陳亞文,楊洋,唐天樂,唐文浩,*
1. 海南大學(xué)環(huán)境與植物保護(hù)學(xué)院,???570228 2. 海南大學(xué)??谑协h(huán)境毒理學(xué)重點(diǎn)實(shí)驗(yàn)室,海口 570228 3. 海南醫(yī)學(xué)院,???571101
雙酚AF對雄性斑馬魚卵黃蛋白原水平與芳香化酶基因表達(dá)的影響
陳亞文1,2,楊洋1,2,唐天樂2,3,唐文浩1,2,*
1. 海南大學(xué)環(huán)境與植物保護(hù)學(xué)院,海口 570228 2. 海南大學(xué)??谑协h(huán)境毒理學(xué)重點(diǎn)實(shí)驗(yàn)室,???570228 3. 海南醫(yī)學(xué)院,海口 571101
雙酚AF(4,4'-六氟-2-二酚,BPAF)對生物有機(jī)體具有內(nèi)分泌干擾作用。為研究低劑量BPAF對水生生物的效應(yīng),本研究選擇成年雄性斑馬魚為研究對象,考察了0.005、0.05和0.5 mg·L-13種濃度BAPF暴露30 d對血漿中卵黃蛋白原(VTG)含量、2種卵黃蛋白原基因(vtg-1和vtg-3 )表達(dá)和2種芳香酶基因(cyp 19a與cyp 19b)表達(dá)的影響。結(jié)果表明:在0.005 mg·L-1濃度暴露30 d后,血漿中VTG含量顯著升高,隨著暴露濃度的升高,促進(jìn)作用不顯著;BPAF暴露對不同組織中的4種基因存在不同的影響,0.005 mg·L-1BPAF暴露可誘導(dǎo)腦部cyp19b 、肝臟中cyp19a 和性腺中vtg-1 、vtg-3 和cyp19b 基因表達(dá);0.5 mg·L-1BPAF暴露可導(dǎo)致肝臟中vtg-1 、vtg-3 、性腺中cyp19a 等基因顯著上調(diào)。實(shí)驗(yàn)結(jié)果表明,BPAF具有雌性激素樣效應(yīng),可誘導(dǎo)雄性斑馬魚體內(nèi)部分組織卵黃蛋白原基因和芳香酶基因的表達(dá)。BPAF可引起斑馬魚血漿中的VTG含量的上升,從而干擾由VTG所參與的下丘腦-垂體-性腺軸與免疫系統(tǒng)的正常生理過程。
雙酚AF;斑馬魚;卵黃蛋白原;芳香化酶
六氟雙酚A(bisphenol AF, BPAF)和它的衍生物廣泛存在于環(huán)境中。在對BPAF制造工廠周圍環(huán)境調(diào)查中發(fā)現(xiàn),BPAF主要滯留于河底底泥(最高含量為2 000 ng·g-1dw)、土壤(最高含量331 g·g-1dw)和地下水(最高含量300 ng·L-1)[1]。有研究表明,BPAF易于通過食物鏈與人類和生物有機(jī)體的接觸從而對機(jī)體的生長發(fā)育和生殖功能產(chǎn)生不利影響[2]。定量結(jié)構(gòu)活性模型(quantitative structure property analysis, QSPR)顯示,BPAF在水中的半衰期大于182 d,降解速率十分緩慢[3]。并且通過該模型計算出的生物累積系數(shù)表明BPAF具有很強(qiáng)的生物蓄積性[3]。Kitamura等[4]通過構(gòu)效關(guān)系分析發(fā)現(xiàn),BPAF與BPA相比,由于2個-CH3被電負(fù)性更強(qiáng)的-CF3取代,因此推測可能具有更強(qiáng)的雌激素活性。因此BPAF對人類的潛在危害值得人們的重視[5]。但有關(guān)雙酚AF的毒理學(xué)效應(yīng)、環(huán)境中存在形式和環(huán)境行為的研究還少有報道。本研究選擇成年雄性斑馬魚為研究對象,考察了BAPF對成年斑馬魚血漿中VTG含量的影響,并且用熒光定量PCR技術(shù)檢測了不同組織里vtg-1、vtg-3、cyp19a和cyp19b的mRNA轉(zhuǎn)錄水平,從蛋白和mRNA表達(dá)2個方面分析評價了BPAF的毒性效應(yīng),并試圖篩選相關(guān)的敏感生物標(biāo)志物,以期為BPAF環(huán)境污染的監(jiān)控和安全管理提供科學(xué)依據(jù)。
