桂旺生,劉利斌
(池州學(xué)院數(shù)學(xué)與計算機科學(xué)系,安徽 池州 247000)
分?jǐn)?shù)階微分方程m點邊值共振問題解的存在性
桂旺生,劉利斌
(池州學(xué)院數(shù)學(xué)與計算機科學(xué)系,安徽 池州247000)
利用Mawhin延拓定理考察了一類分?jǐn)?shù)階微分方程m點邊值共振問題解的存在性.得到了解的存在性的一個充分性條件,并且舉出實例用以說明主要結(jié)果.
分?jǐn)?shù)階微分方程;Mawhin延拓定理;共振
本文主要研究如下一類分?jǐn)?shù)階微分方程m點邊值共振問題解的存在性:
分?jǐn)?shù)階微分方程是微分方程理論的一個新的重要分支,它在擴散和輸送理論、混沌與湍流、高分子材料解鏈、粘彈性力學(xué)及非牛頓力學(xué)等領(lǐng)域都有廣泛的應(yīng)用.對于分?jǐn)?shù)階微分方程二點與多點邊值問題,許多學(xué)者對其作了一系列的研究,得到了解和正解存在性的一些結(jié)果[1-6].例如,文獻(xiàn)[1]中利用重合度理論研究了如下分?jǐn)?shù)階微分方程二點邊值問題解的存在性:
文獻(xiàn)[5]中構(gòu)造了一個特殊的錐,利用非緊性測度理論和錐拉伸與錐壓縮不動點定理證明了如下m點邊值問題的正解的存在性,得到了有關(guān)正解存在性的三個定理.
本文受以上文獻(xiàn)的啟發(fā),主要應(yīng)用重合度理論研究分?jǐn)?shù)階微分方程m點邊值問題(1)的解的存在性.首先給出了與分?jǐn)?shù)階微分方程有關(guān)的幾個定義與引理,其次得到了本文的主要結(jié)果,即解的存在性定理,最后舉出實例作為應(yīng)用.
首先給出下面幾個相關(guān)定義和引理:
定義 2.1[7-8](Riemann-Liouville)設(shè)函數(shù)u(t)可積,α階積分定義為:
定義 2.2[7-8](Riemann-Caputo)設(shè)函數(shù)u(t)可積,α階導(dǎo)數(shù)定義為:
引理 2.1[8]設(shè)n?1<α<n,則分?jǐn)?shù)階微分方程有解:
其中ci∈R,i=1,2,···,n?1.
引理 2.2[8]設(shè)n?1<α<n,則
其中ci∈R,i=1,2,···,n?1.
設(shè)X和Y為實Bananch空間,L:X?dom L→Y是線性算子,如果L滿足:
(i)Im L是閉子空間;
(ii)dim Ker L=co dim Im L<+∞;
則稱L是零指標(biāo)的Fredholm算子.
記X=Ker L⊕X1,Y=Y0⊕Im L.設(shè)
為連續(xù)投影算子.記Lp:dom L∩X1→Im L是L在dom L∩X1上的限制.
設(shè)?為X的有界開子集,且dom L∩??=?,L:dom L?X→Y是零指標(biāo)的Fredholm算子,N:?→Y為連續(xù)算子,如果QN:和KPQ:都是緊算子,則稱N在上是L-緊的.
引理 2.3[9](Mawhin延拓定理)設(shè) L:dom L?X → Y是零指標(biāo)的 Fredholm算子,N:X→Y在上是L-緊的.若滿足:
本文中,設(shè)X=C1[0,1].其上的范數(shù)定義為:
引理3.1設(shè)L由(4)式所定義,則
引理3.2設(shè)L由(4)式所定義,則L是零指標(biāo)的Fredholm算子;線性連續(xù)的投影算子P:X→X和Q:Y→Y定義如下:
定理3.1設(shè)f:[0,1]×R2→R為連續(xù)函數(shù).假設(shè)
例4.1考慮下面邊值問題解的存在性:
[1]Hu Zhigang,Liu Wenbin,Rui Wenjun.Periodic boundary value problem for fractional differential equation[J].International Journal of Mathematics,2012,23(10):11.
[2]Chen Fu lai.Coincidence degree and fractional boundary value problems with impulses[J].Computers and Mathematics with Applications,2012,64:3444-3455.
[3]Li Xiaoyan,Liu Song,Wei Jiang.Positive solutions for boundary value problem of nonlinear fractional functional differential equations[J].Applied Mathematics and Computation,2011(217):9278-9285.
[4]Zhou Wenxue,Chu Yandong.Existence of solutions for fractional differential equations with multi-point boundary conditions[J].Commun.Nonlinear Sci.Numer.Simulat.,2012(17):1142-1148.
[5]王永慶,劉立山.Banach空間中分?jǐn)?shù)階微分方程m點邊值問題的正解[J].數(shù)學(xué)物理學(xué)報:A輯,2012,32(1):246-256.
[6]Liu Xiping,Jia Mei.Multiple positive solutions of nonlocal boundary value problems for p-Laplacian equations with fractional derivative[J].Journal of Mathematical Research with Applications,2012,32(3):327-336.
[7]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M]. Amsterdam:Elsevier Science,2006.
[8]Bai Zhanbing,Lü Haishen.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].Math.Anal.Appl.,2005,311:495-505.
[9]Mawhin J.Topological degree and boundary value problems for nonlinear differential equations in topological methods for ordinary differential equations[J].Lecture Notes in Mathematics,1993(1537):74-142.
Existence of solution to m-point boundary value problem for fractional differential equations at resonance
Gui Wangsheng,Liu Libin
(Department of Mathematics and Computer Science,Chizhou College,Chizhou247000,China)
In this paper,we consider the existence of solution for m-point boundary value problem of a class of fractional differential equations at resonance by applying the coutinuation theorem of coincidence degree developed by Mawhin,and we obtain a sufficient condition for the existence of solution.Examples are given to illustrate the main results of this paper.
fractional differential equation,Mawhin′s continuation theorem,resonance
O175.8
A
1008-5513(2015)01-0001-11
10.3969/j.issn.1008-5513.2015.01.001
2014-08-04.
國家自然科學(xué)基金(11301044);池州學(xué)院自然科研項目(2013ZRZ004).
桂旺生(1966-),碩士,副教授,研究方向:非線性分析.
2000 MSC:34B15,26A23