亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        miRNA在植物種子發(fā)育過(guò)程中的作用

        2015-10-13 08:25:18龔淑敏丁艷菲朱誠(chéng)
        遺傳 2015年6期
        關(guān)鍵詞:生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)調(diào)控

        龔淑敏,丁艷菲,朱誠(chéng)

        中國(guó)計(jì)量學(xué)院生命科學(xué)學(xué)院,浙江省海洋食品品質(zhì)及危害物控制技術(shù)重點(diǎn)實(shí)驗(yàn)室,杭州 310018

        miRNA在植物種子發(fā)育過(guò)程中的作用

        龔淑敏,丁艷菲,朱誠(chéng)

        中國(guó)計(jì)量學(xué)院生命科學(xué)學(xué)院,浙江省海洋食品品質(zhì)及危害物控制技術(shù)重點(diǎn)實(shí)驗(yàn)室,杭州 310018

        MicroRNA(miRNA)是一類小分子非編碼RNA,通過(guò)降解靶基因途徑在轉(zhuǎn)錄后水平調(diào)控基因表達(dá),參與植物生長(zhǎng)、發(fā)育以及逆境脅迫應(yīng)答等多種細(xì)胞代謝活動(dòng)。種子是植物生長(zhǎng)的基礎(chǔ)要素,是農(nóng)業(yè)生產(chǎn)的重要資料。與種子發(fā)育相關(guān)的miRNA已在多種植物中得到鑒定。文章綜述了參與植物種子發(fā)育過(guò)程的miRNA及其在種子發(fā)育中的具體調(diào)控機(jī)制,旨在為利用miRNA提高種子遺傳特性提供研究思路。

        種子;miRNA;發(fā)育;調(diào)控機(jī)制;植物

        MicroRNA(miRNA)是一類內(nèi)源性的、長(zhǎng)度為20~25nt、單鏈的非編碼調(diào)控小分子RNA,在真核生物的基因轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)控中發(fā)揮重要作用[1,2]。在秀麗隱桿線蟲(chóng)(Caenorhabditis elegans)中首次發(fā)現(xiàn)miRNA后[3],幾乎所有真核生物中都被證明存在miRNA。2002年,植物miRNA在擬南芥(Arabidopsis thaliana)中被發(fā)現(xiàn)[4,5],此后植物miRNA的研究開(kāi)始得到研究人員的普遍重視。研究表明,miRNA在植物中廣泛存在,并且參與植物生長(zhǎng)發(fā)育、細(xì)胞分化、生物及非生物脅迫應(yīng)答等過(guò)程[6~8]。

        種子是植物生長(zhǎng)的基礎(chǔ)要素,是農(nóng)業(yè)生產(chǎn)中重要的生產(chǎn)資料,對(duì)種子中miRNA的研究將對(duì)調(diào)控種子發(fā)育成熟及脅迫響應(yīng)具有重要意義。本文總結(jié)了近年來(lái)國(guó)內(nèi)外研究發(fā)現(xiàn)的植物種子中的miRNA,探討了miRNA如何通過(guò)調(diào)節(jié)激素信號(hào)轉(zhuǎn)導(dǎo)、抗氧化作用、糖轉(zhuǎn)化、細(xì)胞生長(zhǎng)等途徑,參與種子發(fā)育的調(diào)控。

        1 miRNA在植物中的成熟及作用機(jī)制

        植物中miRNA在RNA聚合酶Ⅱ作用下,轉(zhuǎn)錄成幾百個(gè)核苷酸的原初miRNA轉(zhuǎn)錄子(primary miRNA,pri-miRNA)[9]。接著,在RNA聚合酶Ⅲ的介導(dǎo)下,DCL1-HYL1復(fù)合體在pri-miRNA的頸端近基部剪切形成3¢末端有二核苷酸突出、5¢末端有磷酸基、長(zhǎng)度約為70~300nt具有莖環(huán)結(jié)構(gòu)的miRNA前體(miRNA precursor,pre-miRNA)。在DCLl酶的介導(dǎo)下[4,10,11],pre-miRNA被剪切成miRNA/miRNA*雙體[12],miRNA/miRNA*雙鏈的 3¢端被 HUA ENHANCER1(HEN1)甲基轉(zhuǎn)移酶甲基化[13]。大多數(shù)甲基化的miRNA/miRNA*在Exportin25的同源物HASTY(HST)轉(zhuǎn)運(yùn)蛋白的幫助下從細(xì)胞核轉(zhuǎn)移到細(xì)胞質(zhì)中[14,15]。成熟的miRNA結(jié)合Argonaute(AGO)形成 RNA誘導(dǎo)的沉默復(fù)合體(RNA-induced silencing complex,RISC)[16~18],從而實(shí)現(xiàn)對(duì)靶基因的調(diào)控,miRNA*則被降解。

        miRNA的主要功能是進(jìn)行轉(zhuǎn)錄后調(diào)控。植物中miRNA的作用機(jī)制包括mRNA剪切[5]和蛋白翻譯抑制[19],通過(guò)這兩種沉默機(jī)制調(diào)控目的基因的表達(dá)。如果miRNA與mRNA完全互補(bǔ),miRNA就引導(dǎo)mRNA特異性切割;如果兩者沒(méi)有足夠的互補(bǔ)性,則引起翻譯抑制[9,20]。大多數(shù)植物miRNA與靶序列的開(kāi)放閱讀框(ORF)完全匹配,因而,植物中miRNA主要以降解靶 mRNA途徑下調(diào)靶基因的表達(dá)[7,20]。

