梁保紅
(中國石化勝利油田分公司勘探開發(fā)研究院,山東東營257015)
特高含水期水驅(qū)特征曲線拐點時機判別新方法
梁保紅
(中國石化勝利油田分公司勘探開發(fā)研究院,山東東營257015)
水驅(qū)特征曲線在中、高含水開發(fā)階段得到廣泛應(yīng)用。然而,油田進入特高含水開發(fā)期后,水驅(qū)特征曲線會發(fā)生上翹,出現(xiàn)拐點。針對這一現(xiàn)象,通過室內(nèi)124組高注入倍數(shù)(1 000倍孔隙體積)水驅(qū)油實驗,明確了水驅(qū)特征曲線出現(xiàn)拐點的根本原因是水相滲透率急劇增加,并指出水驅(qū)特征曲線出現(xiàn)拐點是客觀存在的。同時,由于水驅(qū)特征曲線的累積效應(yīng),使得拐點在發(fā)生之后才能被發(fā)現(xiàn),存在嚴重的滯后性,造成對拐點時機的誤判。為了消除水驅(qū)特征曲線的累積效應(yīng)對拐點出現(xiàn)滯后性的影響,從甲型水驅(qū)特征曲線入手,推導出了含油率與累積產(chǎn)油量在半對數(shù)坐標上的關(guān)系式,應(yīng)用該關(guān)系式,消除了累積效應(yīng)的影響,可準確判斷水驅(qū)特征曲線拐點時機,及時制定開發(fā)技術(shù)對策,為礦場改善開發(fā)效果奠定基礎(chǔ),更好地指導油田開發(fā)生產(chǎn)實踐。
特高含水期水驅(qū)特征曲線拐點時機含油率新方法
水驅(qū)特征曲線是注水開發(fā)預測油藏動態(tài)的主要方法之一,理論研究和礦場實踐均表明,水驅(qū)開發(fā)油藏在中、高含水階段水驅(qū)特征曲線呈線性關(guān)系,但在特高含水開發(fā)后期,水驅(qū)特征曲線不再是一條直線,而是含水率達到某一值時,實際數(shù)據(jù)點會偏離直線段而高于直線外推點,表現(xiàn)為上翹現(xiàn)象。20世紀90年代已發(fā)現(xiàn)水驅(qū)特征曲線在高含水期存在上翹現(xiàn)象[1-11],諸多學者認為是油水相對滲透率曲線引起的[2],并沒有揭示相對滲透率曲線為什么會出現(xiàn)拐點,對出現(xiàn)拐點時機的判斷方法研究也較少。筆者通過室內(nèi)實驗,深入分析了出現(xiàn)拐點的內(nèi)在原因,并建立了判別拐點時機的新方法。該方法能夠準確判斷拐點發(fā)生時機,及時掌握油藏開發(fā)狀況,制定合理的開發(fā)策略,改善油田開發(fā)效果,對指導油田開發(fā)和礦場生產(chǎn)具有重要的意義。
對124組高注入倍數(shù)(1 000倍孔隙體積)水驅(qū)油室內(nèi)實驗數(shù)據(jù)進行分析發(fā)現(xiàn),水驅(qū)特征曲線均發(fā)生上翹現(xiàn)象,出現(xiàn)拐點。以81-5號巖心為例,其巖心長度為8.9 cm,直徑為2.52 cm,孔隙體積為12 mL,孔隙度為27.0%,滲透率為729×10-3μm2,飽和油體積為8.4 mL,原始含油飽和度為69.97%,束縛水飽和度為30.03%。實驗用飽和油密度為0.853 9 g/mL,飽和油粘度為15.02 mPa·s,質(zhì)量分數(shù)為3%的氯化鉀溶液密度為1.021 38 g/mL,溶液粘度為1.105 mPa·s,實驗溫度為20℃。
由81-5號巖心高倍數(shù)水驅(qū)油實驗數(shù)據(jù)(表1)可以看出,隨著注水量的增加,每注入1 mL的水,產(chǎn)油量呈下降趨勢;當注入0.5 mL的水(注入孔隙體積倍數(shù)為0.042)時,產(chǎn)油量為0.5 mL;當累積注入7 560 mL的水(注入孔隙體積倍數(shù)為630)時,每注入1 mL的水,產(chǎn)油量為0.02×10-3mL。81-5號巖心水驅(qū)油實驗結(jié)束時,累積注入量為12 600 mL(注入孔隙體積倍數(shù)為1 050),產(chǎn)油量為6.4 mL,采出程度為76.2%,含水率為100%。
表1 81-5號巖心高注入倍數(shù)水驅(qū)油實驗數(shù)據(jù)Table1 Experimental data of high multiple injection water flooding oil in No.81-5 core sample
