[12-14].特別地,文獻(xiàn)[12]基于改進(jìn)集提出了鄰近E-次似凸性概念和集值向量優(yōu)化問題弱E-最優(yōu)解概念,并建立了鄰近E-次似凸性假設(shè)條件下的擇一性定理和近似解的線性標(biāo)量化定理等.文獻(xiàn)[13]基于改進(jìn)集提出了E-Benson真有效解的概念,并基于E-次似凸性下的擇一性定理建立了這類近似真有效解的線性標(biāo)量化定理和拉格朗日乘子定理等.
受文獻(xiàn)[8-9,12-13]中相關(guān)研究工作的啟發(fā),本文利用改進(jìn)集和非線性標(biāo)量化函數(shù)等工具建立了集值映射的Ekeland變分原理.本文所建立的新的集值Ekeland變分原理包含了一些經(jīng)典形式的Ekeland變分原理作為其特例.
假定(X,d)是度量空間,Y是局部凸空間,Rn表示n維歐幾里得空間,Rn+表示Rn中的非負(fù)象限錐,N+表示正整數(shù)全體.設(shè)A?Y,int A、?A和YA分別表示A的拓?fù)鋬?nèi)部、A的邊界和A的補(bǔ)集.A的錐包為:
錐K?Y稱為點(diǎn)的,若K∩(-K)={0}.設(shè)K為Y中具有非空拓?fù)鋬?nèi)部的閉凸點(diǎn)錐,Y中由K誘導(dǎo)的偏序定義為對任意的x,y∈Y,x≤Ky?y-x∈K.
設(shè)F:X?Y為集值映射.稱F為K-閉的,若對任意的x∈X,F(xiàn)(x)+K是閉的.稱F(X)是K-有界的,若存在有界集M?Y使得F(X)?M+K.
定義2.1[8]稱(X,d)為(F,K)-下完備的,若Cauchy點(diǎn)列{xn}?X收斂且滿足對任意的正整數(shù)n,F(xiàn)(xn)?F(xn+1)+K.
定義2.2[8]稱F為K-序列下單調(diào)的,若對任意的正整數(shù)n,F(xiàn)(xn)?F(xn+1)+K且蘊(yùn)含
其中k∈Y,?≠K?Y,inf?=+∞.
引理2.1[8]設(shè)k∈int K,則Ψk,K是次線性下半連續(xù)函數(shù)且具有如下性質(zhì):
(i)Ψk,K(y)<r?y∈rk-int K;
(ii)Ψk,K(y)≤r?y∈rk-K;
(iii)Ψk,K(y)=r?y∈rk-?K;特別地,Ψk,K(k)=1,Ψk,K(λk)=λ,?λ∈R1;
(iv)Ψk,K(y)≥r?y?rk-int K;
(v)Ψk,K(y)>r?y?rk-K;
(vi)Ψk,K(y+λk)=Ψk,K(y)+λ,?y∈Y,?λ∈R1;
(vii)y1≤Ky2?Ψk,K(y1)≤Ψk,K(y2).
定義2.3[1012]稱非空集E?Y為關(guān)于K的改進(jìn)集,若0?E且E+K=E.Y中關(guān)于K的全體改進(jìn)集簇記為
注2.1由文獻(xiàn)[12]中的引理2.1可知,int K≠?蘊(yùn)含int E≠?.
本節(jié)主要利用非線性標(biāo)量化函數(shù)及其相應(yīng)的非凸分離定理建立基于改建集的集值Ekeland變分原理,并討論它的一些特殊情形.
則?滿足自反性和傳遞性.
注3.1令k0∈int K,ε>0且E=εk0+K.則定理3.1可退化為文獻(xiàn)[8]中定理3.1的λ=1的情況.
注3.2令k∈int K,ε>0,δ>0且E=(ε+δ)k+K.則定理3.1退化為文獻(xiàn)[6]中定理5.2的λ=1的情況.
若F為單值的,則下面的推論3.1是定理3.1的直接結(jié)果.
[1]Ekeland I.On the variational principle[J].Journal of Mathematical Analysis and Applications,1974,47(2):324-353.
[2]Ekeland I.Nonconvex minimization problems[J].Bulletin(New Series)of the American Mathematical Society,1979,1(3):443-474.
[3]Chen Guangya,Huang Xuexiang,Hou S H.General Ekeland′s variational principle for set-valued mappings[J].Journal of Optimization Theory and Applications,2000,106(1):151-164.
[4]Ha T X D.Some variants of the Ekeland variational principle for a set-valued map[J].Journal of Optimization Theory and Applications,2005,124(1):187-206.
[5]Guti′errez C,Jim′enez B,Novo V.A set-valued Ekeland′s variational principle in vector optimization[J].SIAM Journal on Control and Optimization,2008,47(2):883-903.
[6]Guti′errez C,Jim′enez B,Novo V,et al.Strict approximate solutions in set-valued optimization with applications to the approximate Ekeland variational principle[J].Nonlinear Analysis,2010,73(12):3842-3855.
[7]Khanh P Q,Quy D N.On generalized Ekeland′s variational principle and equivalent formulations for set-valued mappings[J].Journal of Global Optimization,2011,49(3):381-396.
[8]Qiu Jinghui.On Ha′s version of set-valued Ekeland′s variational principle[J].Acta Mathematica Sinica,English Series,2012,28(4):717-726.
[9]Qiu Jinghui.Set-valued quasi-metrics and a general Ekeland′s variational principle in vector optimization[J].SIAM Journal on Control and Optimization,2013,51(2):1350-1371.
[10]Chicco M,Mignanego F,Pusillo L,et al.Vector optimization problem via improvement sets[J].Journal of Optimization Theory and Applications,2011,150(3):516-529.
[11]Guti′errez C,Jim′enez B,Novo V.Improvement sets and vector optimization[J].European Journal of Operational Research,2012,223(2):304-311.
[12]Zhao Kequan,Yang Xinmin,Peng Jianwen.Weak E-optimal solution in vector optimization[J].Taiwanese Journal of Mathematics,2013,17(4):1287-1302.
[13]Zhao Kequan,Yang Xinmin.E-Benson proper efficiency in vector optimization[J].Optimization,2015,64(4):739-752.
[14]Zhao Kequan,Yang Xinmin.A unified stability result with perturbations in vector optimization[J].Optimization Letters,2013,7(8):1913-1919.
Ekeland′s variational principle via improvement sets for set-valued maps
Wan Xuan1,Zhang Wanli2,Zhao Kequan2
(1.Department of Foundation,Chongqing Telecommunication Polytechnic College,Chongqing402247,China;2.College of Mathematics Science,Chongqing Normal University,Chongqing401331,China)
Ekeland′s variational principles have been playing a very important role in optimization theory and it′s applications.In this paper,based on improvement sets,we establish an Ekeland′s variational principle for set-valued maps by using a kind of nonlinear scalarization function and its corresponding nonconvex separation theorem.New Ekeland′s variational principle includes some classical Ekeland′s variational principles as its special cases.
improvement sets,Ekeland′s variational principle,set-valued maps,nonlinear scalarizaion function
O176;O177.9
A
1008-5513(2015)06-0567-08
10.3969/j.issn.1008-5513.2015.06.003
2015-05-15.
國家自然科學(xué)基金(11301574,11271391);重慶市基礎(chǔ)與前沿研究計(jì)劃項(xiàng)目(cstc2015jcyjA00027);重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJ1500303);第二批重慶市高等學(xué)校青年骨干教師資助計(jì)劃.
萬軒(1987-),碩士,講師,研究方向:向量優(yōu)化理論與方法.
2010 MSC:65K10