        2 參與種子發(fā)育的miRNA

        miRNA參與植物生長(zhǎng)發(fā)育過(guò)程,并對(duì)逆境脅迫應(yīng)答具有調(diào)控作用[20~22]。植物中miRNA的發(fā)現(xiàn),為種子生物學(xué)提供了新的研究方向。與種子發(fā)育相關(guān)的miRNA已經(jīng)在擬南芥、水稻(Oryza sativa L.)、玉米(Zea mays L.)、油菜(Brassica napus)中得到鑒定。K?rbes等[23]利用高通量測(cè)序技術(shù)鑒定了甘藍(lán)型油菜發(fā)育種子中的miRNA,共得到35個(gè)miRNA家族。Zhao等[24]檢測(cè)高含油量和低含油量甘藍(lán)型油菜種子中miRNA表達(dá)模式的差異,共鑒定到50個(gè)保守的miRNA、37個(gè)未報(bào)道的保守miRNA及9個(gè)新的miRNA,其中miR156、miR167、miR390、miR2111、miR6028和miR6029在兩種種子中差異表達(dá);猜測(cè)miR156、miR167和miR6029通過(guò)調(diào)控靶基因SPL、ARF和 VIP1轉(zhuǎn)錄因子及 miR390通過(guò)靶基因ta-siRNA介導(dǎo)的生長(zhǎng)素信號(hào)通路調(diào)控早期胚胎發(fā)育,從而影響了甘藍(lán)型油菜種子的含油量。Xue等[25]利用大規(guī)模平行測(cè)序技術(shù)(Massively parallel signature sequencing,MPSS)和生物信息學(xué)技術(shù)鑒定水稻種子中的miRNA及靶基因,發(fā)現(xiàn)miR167、miR397、miR398、miR408、miR528、miR1866-3p和miRc11在水稻的種子中優(yōu)先表達(dá),暗示這些miRNA在水稻種子發(fā)育中的重要功能。Kang等[26]通過(guò)深度測(cè)序和miRNA微陣列芯片結(jié)合的方法研究miRNA在玉米發(fā)育種子中的作用機(jī)制,發(fā)現(xiàn)125個(gè)保守miRNA和54個(gè)新的miRNA;其中miR166、miR167和miR319表達(dá)量很高。Han等[27]鑒定了小麥(Triticum aestivum L.)幼苗、旗葉、發(fā)育種子中的miRNA,發(fā)現(xiàn)4個(gè)已知miRNA、22個(gè)未知miRNA在種子中高表達(dá),miR164和miR160在種子發(fā)育過(guò)程中表達(dá)量增加,而miR169的表達(dá)量降低,種子特異miRNA的預(yù)測(cè)靶基因包括轉(zhuǎn)錄因子、酶、核/染色質(zhì)裝配因子、核糖體再生因子、細(xì)胞成分等。

        植物中miRNA的靶基因多為轉(zhuǎn)錄因子,miRNA通過(guò)調(diào)控這些關(guān)鍵因子在植物生長(zhǎng)過(guò)程中發(fā)揮重要作用[28~30]。種子的發(fā)育主要包括胚和胚乳的發(fā)育,及其種子貯藏物質(zhì)的積累[31]。miRNA通過(guò)信號(hào)轉(zhuǎn)導(dǎo)(ABA、生長(zhǎng)素、油菜素甾醇等)、淀粉合成、抗氧化作用、糖轉(zhuǎn)化、細(xì)胞生長(zhǎng)等作用途徑調(diào)控種子的發(fā)育過(guò)程。表1和圖1分別列舉了近年來(lái)發(fā)現(xiàn)的種子發(fā)育相關(guān)的miRNA種類及它們參與種子發(fā)育的具體作用途徑。

        3 miRNA參與種子發(fā)育的具體途徑

        3.1 脫落酸信號(hào)轉(zhuǎn)導(dǎo)

        脫落酸(ABA)是植物種子休眠、成熟的重要調(diào)節(jié)因子,許多ABA信號(hào)轉(zhuǎn)導(dǎo)蛋白都參與了種子發(fā)育過(guò)程[32,33]。ABA含量對(duì)水稻種子細(xì)胞分裂、淀粉沉積、灌漿率等具有正向調(diào)控作用[34],在水稻灌漿期對(duì)水稻進(jìn)行ABA處理可以加快細(xì)胞分裂、增加細(xì)胞數(shù)量、提高灌漿率,從而增加劣勢(shì)籽粒的重量[35]。但ABA含量升高,種子發(fā)育會(huì)被抑制。miR159的靶基因是轉(zhuǎn)錄因子MYB33和MYB101,是ABA信號(hào)的正向調(diào)控因子。過(guò)表達(dá)miR159可以抑制MYB33和MYB101的轉(zhuǎn)錄水平,使種子對(duì)ABA信號(hào)不敏感[36]。研究發(fā)現(xiàn),miR159在水稻劣質(zhì)籽粒中的表達(dá)量高于優(yōu)勢(shì)籽粒,暗示miR159通過(guò)調(diào)控種子對(duì)ABA信號(hào)的轉(zhuǎn)導(dǎo),影響了種子的灌漿[37]。miR169通過(guò)靶基因核轉(zhuǎn)錄因子NF-YA調(diào)控?cái)M南芥種子對(duì)ABA信號(hào)的轉(zhuǎn)導(dǎo),過(guò)表達(dá)NF-YA可以降低種子對(duì)ABA信號(hào)的敏感性[32,38,39]。