從81-5號巖心相對滲透率比值及含水飽和度差值下水相滲透率變化曲線(圖1)可知,當含水飽和度為0.75時,相對滲透率比值關(guān)系曲線出現(xiàn)下彎現(xiàn)象,此時,單位含水飽和度下水相相對滲透率曲線發(fā)生突變,急劇上升,其原因是隨含水飽和度增加,油相由大片的連續(xù)相變?yōu)椴糠诌B續(xù)相,再進一步變?yōu)榉沁B續(xù)相,致使水相相對滲透率急劇增加,從而造成ln(Kro/Krw)與含水飽和度的關(guān)系曲線出現(xiàn)下彎。水驅(qū)特征曲線是基于相對滲透率關(guān)系式得到的,其形態(tài)同時發(fā)生改變,出現(xiàn)上翹現(xiàn)象(圖2),其原因是水相相對滲透率急劇增加所造成。由于水驅(qū)油過程中,水相相對滲透率急劇增加是客觀存在的,因此水驅(qū)特征曲線出現(xiàn)拐點也是客觀存在的。
圖1 81-5號巖心相對滲透率比值及含水飽和度差值下的水相滲透率變化Fig.1 Variations of relative permeability ratio of No.81-5 core sample and water phase permeability(normalized by water saturation)with water saturation
同時,由表1可知,特高含水開發(fā)后期,尤其是在拐點前后,注入水的產(chǎn)油量成數(shù)倍下降,耗水量急劇增加,水驅(qū)油效率大幅下降。而水驅(qū)特征曲線發(fā)生上翹是由于特高含水開發(fā)后期產(chǎn)水量急劇上升而導致,特高含水后期拐點出現(xiàn)之后,注入水進入低效循環(huán),產(chǎn)出水大幅增加,注水利用率降低,導致開發(fā)效果明顯變差,從而造成經(jīng)濟效益降低。
圖2 81-5號巖心水驅(qū)特征曲線Fig.2 Water drive characteristic curve of No.81-5 core sample
為了確定拐點出現(xiàn)時機,選取直線段進行擬合。從表1和圖2可以看出,第1段直線段擬合選取實驗數(shù)據(jù)序號為6~21,相關(guān)系數(shù)為0.994 4;選取第2段實驗數(shù)據(jù)序號為14~26進行擬合,相關(guān)系數(shù)為0.975 2,2段直線擬合系數(shù)都較高,拐點出現(xiàn)時機不明確,應(yīng)該出現(xiàn)在2段直線擬合的重合部分,即實驗數(shù)據(jù)序號14~21(拐點時機在含水率為99.64%~99.97%)。這是由于水驅(qū)特征曲線的累積效應(yīng),使拐點發(fā)生后才能被發(fā)現(xiàn),存在嚴重的滯后性,并且僅根據(jù)水驅(qū)特征曲線判斷所得拐點時機的時間段,而無法精確到某一點,造成對拐點時機的誤判。
水驅(qū)特征曲線公式為
式中:WP為累積產(chǎn)水量,104t;Np為累積產(chǎn)油量,104t;A和B均為常數(shù)。
為了消除累積效應(yīng),反映水驅(qū)特征曲線的瞬時變化情況,對式(1)兩邊求導并整理后可得
含油率表達式為
式中:fo為含油率,%。
進一步對式(3)整理可得
將式(2)代入式(4),可得
由式(1)可得
將式(6)代入式(5)并整理后可得
對式(7)兩邊取對數(shù)并整理后可得
若令A1=A+lg(2.303B),則可得
式中:A1為常數(shù)。
對式(10)進一步整理可得
若令A2=-A1,B2=-B,則
式中:A2和B2均為常數(shù)。
由式(12)可以看出,含油率與累積產(chǎn)油量在半對數(shù)坐標上滿足線性關(guān)系。含油率是瞬時值,能夠反映水驅(qū)特征曲線變化率情況,及時發(fā)現(xiàn)拐點時機。因此,采用含油率協(xié)同判斷水驅(qū)特征曲線拐點出現(xiàn)時機,消除累積效應(yīng),避免滯后現(xiàn)象對拐點時機的誤判。另外,含油率為礦場應(yīng)用中比較常見的指標,數(shù)據(jù)便于處理,具有普遍的適用性。