1.1實(shí)驗(yàn)材料
實(shí)驗(yàn)魚:雄性斑馬魚成魚(AB系),體色光亮,魚鱗完整,無畸形。養(yǎng)魚所用的水為曝氣48 h后的自來水。受試斑馬魚在48 cm×25 cm×38.5 cm的水族箱馴養(yǎng)3個月,水溫(28±1) ℃,每日12~14 h光照,早晚定時投喂干飼料2次。馴養(yǎng)結(jié)束后進(jìn)行實(shí)驗(yàn)。
實(shí)驗(yàn)用BPAF為分析純,購自中國(山東)西亞試劑廠;二甲基亞砜(DMSO)為色譜純,購自中國(北京)索萊寶科技有限公司;無水乙醇、異丙醇、氯仿均為化學(xué)純,購自中國(廣州)廣州化學(xué)試劑廠。受試物BPAF不易溶于水,因此用DMSO助溶,然后用超純水配制成合適濃度的貯備液,試驗(yàn)液中助溶劑濃度不超過0.1%(體積分?jǐn)?shù))。
1.2實(shí)驗(yàn)方法
根據(jù)前期預(yù)實(shí)驗(yàn)結(jié)果,雙酚AF的暴露濃度分別設(shè)置為0.005、0.05和0.5 mg·L-1,用DMSO配制3種暴露濃度1 000倍的實(shí)驗(yàn)?zāi)敢海? ℃避光保存。試驗(yàn)用水采用曝氣后的反滲透純凈水機(jī)制備,將海鹽溶解于反滲透(RO)純水中,配制成ρ (海鹽)為60 mg·L-1的試驗(yàn)用水[6],其pH穩(wěn)定于7.2~7.5,電導(dǎo)率為250~360 μS·cm-1,確保水質(zhì)均符合OECD實(shí)驗(yàn)要求[7]。在20 L玻璃缸中,用試驗(yàn)用水和BPAF的實(shí)驗(yàn)?zāi)敢号渲? L暴露溶液,同時設(shè)置助溶劑對照組,助溶劑濃度為0.1%(體積比),每個暴露濃度各20條雄性斑馬魚。暴露實(shí)驗(yàn)開始后,每天早上定時喂食適量干魚食,在喂食后2個小時利用虹吸原理,吸出各個試驗(yàn)組魚缸剩余魚食以及糞便,每天更換2.5 L試驗(yàn)液。
暴露30 d后,將每組所有剩下的雄魚冰上麻醉,根據(jù)Fatemeh Babaei等[8]的方法離心取血,13 700 g離心10 min,取上層血漿-20 ℃保存,用于測定VTG含量。其中由于每條魚的血漿量較少,因此每3條雄魚的血漿為一個樣本,每組各9個樣品。同時解剖雄魚,取其腦、肝臟和性腺組織,置于eppendorf 1.5 mL離心管內(nèi),液氮速凍后,-80 ℃保存,用于RNA的提取。由于雄魚腦組織與性腺質(zhì)量較小,以每3條雄魚的腦組織與性腺為一個樣本,單條雄魚肝臟為一個樣本,各組中的雄魚3種組織各取9個樣本。
根據(jù)固相夾心法酶聯(lián)免疫吸附試驗(yàn)(ELISA)的原理,利用魚(fish)卵黃蛋白原(VTG)ELISA檢測試劑盒(上海信裕生物科技,上海)和Multiskan FC型酶標(biāo)儀(Thermo Fisher Scientific,中國上海)測定雄魚血漿中VTG的含量。試劑盒的檢測范圍:30 μg·L-1~850 μg·L-1。
各組織mRNA水平采用Real-time PCR方法測定。按照RNAiso Plus試劑(Takara Biotechnology,日本)的說明書進(jìn)行總RNA的提取,然后溶于DEPC處理過的水中。再用莫洛尼氏鼠白血病病毒(Moloney mufine leukemia virus, M-MLV)反轉(zhuǎn)錄酶試劑盒(Takara Biotechnology,日本),按照說明書方法合成cDNA。各引物根據(jù)文獻(xiàn)報導(dǎo)設(shè)計(見表1)[9-11]。擴(kuò)增反應(yīng)采用FastStart Essential DNA Green Master試劑盒(Roche Diagnostics, Switzerland),于LightCycler?96(Roche Diagnostics, Switzerland)中進(jìn)行。熒光定量PCR擴(kuò)增條件如下:95 ℃預(yù)變性5 min;95 ℃,20 s:60 ℃,20 s;72 ℃,30 s。熒光定量PCR擴(kuò)增動力曲線確定循環(huán)數(shù)為40,擴(kuò)增結(jié)果分析數(shù)據(jù)用LightCycler?96(Roche Diagnostics, Switzerland)獲取。最后用2-△△Ct方法進(jìn)行基因相對表達(dá)強(qiáng)度的計算[12]。