        表1 參與種子發(fā)育miRNA的種類和具體作用途徑

        3.2 生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)

        生長(zhǎng)素是種子發(fā)育過(guò)程中的關(guān)鍵因素,參與了種子形態(tài)形成、細(xì)胞分裂和細(xì)胞膨脹等過(guò)程[40]。生長(zhǎng)素響應(yīng)因子ARF(AUXIN RESPONSIVE FACTOR)是生長(zhǎng)素轉(zhuǎn)導(dǎo)通路上的重要組分,通過(guò)結(jié)合生長(zhǎng)素誘導(dǎo)基因的上游特異順式作用元件,參與生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)途徑。Kang等[26]利用高通量測(cè)序和表達(dá)譜芯片技術(shù),發(fā)現(xiàn)miR167在發(fā)育的玉米種子中表達(dá)量很高。miR167的靶基因是ARF6和ARF8,已在擬南芥和水稻中得到鑒定[41,42],因此推測(cè)miR167通過(guò)調(diào)控生長(zhǎng)素的感應(yīng)和轉(zhuǎn)導(dǎo)在種子發(fā)育過(guò)程中發(fā)揮重要作用。

        miR390通過(guò)調(diào)控靶基因反干擾小RNA(ta-siRNA, TAS)參與種子的發(fā)育過(guò)程。Zhao等[24]通過(guò)對(duì)油菜早期胚胎中小RNA的表達(dá)分析,發(fā)現(xiàn)miR390通過(guò)反式作用反干擾小RNA介導(dǎo)的生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)途徑,參與了油菜早期胚胎的發(fā)育過(guò)程。研究發(fā)現(xiàn),miR164介導(dǎo)的生長(zhǎng)素調(diào)控機(jī)制能夠調(diào)控種子灌漿[43]。miR164是生長(zhǎng)素相關(guān)的miRNA,在水稻優(yōu)質(zhì)穗和劣質(zhì)穗中都存在,并且在優(yōu)質(zhì)穗中表達(dá)量更高[37]。miR164通過(guò)靶向NAC轉(zhuǎn)錄因子,調(diào)節(jié)植物內(nèi)部生長(zhǎng)素平衡。NAC基因在植物發(fā)育中具有生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)、防御等功能,通過(guò)調(diào)節(jié)衰老增加小麥種子中蛋白、鋅、鐵等的含量[44]。Han等[27]在發(fā)育的小麥種子中發(fā)現(xiàn)miR164的表達(dá)量呈現(xiàn)上升趨勢(shì),而干擾miR164調(diào)控則會(huì)導(dǎo)致胚胎發(fā)育異常,說(shuō)明miR164通過(guò)其靶基因NAC對(duì)生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)的調(diào)控,參與了種子發(fā)育過(guò)程。

        圖1 典型的miRNA在種子發(fā)育過(guò)程中的作用途徑NAC:NAC轉(zhuǎn)錄因子;ARF:生長(zhǎng)素響應(yīng)因子(Auxin response factor);TAS:反干擾小RNA(ta-siRNA);CSD:銅超氧化物歧化酶(Copper superoxide dismutase);AO:L-抗壞血酸氧化酶;LAC:漆酶(Laccase);BR:油菜素甾醇(Brassinosteroid)。

        3.3 油菜素甾醇信號(hào)轉(zhuǎn)導(dǎo)

        油菜素甾醇(Brassinosteroid,BR)是一類在植物生長(zhǎng)發(fā)育中起重要作用的植物激素。研究發(fā)現(xiàn),miR397通過(guò)靶向漆酶(Laccase,LAC)調(diào)控水稻種子的大小和產(chǎn)量。miR397的靶基因?yàn)長(zhǎng)AC,其產(chǎn)物是類漆酶蛋白,參與油菜素甾醇信號(hào)轉(zhuǎn)導(dǎo)。過(guò)表達(dá)miR397能夠增加種子大小、促進(jìn)圓錐花序分支和增加主穗粒數(shù),從而增加產(chǎn)量[45]。miR397作為一類在不同作物中高度保守的miRNA,其對(duì)油菜素甾醇信號(hào)轉(zhuǎn)導(dǎo)的調(diào)控作用有待在其他作物中進(jìn)一步驗(yàn)證。