以勝坨油田勝二區(qū)Es83-5為例,截至2013年底,該單元動用儲量為2 296×104t,技術(shù)可采儲量為875×104t,采收率為38.1%,綜合含水率為97.94%,
o采出程度為37.4%,已進入特高含水開發(fā)后期。應(yīng)用水驅(qū)特征曲線拐點時機判別新方法,繪制該單元的水驅(qū)特征曲線和含油率曲線(圖3),發(fā)現(xiàn)水驅(qū)特征曲線2段直線擬合系數(shù)均較高,上翹趨勢不明顯,存在嚴重的滯后現(xiàn)象,很難判斷拐點出現(xiàn)時機。而含油率曲線則在累積產(chǎn)油量為859×104t時發(fā)生顯著突變,出現(xiàn)明顯的壓頭態(tài)勢,可以判斷該單元在此時就產(chǎn)生了拐點,綜合含水率為96.1%,及時準確地掌握了該單元開發(fā)動態(tài)。
圖3 勝二區(qū)Es83-5水驅(qū)特征曲線及含油率曲線Fig.3 Water drive characteristic curve and oil content curve of Es83-5,Shengtuo2 area
通過室內(nèi)實驗揭示了水驅(qū)特征曲線出現(xiàn)拐點是由于水相相對滲透率的急劇增加引起的,并明確拐點是客觀存在的;同時,提出一種克服水驅(qū)特征曲線累積效應(yīng)導致拐點時機誤判的新方法,即采用含油率協(xié)同判斷,能夠準確地判斷水驅(qū)特征曲線拐點的出現(xiàn)時機。新方法簡單易操作,具有普遍適用性,并能及時掌握油田開發(fā)動態(tài),調(diào)整油田開發(fā)措施來延緩拐點的出現(xiàn),同時指導礦場采取措施遏制已進入拐點后耗水急劇增加的低效循環(huán)井層,促使流場轉(zhuǎn)向,改善注水效果,提高油藏整體采收率,更好地指導油田開發(fā)生產(chǎn)實踐。
[1] 陳元千.水驅(qū)曲線關(guān)系式的推導[J].石油學報,1985,6(2):69-78. Chen Yuanqian.Derivation of relationships of water drive curves [J].Acta Petrolei Sinica,1985,6(2):69-78.
[2] 楊勇.高含水期水驅(qū)特征曲線上翹現(xiàn)象校正方法研究[J].石油天然氣學報,2008,30(1):120-123,127. Yang Yong.Method for correcting upwarping water-flooding characteristic curve at high water-cut stage[J].Journal of Oil and Gas Technology,2008,30(1):120-123,127.
[3] 張超,鄭川江,肖武,等.特高含水期提液效果影響因素及提高采收率機理——以勝坨二區(qū)沙二段74—81單元為例[J].油氣地質(zhì)與采收率,2013,20(5):88-91. Zhang Chao,Zheng Chuanjiang,Xiao Wu,et al.Research on the influencing factors and functional mechanism of enhanced liquid result in ultra-high water cut stage-case of 74-81unit of Es2in the block No.2 of Shengtuo oilfield[J].Petroleum Geology and Recovery Efficiency,2013,20(5):88-91.
[4] 周鵬,陳小凡,樂平,等.引入系數(shù)的新型水驅(qū)特征曲線的建立[J].油氣地質(zhì)與采收率,2012,19(4):99-102. Zhou Peng,Chen Xiaofan,Yue Ping,et al.Establishment of a new type of water drive characteristic curve[J].Petroleum Geology and Recovery Efficiency,2012,19(4):99-102.