1.3數(shù)據(jù)統(tǒng)計與分析
按照固相夾心法酶聯(lián)免疫吸附試驗(yàn)(ELISA),通過各標(biāo)準(zhǔn)樣品的測定值分別得除標(biāo)準(zhǔn)曲線和標(biāo)準(zhǔn)方程,根據(jù)標(biāo)準(zhǔn)方程和各樣品的測定值計算激素含量。將所有數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差形式表示,并應(yīng)用SPSS 22.0對試驗(yàn)數(shù)據(jù)做方差分析,暴露組和對照之間的差異采用t檢驗(yàn)進(jìn)行分析,P<0. 05為差異顯著,P<0. 01為差異極顯著。
2.1BPAF對雄性斑馬魚卵黃蛋白原(VTG)含量的影響
30 d染毒實(shí)驗(yàn)結(jié)束時,對照組雄性斑馬魚沒有出現(xiàn)死亡,0.5 mg·L-1暴露組雄性斑馬魚中一條斑馬魚出現(xiàn)死亡,對實(shí)驗(yàn)結(jié)果無顯著影響。各試驗(yàn)組雄性斑馬魚血漿VTG含量的檢測結(jié)果如圖1所示??梢钥闯觯珺PAF暴露可引起雄性斑馬魚血漿VTG含量的升高。其中,0.005 mg·L-1BPAF暴露所引起的血漿中VTG含量相較于CK組(對照組)有顯著升高(P<0.05)。其他各組與CK組相比,升高均不顯著。
圖1 六氟雙酚A(BPAF)暴露對雄性斑馬魚血漿中VTG含量的影響注:CK為對照組,n=9;*表示處理組與空白對照組對比有顯著差異,P<0.05。Fig. 1 Effects of bisphenol AF (BPAF) on VTG levels in blood plasma of male zebraftshNote: CK, controls; n=9; *, P<0.05, compared with controls.
2.2BPAF對雄性斑馬魚卵黃蛋白原mRNA表達(dá)的影響
30 d暴露試驗(yàn)結(jié)束后,3種暴露濃度的BPAF對雄性斑馬魚肝臟和性腺中卵黃蛋白原vtg-1和vtg-3的mRNA表達(dá)的影響如圖2所示。
表1 Real-time PCR引物序列及產(chǎn)物長度
圖2 各暴露組中雄性斑馬魚各組織vtg-1(A)和vtg-3(B) mRNA表達(dá)注:n=9;*表示處理組與空白對照組對比有顯著差異,P<0.05;**表示處理組與空白對照組對比有極顯著差異,P<0.01。Fig. 2 Effects of BPAF exposure on vtg-1 (A) and vtg-3 (B) mRNA expression in different tissues of male zebrafishNote:n=9; * P<0.05, compared with controls; ** P<0.01, compared with controls.
圖3 各暴露組中雄性斑馬魚各組織cyp19a(A)和cyp19b(B) mRNA表達(dá)注:n=9;*表示處理組與空白對照組對比有顯著差異,P<0.05;**表示處理組與空白對照組對比有極顯著差異,P<0.01。Fig. 3 Effects of BPFA exposure on cyp19a (A) and cyp19b (B) mRNA expression in different tissues of male zebrafishNote: n=9; * P<0.05, compared with controls; ** P<0.01, compared with controls.