        3.4 抗氧化作用

        在植物中,銅是進(jìn)行光合作用的必需微量元素,銅的穩(wěn)態(tài)在種子發(fā)育中發(fā)揮著重要作用。而銅/鋅超氧化物歧化酶是葉綠體中異常豐富的銅相關(guān)蛋白,能夠特異地清除超氧陰離子自由基,維持氧自由基的平衡[46]。miR408的保守靶基因是銅離子結(jié)合蛋白及漆酶[47]。漆酶是一種結(jié)合多個(gè)銅離子的蛋白質(zhì),屬于銅藍(lán)氧化酶,具有催化氧化的作用。由此可見(jiàn),植物miR408通過(guò)調(diào)節(jié)銅離子的濃度和催化氧化作用維持體內(nèi)的穩(wěn)態(tài)和維持氧自由基的平衡,為種子的發(fā)育維持一個(gè)穩(wěn)定的內(nèi)環(huán)境。

        miR397、miR398和miR528在水稻種子胚中表達(dá)量很高,它們的靶基因編碼了銅結(jié)合蛋白[43,48,49]。蔗糖介導(dǎo)的miR398通過(guò)降低兩個(gè)銅超氧化物歧化酶(Copper superoxide dismutase,CSD)基因的表達(dá),從而參與銅的穩(wěn)態(tài)調(diào)控[50]。miR398的這一調(diào)控作用在水稻、擬南芥和大豆中是保守的。水稻中miR397和miR528靶向L-抗壞血酸氧化酶(AO),AO通過(guò)調(diào)控信號(hào)轉(zhuǎn)導(dǎo)來(lái)調(diào)節(jié)植物的氧化還原狀態(tài)[51]。AO能夠促進(jìn)抗壞血酸(AA)的氧化從而獲得脫氫抗壞血酸(DHA),DHA的積累可以阻止細(xì)胞分裂[52]。而種子在早期發(fā)育階段需要具備很高的細(xì)胞分裂能力,過(guò)表達(dá)miR397和miR528能夠使AO和DHA維持在很低的水平,促進(jìn)細(xì)胞分裂。以上研究結(jié)果揭示了miRNA通過(guò)抗氧化途徑調(diào)控種子的發(fā)育過(guò)程。

        3.5 糖轉(zhuǎn)化

        miR408是一種廣泛存在于擬南芥、水稻、玉米、甘蔗等植物中的高度保守的miRNA。最近的研究表明,水稻miR408通過(guò)介導(dǎo)VIN1基因表達(dá)對(duì)種子發(fā)育具有重要的影響。VIN1是一種液泡轉(zhuǎn)化酶,其主要功能是將蔗糖水解成葡萄糖和果糖。通過(guò)對(duì)水稻miR408轉(zhuǎn)基因株系種子胚中糖含量的測(cè)定,發(fā)現(xiàn)miR408表達(dá)水平與種子蔗糖含量呈正相關(guān)性,而其靶基因表達(dá)則與蔗糖含量呈負(fù)相關(guān)性[46]。由此可知,miR408通過(guò)糖轉(zhuǎn)化途徑參與了水稻種子的發(fā)育過(guò)程。

        3.6 細(xì)胞生長(zhǎng)

        研究發(fā)現(xiàn),miR166是一類在種子發(fā)育過(guò)程中調(diào)控細(xì)胞生長(zhǎng)的miRNA。Zhang等[53~55]研究發(fā)現(xiàn),玉米中 miR166的靶基因是 HD-ZIP III(Class-III homeodomain-leucine zipper)基因,HD-ZIP III能夠調(diào)控種子成熟及側(cè)根生長(zhǎng)。miR156是另一類調(diào)控細(xì)胞生長(zhǎng)的miRNA,它靶向SPL10和SPL11基因,能夠?qū)е虏徽5募?xì)胞分裂[56],控制種子的發(fā)育[57,58]。植物漆酶能夠聚合木質(zhì)素單體,形成木質(zhì)素。在擬南芥中發(fā)現(xiàn),miR397b通過(guò)靶基因LAC4調(diào)控木質(zhì)素的合成和種子產(chǎn)量[59]。過(guò)表達(dá)miR397b減少了木質(zhì)素的沉積,纖維束二層壁厚減少,同時(shí)使植物發(fā)育出兩個(gè)以上的花芽序,從而得到更多的種子數(shù)量。這與水稻中miR397a和miR397b過(guò)表達(dá)的結(jié)果相似

        [43]。在開(kāi)花植物中,miR397通過(guò)木質(zhì)素的調(diào)節(jié),影響種子產(chǎn)量的調(diào)控機(jī)制可能普遍存在。在小麥發(fā)育種子中,miR9657a的靶基因是核/染色質(zhì)裝配因子,是細(xì)胞增殖中DNA復(fù)制所必需的。miR9661靶向F-box蛋白結(jié)構(gòu)域。研究發(fā)現(xiàn),F(xiàn)-box蛋白編碼基因在種子發(fā)育的不同階段表現(xiàn)出不同的轉(zhuǎn)錄水平,暗示F-box蛋白可能參與了種子發(fā)育過(guò)程[60,61]。

        3.7 淀粉合成

        谷類作物如水稻、玉米、小麥等種子主要由淀粉組成,種子的發(fā)育主要是淀粉沉積的過(guò)程。淀粉合成酶是淀粉合成的關(guān)鍵酶。水稻中淀粉合成酶的活性與水稻灌漿率正相關(guān)。降解組測(cè)序和5¢-RACE實(shí)驗(yàn)發(fā)現(xiàn),miR1867靶向淀粉合成酶蛋白,參與淀粉合成通路,從而調(diào)控水稻灌漿率[62]。miR1861被證明調(diào)控β-淀粉酶和淀粉結(jié)合域相關(guān)蛋白,從而在水稻種子發(fā)育中發(fā)揮重要作用[63]。