[5] 林志芳,俞啟泰,李文興.水驅(qū)特征曲線計算可采儲量方法[J].石油勘探與開發(fā),1990,17(6):64-71. Lin Zhifang,Yu Qitai,Li Wenxing.A method for estimating recoverable reserves of an oil field by using the displacement characteristic curves[J].Petroleum Exploration and Development,1990,17 (6):64-71.
[6] 王華.改進型水驅(qū)特征曲線計算技術(shù)可采儲量的公式推導及其應(yīng)用[J].油氣地質(zhì)與采收率,2012,19(4):84-86. Wang Hua.Application of improved water drive curve in recoverable reserves[J].Petroleum Geology and Recovery Efficiency,2012,19(4):84-86.
[7] 邴紹獻.油田單井可采儲量定量預測模型[J].油氣地質(zhì)與采收率,2013,20(1):85-88. Bing Shaoxian.Quantitative forecasting model for recoverable reserves of single well[J].Petroleum Geology and Recovery Efficiency,2013,20(1):85-88.
[8] 王文環(huán).水驅(qū)特征曲線在特高含水油藏提高采收率研究中的應(yīng)用[J].斷塊油氣田,2003,10(1):33-36. Wang Wenhuan.The application of the displacement curve in the study of high water cut reservoir for EOR[J].Fault-Block Oil& Gas Field,2003,10(1):33-36.
[9] 馮其紅,王相,王波,等.非均質(zhì)水驅(qū)油藏開發(fā)指標預測方法[J].油氣地質(zhì)與采收率,2014,21(1):36-39. Feng Qihong,Wang Xiang,Wang Bo,et al.A new method for prediction of heterogeneous reservoir development index by waterflooding[J].Petroleum Geology and Recovery Efficiency,2014,21 (1):36-39.
[10]張金慶.一種簡單實用的水驅(qū)特征曲線[J].石油勘探與開發(fā),1998,25(3):56-57. Zhang Jinqing.A new practical water displacement curve[J].Petroleum Exploration and Development,1998,25(3):56-57.
[11]宋兆杰,李治平,賴楓鵬,等.高含水期油田水驅(qū)特征曲線關(guān)系式的理論推導[J].石油勘探與開發(fā),2013,40(2):201-208. Song Zhaojie,Li Zhiping,Lai Fengpeng,et al.Derivation of water flooding characteristic curve for high water-cut oilfields[J].Petroleum Exploration and Development,2013,40(2):201-208.
編輯王星
A new method for determining the inflection point of water drive characteristic curve in extra high water cut period
Liang Baohong
(Research Institute of Exploration and Development,Shengli Oilfield Company,SINOPEC,Dongying City,Shandong Province,257015,China)
Water drive characteristic curve is widely used in the middle-high water cut development stage.However,when oilfield entered extra high water cut period,the water drive characteristic curve will slope upward and an inflection point will occur.Focusing on this phenomenon and according to124 water flooding experiments with high multiple injection (1 000 pore volume),it was found that the fundamental reason for the upward water drive characteristic curve is due to the sharp increase in water permeability,and it was pointed out that the inflection point is an objective existence for the water drive characteristic curve.At the same time,affected by the cumulative effect of water drive characteristic curve,the inflection point can only be found after its appearance,resulting in a delayed estimation on its occurring time.In order to eliminate the influence of the cumulative effect of water flooding characteristic curve on the inflection point estimation,a lgfo-Npformula was derived starting from the first water drive characteristic curve.The cumulative impact of water drive characteristic curve can be overcome by application of this formula to estimate the accurate occurring time of the inflection point. The new method can help to make technical development strategies in time,which lay the foundation for the field to improve the development effect of oilfield production and to guide the practice better.
extra high water cut period;water drive characteristic curve;occurring time of inflection point;oil saturation;new method
TE341
A
1009-9603(2015)05-0103-04
2015-07-21。
梁保紅(1981—),女,山東德州人,工程師,碩士,從事油田開發(fā)綜合戰(zhàn)略研究。聯(lián)系電話:(0546)8715298,E-mail:83771271@ qq.com。
國家科技重大專項“勝利油田特高含水期提高采收率技術(shù)”(2011ZX05011)。