由圖2(A)可見,與CK組相比,0.005 mg·L-1BPAF對不同組織中vtg-1 mRNA表達(dá)水平在都存在極顯著的誘導(dǎo)作用(P<0.01)。BPAF濃度為0.05 mg·L-1時,肝臟中vtg-1 mRNA表達(dá)量較對照單獨(dú)暴露時下降極顯著(P<0.01),性腺中的表達(dá)量沒有差異性。在0.5 mg·L-1BPAF暴露組中,2個組織中vtg-1 mRNA表達(dá)量有不同程度增加。其中內(nèi)臟中vtg-1 mRNA的表達(dá)量均極顯著升高(P <0.01) ,在性腺中與對照組相比無統(tǒng)計學(xué)顯著差異性。
由圖2(B)可見,0.005 mg·L-1BPAF暴露對雄性斑馬魚性腺中vtg-3 mRNA的表達(dá)量較對照組存在極顯著誘導(dǎo)作用(P<0.05)。在內(nèi)臟中此暴露濃度BPAF的誘導(dǎo)作用并不顯著。BPAF濃度為0.05 mg·L-1時,2個組織里vtg-3 mRNA表達(dá)量較對照單獨(dú)暴露時下降極顯著(P<0.01)。在0.5 mg·L-1BPAF暴露對不同組織中vtg-3 mRNA表達(dá)水平在都存在不同程度的誘導(dǎo)作用。其中肝臟中vtg-1 mRNA的表達(dá)量均極顯著升高(P <0.01) ,在性腺中與對照組相比均無顯著性。
2.3BPAF對雄性斑馬魚cyp19 mRNA表達(dá)的影響
圖3顯示了暴露于不同濃度BPAF后雄性斑馬魚腦和性腺內(nèi)cyp19a和cyp19b mRNA基因表達(dá)量。由圖3(A)可見,與CK組相比,0.005 mg·L-1和0.05 mg·L-1BPAF對各組織中cyp19a mRNA表達(dá)水平在都存在一定的影響,但由于個體間基因表達(dá)差異較大與一些實(shí)驗(yàn)誤差,從統(tǒng)計學(xué)來看BPAF對cyp19 mRNA誘導(dǎo)作用并不顯著。在0.5 mg·L-1BPAF暴露組中,2個組織中cyp19a mRNA表達(dá)量均極顯著升高(P <0.01) 。
由圖3(B)可見,0.005 mg·L-1BPAF暴露對雄性斑馬魚腦部和性腺中cyp19b mRNA誘導(dǎo)作用極顯著(P<0.01)。與對照組相比,BPAF濃度為0.05 mg·L-1時,各組織的表達(dá)量與對照組相比無明顯差異性。在腦組織中,cyp19b mRNA表達(dá)量與對照組相比無統(tǒng)計學(xué)顯著差異性。而在0.5 mg·L-1BPAF暴露顯著降低性腺中cyp19b mRNA表達(dá)量(P<0.05)。
BPAF作為BPA類似物,作為交聯(lián)劑和單體廣泛應(yīng)用于工業(yè)合成,其合成的氟化塑料具有良好熱穩(wěn)定性和抗變形能力[3]。現(xiàn)今關(guān)于BPAF的毒理學(xué)研究主要集中于體外實(shí)驗(yàn)[13-15]。Matsushima等[16]利用螢光素酶報告基因檢測方法,發(fā)現(xiàn)BPAF能夠與雌激素受體α(estrogen receptor α, ERα)和雌激素受體β(estrogen receptor β, ERβ)結(jié)合,從而干擾由ERα和/或ERβ所調(diào)控的正常生理過程。由于環(huán)境內(nèi)分泌干擾物在體內(nèi)的作用會受到許多因素的影響,因此體內(nèi)實(shí)驗(yàn)?zāi)芟鄬Ω鼫?zhǔn)確和真實(shí)反應(yīng)其干擾效應(yīng)。目前BPAF的體內(nèi)試驗(yàn)僅針對小鼠,其他生物的毒性效應(yīng)研究不夠全面[14,16-17],F(xiàn)eng等[14]對SD大鼠進(jìn)行體內(nèi)試驗(yàn),表明睪丸是BPAF暴露的主要靶器官,高濃度暴露導(dǎo)致血漿中睪酮含量顯著降低,從而在影響SD大鼠的下丘腦-垂體-性腺軸的正常功能。