        3.8 胚胎發(fā)育

        胚胎發(fā)育是種子發(fā)育中的重要過(guò)程。在小麥發(fā)育種子中,miR169的表達(dá)量較高,miR169通過(guò)靶基因CCAAT-box轉(zhuǎn)錄因子參與胚胎發(fā)育過(guò)程[27,64]。 miR1127b的靶基因?yàn)榘被嵬ㄍ该富?,在早期種子發(fā)育中發(fā)揮重要作用。在早期胚胎形成階段,氨基酸通透酶攝取氨基酸進(jìn)入胚乳并向發(fā)育中的胚胎提供氨基酸[65]。miR160通過(guò)調(diào)控靶基因ARF17,造成異常胚胎對(duì)稱[66]。

        4 展 望

        基因表達(dá)變化在種子發(fā)育過(guò)程中發(fā)揮著重要作用,miRNA作為關(guān)鍵的后轉(zhuǎn)錄調(diào)控因子,調(diào)控眾多與種子發(fā)育相關(guān)基因的表達(dá)。近年來(lái),越來(lái)越多與種子發(fā)育相關(guān)的miRNA通過(guò)高通量測(cè)序、基因芯片、大規(guī)模平行測(cè)序、生物信息學(xué)、降解組測(cè)序等技術(shù)在多種植物中得到鑒定。這些miRNA同它們的靶基因?qū)ΨN子的發(fā)育構(gòu)成了龐大的調(diào)控網(wǎng)絡(luò)。參與種子發(fā)育的miRNA及其靶基因目前已得到廣泛的研究,本文總結(jié)了與種子發(fā)育相關(guān)的miRNA及其靶基因,重點(diǎn)綜述了miRNA在種子發(fā)育過(guò)程中發(fā)揮作用的具體調(diào)控機(jī)制。

        目前已在多種植物種子中鑒定到miRNA,并預(yù)測(cè)了它們的靶基因及功能,但真正明確其具體調(diào)控機(jī)制的miRNA還很少。如miRNA對(duì)種子活力的調(diào)控機(jī)制還不明確。有研究發(fā)現(xiàn),miRl64、miRl68、miR395、miR399、miR817等在水稻不同活力種子胚中的表達(dá)量呈規(guī)律性變化。其中miR817的靶蛋白是ATP合成酶的構(gòu)成蛋白及膜蛋白,參與種子的活力調(diào)控[25,67]。但是這些miRNA究竟是如何調(diào)控種子活力的?其具體功能與作用機(jī)制是什么?這些都還未知,還需進(jìn)一步深入研究。miRNA對(duì)種子發(fā)育的交叉調(diào)控作用也是未解之謎。miRNA對(duì)生長(zhǎng)素、脫落酸、赤霉素等植物激素信號(hào)轉(zhuǎn)導(dǎo)的調(diào)控是否具有交叉作用?仍然需要進(jìn)一步探索來(lái)找尋答案并明確其具體的調(diào)控方式。

        因此,種子發(fā)育相關(guān)miRNA的靶基因和具體調(diào)控機(jī)制研究應(yīng)該成為今后研究的重點(diǎn)。miRNA對(duì)谷類作物種子的灌漿、油菜類種子的脂質(zhì)存儲(chǔ)、種子活力的提高等均極有利于農(nóng)業(yè)生產(chǎn),相信對(duì)miRNA的研究將為更好的發(fā)揮其在調(diào)控種子生長(zhǎng)發(fā)育中的作用起到極大的幫助。

        [1]Bartel DP.MicroRNAs:Genomics,biogenesis,mechanism, and function.Cell,2004,116(2):281–297.

        [2]Zamore PD,Haley B.Ribo-gnome:The big world of small RNAs.Science,2005,309(5740):1519–1524.

        [3]Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronicgenelin-4encodessmallRNAswith antisense complementarity to lin-14.Cell,1993,75(5):843–854.

        [4]Park W,Li JJ,Song RT,Messing J,Chen XM.CARPEL FACTORY,a Dicer homolog,and HEN1,a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol,2002,12(17):1484–1495.

        [5]Llave C,Kasschau KD,Rector MA,Carrington JC. Endogenousand silencing-associated smallRNAsin plants.Plant Cell,2002,14(7):1605–1619.

        [6]Jones-Rhoades MW,Bartel DP,Bartel B.MicroRNAs and their regulatory roles in plants.Annu Rev Plant Biol, 2006,57:19–53.

        [7]Teotia S,Tang GL.To bloom or not to bloom:role of MicroRNAs in plant flowering.Mol Plant,2015,8(3): 359–377.

        [8]Khraiwesh B,Zhu JK,Zhu JH.Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta,2012,1819(2):137–148.

        [9]Jia L,Zhang DY,Qi XW,Ma B,Xiang ZH,He NJ. Identification of the conserved and novel miRNAs in mulberry by high-throughput sequencing.PLoS One,2014, 9(8):e104409.

        [10]Reinhart BJ,Weinstein EG,Rhoades MW,Bartel B,Bartel DP.MicroRNAs in plants.Genes Dev,2002,16(13): 1616–1626.

        [11]Xie ZX,Allen E,Fahlgren N,Calamar A,Givan SA, Carrington JC.Expression of Arabidopsis MIRNA genes. Plant Physiol,2005,138(4):2145–2154.

        [12]魏強(qiáng),梁永宏,李廣林.植物miRNA的進(jìn)化.遺傳, 2003,35(3):315–323.

        [13]Baranausk?S,Mickut?M,Plotnikova A,Finke A, Venclovas ?,Klima?auskas S,Vilkaitis G.Functional mapping of the plant small RNA methyltransferase:HEN1 physically interactswith HYL1andDICER-LIKE 1 proteins.Nucleic Acids Res,2015,43(5):2802–2812.

        [14]BollmanKM,AukermanMJ,ParkMY,HunterC, BerardiniTZ,PoethigRS.HASTY,theArabidopsis ortholog of exportin 5/MSN5,regulates phase change and morphogenesis.Development,2003,130(8):1493–1504.

        [15]Park MY,Wu G,Gonzalez-Sulser A,Vaucheret H,Poethig RS.Nuclear processing and exportof microRNAs in Arabidopsis.Proc Natl Acad Sci USA,2005,102(10): 3691–3696.

        [16]Xie M,Zhang SX,Yu B.microRNA biogenesis, degradation and activity in plants.Cell Mol Life Sci, 2015,72(1):87–99.

        [17]Bonnet E,Van de Peer Y,Rouzé P.The small RNA world of plants.New Phytol,2006,171(3):451–468.

        [18]Khan Y,Yadav A,Bonthala VS,Muthamilarasan M,Yadav CB, Prasad M. Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica(L.)]miRNAs in response to abiotic stress and development of miRNA database.Plant Cell,Tissue and Organ Culture(PCTOC),2014,118(2):279–292.

        [19]ReinhartBJ,Slack FJ,Basson M,PasquinelliAE, Bettinger JC,Rougvie AE,Horvitz HR,Ruvkun G.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature,2000,403(6772): 901–906.

        [20]Ding YF,Tao YL,Zhu C.Emerging roles of microRNAs in the mediation of drought stress response in plants.J Exp Bot,2013,64(11):3077–3086.

        [21]Carrington JC,Ambros V.Role of microRNAs in plant and animal development.Science,2003,301(5631):336–338.

        [22]Zhang BH.MicroRNA:a new target for improving plant tolerance to abiotic stress.J Exp Bot,2015,66(7): 1749–1761.

        [23]K?rbes AP,Machado RD,Guzman F,Almer?o MP,de Oliveira LFV,Loss-Morais G,Turchetto-ZoletAC, Cagliari A,Maraschin FS,Margis-Pinheiro M,Margis R. Identifying conserved and novel micrornas in developing seeds of Brassica napus using deep sequencing.PLoS One, 2012,7(11):e50663.

        [24]Zhao YT,Wang M,Fu SX,Yang WC,Qi CK,Wang X J. Small RNA Profiling in Two Brassica napus Cultivars Identifies MicroRNAs with Oil Production-and Development-Correlated Expression and New Small RNA Classes.Plant Physiol,2012,158(2):813–823.

        [25]Xue LJ,Zhang JJ,Xue HW.Characterization and expression profiles of miRNAs in rice seeds.Nucleic Acids Res,2009,37(3):916–930.

        [26]Kang MM,Zhao Q,Zhu DY,Yu JJ.Characterization of microRNAs expression during maize seed development. BMC Genomics,2012,13:360.

        [27]Han R,Jian C,Lv JY,Yan Y,Chi Q,Li ZJ,Wang Q,Zhang J,Liu XL,Zhao HX.Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.).BMC Genomics,2014,15:289.

        [28]Rhoades MW,Reinhart BJ,Lim LP,Burge CB,Bartel B, Bartel DP.Prediction of plant microRNA targets.Cell, 2002,110(4):513–520.

        [29]Sunkar R,Chinnusamy V,Zhu JH,Zhu JK.Small RNAs as big players in plant abiotic stress responses and nutrient deprivation.Trends Plant Sci,2007,12(7):301–309.

        [30]MitsudaN,Ohme-TakagiM.Functionalanalysisof transcription factors in Arabidopsis.Plant Cell Physiol, 2009,50(7):1232–1248.

        [31]朱誠(chéng).植物生物學(xué).北京:北京師范大學(xué)出版社,2012: 254–258.

        [32]Li DT,Wang LW,Liu X,Cui DZ,Chen TT,Zhang H, Jiang C,Xu CY,Li P,Li S,Zhao L,Chen HB.Deep sequencing of maize small RNAs reveals a diverse set of microRNA in dry and imbibed seeds.PLoS One,2013, 8(1):e55107.

        [33]Finkelstein R,Reeves W,Ariizumi T,Steber C.Molecular aspects of seed dormancy.Annu Rev Plant Biol,2008,59: 387–415.

        [34]YangJC,ZhangJH,Wang ZQ,LiuK,Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene.J Exp Bot,2006,57(1):149–160.

        [35]Zhang ZX,Chen J,Lin SS,Li Z,Cheng RH,Fang CX, Chen HF,Lin WX.Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L.inferior spikelets.Plant Sci,2012,185–186: 259–273.

        [36]Reyes JL,Chua NH.ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination.Plant J,2007,49(4):592–606.

        [37]Peng T,Sun HZ,Qiao MM,Zhao YF,Du YX,Zhang J,Li JZ, Tang GL, Zhao QZ. Differentially expressed microRNA cohorts in seed development may contribute to poor grain filling of inferior spikelets in rice.BMC Plant Biol,2014,14:196.