魚類的卵黃蛋白原(vitellogenin, VTG)含量是一種評價內(nèi)分泌干擾物雌激素效應(yīng)的重要生物標(biāo)志物[18]。一般幼魚或者成年雄魚VTG含量很低,不易檢出。CoPeland等[19]利用放免法測定虹鱒魚血漿中的VTG含量,發(fā)現(xiàn)各個時期雄魚血漿VTG水平都比較低。但在受到外源性的雌激素的影響時,雄魚的肝臟能夠合成并分泌VTG。Oakes等[20]的研究表明,全氟辛烷磺酸(PFOS)暴露會引起黑頭呆魚(fathead minnow)和虹鱒魚(rainbow flout)血漿中VTG含量的改變。研究表明,雙酚A(BPA)能夠誘導(dǎo)鯉(Cyprinus carpio)、日本青鳉(Oryzias latipes)、虹鱒(Oncorhynchus mykiss)、雄性中國林蛙(Rana chensinensis)和斑馬魚(Danio rerio)等魚體內(nèi)VTG的合成[21-24]。本實(shí)驗(yàn)中雄性斑馬魚可能對BPAF暴露十分敏感,在0.005 mg·L-1BPAF暴露下,血漿中的VTG含量與對照組相比,即呈現(xiàn)出顯著性差異(P<0.05)。Mandich等[21]報道用不同濃度BPA對鯉進(jìn)行暴露,在一定范圍內(nèi)雄性鯉血漿中VTG含量與BPA濃度呈正相關(guān)。實(shí)驗(yàn)中隨BPAF濃度升高,VTG含量與對照組無顯著差異。導(dǎo)致這種現(xiàn)象可能的原因?yàn)椋旱蜐舛菳APF暴露對雄性斑馬魚表現(xiàn)出雌性激素效應(yīng),即呈現(xiàn)BPA促使肝臟VTG合成,BPAF暴露濃度升高后魚通過自身免疫、新陳代謝及排泄等其他途徑對造成的干擾做出補(bǔ)償效應(yīng)[25-27]。
青鳉、棘魚和斑馬魚等輻鰭綱魚類,擁有3種以上的vtg基因,其中vtg-1的mRNA水平遠(yuǎn)高于比其他亞型[28]。已有的研究表明,vtg-1和vtg-3基因不僅在肝臟中表達(dá),在腦[29]、性腺和心臟[30]等其他一些組織均存在一定表達(dá)[31]。黃曄等[32]發(fā)現(xiàn)雄性斑馬魚低劑量BPA暴露后可檢測到肝臟中vtg mRNA的表達(dá)。王德鑫等[33]報導(dǎo)了0.001~1 mg·L-1金雀異黃素(genistein,4',5,7-三羥基異黃酮)水體暴露能夠顯著誘導(dǎo)成熟vtg-1基因的表達(dá)。本實(shí)驗(yàn)中,在雄性斑馬魚肝臟中最低與最高濃度的BPAF暴露誘導(dǎo)vtg-1與vtg-3 mRNA的表達(dá)量相較于對照組顯著提高,在0.05 mg·L-1BPAF暴露時2種基因的表達(dá)受到抑制。類似的表達(dá)趨勢在其他文獻(xiàn)中也有報導(dǎo),Willams等[34]對比目魚進(jìn)行159 d的多溴聯(lián)苯醚(polybrominated diphenyl ethers, PBDEs)暴露后發(fā)現(xiàn),在最低(0.07 μg·g-1)與最高濃度(700 μg·g-1)PBDEs暴露下vtg mRNA與cyp1a mRNA受到顯著誘導(dǎo),其余染毒組(0.7 μg·g-1與7 μg·g-1)與對照物組2種基因表達(dá)無顯著差異。而在性腺中僅在0.005 mg·L-1BPAF暴露組中vtg-1與vtg-3 mRNA表達(dá)量顯著上升。實(shí)驗(yàn)中在2個組織中產(chǎn)生上述現(xiàn)象的原因可能由于各暴露組中不同個體對BPAF吸收和分布不同所導(dǎo)致,Yang等[35]的研究表明對小鼠進(jìn)行BPAF灌胃后,同一暴露組內(nèi)小鼠肝臟、腎、血漿和睪丸等組織中BPAF濃度均存在很大差異;也可能由于BPAF在不同魚體內(nèi)代謝情況不同所導(dǎo)致,研究表明,BPAF可在小鼠[35]和人肝臟細(xì)胞[25]被代謝轉(zhuǎn)化為BPAF-葡萄糖酸苷復(fù)合物(BPAF-G),Li等[25]研究發(fā)現(xiàn)BPAF-G的形成可以作為機(jī)體對BPAF暴露的一種防御機(jī)制,從而減弱BPAF的雌性激素效應(yīng)。鑒于肝臟對BPAF暴露的反應(yīng)復(fù)雜性對實(shí)驗(yàn)結(jié)果的影響,后續(xù)應(yīng)對肝臟中的一些消化酶的基因表達(dá)進(jìn)行測定,探究BPAF暴露引起肝臟反應(yīng)多樣性對vtg-1與vtg-3 mRNA表達(dá)具體影響。