        [38]Li WX,Oono Y,Zhu JH,He XJ,Wu JM,Iida K,Lu XY, CuiX,JinH,Zhu JK.TheArabidopsisNF-YA5 transcription factorisregulated transcriptionally and posttranscriptionally to promote drought resistance.Plant Cell,2008,20(8):2238–2251.

        [39]Mu JY,Tan HL,Hong SL,Liang Y,Zuo JR.Arabidopsis transcription factor genes NF-YA1,5,6 and 9 play redundant roles in male gametogenesis,embryogenesis, and seed development.Mol Plant,2013,6(1):188–201.

        [40]Schruff MC,Spielman M,Tiwari S,Adams S,Fenby N, Scott RJ.The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling,cell division,and the size of seeds and other organs.Development,2006,133(2): 251–261.

        [41]Yang JH,Han SJ,Yoon EK,Lee WS.Evidence of an auxin signal pathway,microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells.Nucleic Acids Res,2006,34(6):1892–1899.

        [42]Jones-Rhoades MW, Bartel DP. Computational identification ofplantmicroRNAsand theirtargets, including a stress induced miRNA.Mol Cell,2004, 14(6):787–799.

        [43]Yi R,Zhu ZX,Hu JH,Qian Q,Dai JC,Ding Y. Identification and expression analysis of microRNAs at the grain filling stage in rice(Oryza sativa L.)via deep sequencing.PLoS One,2013,8(3):e57863.

        [44]Uauy C,Distelfeld A,Fahima T,Blechl A,Dubcovsky J.A NAC gene regulating senescence improves grain protein, zinc,and iron content in wheat.Science,2006,314(5803): 1298–1301.

        [45]Zhang YC,Yu Y,Wang CY,Li ZY,Liu Q,Xu J,Liao JY, Wang XJ,Qu LH,Chen F,Xin P,Yan C,Chu J,Li HQ, ChenYQ.OverexpressionofmicroRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching.Nat Biotechnol,2013,31(9):848–852.

        [46]馬圣運(yùn).os-miR408的表達(dá)模式及其在水稻種子發(fā)育中的功能[學(xué)位論文].杭州:浙江大學(xué),2012.

        [47]Sun GL.MicroRNAs and their diverse functions in plants. Plant Mol Biol,2011,80(1):17–36.

        [48]Sunkar R,Zhu JK.Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis.Plant Cell,2004, 16(8),2001–2019.

        [49]Liu B,Li PC,Li X,Liu CY,Cao SY,Chu CC,Cao XF. Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol,2005,139(1):296–305.

        [50]Song QX,Liu YF,Hu XY,Zhang WK,Ma B,Chen SY, Zhang JS.Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing.BMC Plant Biol,2011,11:5.

        [51]Pignocchi C,Kiddle G,Hernández I,Foster SJ,Asensi A, Taybi T, Barnes J, Foyer CH. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco.PlantPhysiol,2006,141(2): 423–435.

        [52]Potters G,Horemans N,Caubergs RJ,Asard H.Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension.Plant Physiol,2000,124(1):17–20.

        [53]Zhang LF,ChiaJM,KumariS,Stein JC,Liu ZJ, Narechania A,Maher CA,Guill K,McMullen MD,Ware D.A genome-wide characterization of microRNA genes in maize.PLoS Genet,2009,5(11):e1000716.

        [54]Jakoby M, Weisshaar B, Dr?ge-Laser W, Vicente-Carbajosa J,Tiedemann J,Kroj T,Parcy F.bZIP transcription factors in Arabidopsis.Trends Plant Sci, 2002,7(3):106–111.

        [55]Hawker NP,Bowman JL.Roles for class III HD-Zip and KANADI genes in Arabidopsis root development.Plant Physiol,2004,135(4):2261–2270.

        [56]Nodine MD,Bartel DP.MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis.Genes Dev,2010,24(23):2678–2692.

        [57]Palatnik JF,Allen E,Wu X,Schommer C,Schwab R, Carrington JC, Weigel D. Control of leaf morphogenesis by microRNAs.Nature,2003,425(6955): 257–263.

        [58]Wang SK,Wu K,Yuan QB,Liu XY,Liu B,Lin XY,Zeng RZ,Zhu HT,Dong GJ,Qian Q,Zhang GQ,Fu XD. Control of grain size,shape and quality by OsSPL16 in rice.Nat Genet,2012,44(8):950–954.

        [59]Wang CY,Zhang SC,Yu Y,Luo YC,Liu Q,Ju CL,Zhang YC,Qu LH,Lucas WJ,Wang XJ,Chen YQ.MiR397b regulates both lignin contentand seed numberin Arabidopsis via modulating a laccase involved in lignin biosynthesis.Plant Biotechnol J,2014,12(8): 1132–1142.

        [60]Jain M,Nijhawan A,Arora R,Agarwal P,Ray S,Sharma P, Kapoor S,Tyagi AK,Khurana JP.F-box proteins in rice. Genome-wide analysis,classification,temporal and spatial gene expression during panicle and seed development,and regulation by light and abiotic stress.Plant Physiol,2007, 143(4):1467–1483.

        [61]Galli V,Guzman F,de Oliveira LFV,Loss-Morais G, K?rbes AP,Silva SDA,Margis-Pinheiro MMAN,Margis R.Identifying MicroRNAs and Transcript Targets in Jatropha Seeds.PLoS One,2014,9(2):e83727.

        [62]Zhang H,Li HW,Yuan LM,Wang ZQ,Yang JC,Zhang JH. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice.J Exp Bot,2012,63(1):215–227.

        [63]Peng T,Sun HZ,Du YX,Zhang J,Li JZ,Liu YX,Zhao YF, Zhao QZ.Characterization and expression patterns of microRNAs involved in rice grain filling.PLoS One,2013, 8(1):e54148.

        [64]Siefers N,Dang KK,Kumimoto RW,Bynum WE,Tayrose G,HoltBF.Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity.Plant Physiol, 2009,149(2):625–641.

        [65]Schmidt R,Stransky H,Koch W.The amino acid permease AAP8 is importantforearly seed developmentin Arabidopsis thaliana.Planta,2007,226(4):805–813.

        [66]Mallory AC,Bartel DP,Bartel B.MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essentialfor properdevelopmentand modulates expression of early auxin response genes.Plant Cell,2005, 17(5):1360–1375.

        [67]成海蘭.miRNA與水稻種子活力的相關(guān)性研究[學(xué)位論文].長(zhǎng)沙:湖南師范大學(xué),2011.

        (責(zé)任編委:張憲省)

        Role of miRNAin plant seed development

        Shumin Gong,Yanfei Ding,Cheng Zhu

        Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province,College of Life Sciences,China Jiliang University,Hangzhou 310018,China

        MicroRNA(miRNA),a class of non-coding small RNAs,has been reported to be involved in a broad range of metabolic and physiological processes in plants,such as plant growth,development and responses to stresses. They participate in gene expression by degrading target genes at post-transcriptional levels.Seeds are the basic elements of plant growth and important materials for agriculture.miRNAs have been identified to be involved in seed development in many plants.Herein we review recent progresses on the miRNAs involved in seed development and their regulatory mechanisms,which will help to provide insights into further research to improve seed quality.

        seed;miRNA;development;regulatory mechanism;plant

        2015-01-08;

        2015-03-18

        國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31401299,31170251,31470368)和浙江省自然科學(xué)基金項(xiàng)目(編號(hào):LY13C020002,LZ14C020001)資助

        龔淑敏,在讀碩士研究生,專業(yè)方向:植物逆境生理與分子生物學(xué)。E-mail:gongshumin1029@126.com

        丁艷菲,副教授,研究方向:植物逆境生理與分子生物學(xué)。E-mail:dingyanfei1984@126.com

        龔淑敏和丁艷菲為并列第一作者。

        朱誠(chéng),博士,教授,研究方向:植物逆境生理與分子生物學(xué)。E-mail:pzhch@cjlu.edu.cn

        10.16288/j.yczz.15-020

        時(shí)間:2015-5-13 13:57:35

        URL:http://www.cnki.net/kcms/detail/11.1913.R.20150513.1357.001.html

        猜你喜歡
        生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)調(diào)控
        Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路在瘢痕疙瘩形成中的作用機(jī)制研究
        基于科學(xué)思維培養(yǎng)的“生長(zhǎng)素的調(diào)節(jié)作用”復(fù)習(xí)課教學(xué)設(shè)計(jì)
        探究生長(zhǎng)素對(duì)植物生長(zhǎng)的兩重性作用
        如何調(diào)控困意
        經(jīng)濟(jì)穩(wěn)中有進(jìn) 調(diào)控托而不舉
        生長(zhǎng)素的生理作用研究
        淺談生長(zhǎng)素對(duì)植物的作用
        順勢(shì)而導(dǎo) 靈活調(diào)控
        SUMO修飾在細(xì)胞凋亡中的調(diào)控作用
        HGF/c—Met信號(hào)轉(zhuǎn)導(dǎo)通路在結(jié)直腸癌肝轉(zhuǎn)移中的作用
        午夜福利院电影| 国产av一级二级三级| 亚洲一区二区三区中文字幕网| 樱桃视频影院在线播放| 少妇内射视频播放舔大片| 午夜在线观看有码无码| 一本色道久久综合亚洲精品不 | 97夜夜澡人人爽人人喊中国片| 日韩欧美国产丝袜视频| 国产精品久久婷婷六月| 国产综合精品久久99之一| 日产无人区一线二线三线乱码蘑菇 | 亚洲av成人无码网天堂| 国产粉嫩高清| 日本第一影院一区二区| 无码精品人妻一区二区三区av| 久99久热只有精品国产男同| 日韩少妇人妻一区二区| 蜜臀av毛片一区二区三区| 熟女性饥渴一区二区三区| 狠狠躁夜夜躁人人爽天天| 亚洲视频观看一区二区| 夜夜躁日日躁狠狠久久av| 99热久久这里只精品国产www| 久久午夜无码鲁丝片直播午夜精品| 中文字幕亚洲精品专区| 久久精品中文字幕大胸| 被黑人做的白浆直流在线播放| 中文字幕一区二区区免| 欧美颜射内射中出口爆在线| 久久免费的精品国产v∧| 午夜在线观看有码无码| 久久av不卡人妻出轨一区二区| 精品无码久久久久久国产| 无码日韩人妻AV一区免费| 亚洲少妇一区二区三区老| 色欲av伊人久久大香线蕉影院| 欧美多毛肥胖老妇做爰| 精品蜜桃视频在线观看| 无码国产精成人午夜视频一区二区| 18禁黄网站禁片免费观看|