芳香化酶是調(diào)控脊椎動物體內(nèi)雌激素形成的關(guān)鍵酶,魚類cyp19a基因編碼性腺中的細(xì)胞色素P450,主要分布于卵巢,在精巢間質(zhì)細(xì)胞中有少量表達(dá),調(diào)控原始精原細(xì)胞的增殖[36]。本實(shí)驗(yàn)中高濃度組BPAF暴露誘導(dǎo)性腺中和腦部cyp19a基因表達(dá)上調(diào),這與Scholz等[37]報導(dǎo)EE2可誘導(dǎo)青鳉(Oryzias latipes)卵巢cyp19 mRNA的表達(dá)上調(diào)的趨勢一致。Matsushima等[16]發(fā)現(xiàn)BPAF可作為ERα興奮劑,顯示出典型的擬雌性激素,并且Kumar等[38]在人胚胎實(shí)驗(yàn)中發(fā)現(xiàn)ERα可通過正反饋調(diào)節(jié)刺激cyp19a基因表達(dá)。因此BPAF可能通過ERα正反饋調(diào)節(jié)cyp19a mRNA,但其具體過程還有待進(jìn)一步研究。本實(shí)驗(yàn)中低濃度BPAF暴露條件下cyp19b基因表達(dá)量相較于對照組顯著提高,而最高濃度暴露時,性腺中cyp19b基因卻受到顯著抑制?,F(xiàn)有研究表明,在硬骨魚體內(nèi),雌二醇(E2)可以通過對雌激素受體與雌激素反應(yīng)元件調(diào)節(jié)而誘導(dǎo)cyp19b mRNA表達(dá)[39-41]。而最高濃度組BPAF暴露抑制cyp19b基因表達(dá),說明只有在一定的濃度范圍內(nèi)BPAF才可發(fā)揮較強(qiáng)的雌激素活性,但也有可能因?yàn)樘幚頋舛冗^高對性腺造成一定損傷,從而抑制基因表達(dá),產(chǎn)生這種抑制現(xiàn)象的原因是由于BPAF本身毒性效應(yīng)還是由于處理濃度過高,有待進(jìn)一步探討。由于cyp19基因在體內(nèi)受性類固醇如雌激素、雄激素或兩者聯(lián)合作用影響[42],因此后續(xù)實(shí)驗(yàn)需要針對BPAF暴露雄性斑馬魚體內(nèi)雄性激素水平變化對cyp19基因表達(dá)的影響機(jī)理進(jìn)行更深入的研究。
綜上,BPAF可通過誘導(dǎo)vtg-1和vtg-3的上調(diào)表達(dá)從而影響VTG的合成量,也可以通過影響cyp19a及cyp19b的表達(dá)量從而干擾雌激素及雄激素平衡,從而間接影響vtg基因表達(dá)。而VTG可調(diào)節(jié)生殖細(xì)胞滲透壓[43]、抵御病原微生物[44]和參與受精過程[45]等一系列生理過程,因此BPAF可以影響下丘腦-垂體-性腺軸與免疫系統(tǒng)正常生理生化行為。本試驗(yàn)中BPAF暴露對雄魚VTG合成相關(guān)基因的表達(dá)的影響隨暴露濃度存在波動性的變化,可能是由于BPAF作為內(nèi)分泌干擾物可能啟動了下丘腦-垂體-甲狀腺軸的反饋調(diào)節(jié),從而相關(guān)基因的表達(dá)也會呈現(xiàn)出波動[46],也可能是因?yàn)轸~類自身存在個體差異,本試驗(yàn)缺少對其他可能影響VTG合成下丘腦-垂體-甲狀腺軸相關(guān)基因表達(dá)的檢測,BPAF對于VTG合成的干擾機(jī)制需要進(jìn)一層次的研究。
致謝:感謝海南大學(xué)環(huán)境與植物保護(hù)學(xué)院趙洪偉副教授在文章修改中給予的幫助。
通訊作者簡介:唐文浩(1956—),男,學(xué)士,教授,博士研究生導(dǎo)師,主要研究方向?yàn)槲廴究刂婆c資源化技術(shù)、污染環(huán)境修復(fù)與重建技術(shù)和環(huán)境生態(tài)學(xué)。近年來發(fā)表學(xué)術(shù)論文20余篇,獲專利授權(quán)10項。
[1]Song S, Ruan T, Wang T, et al. Distribution and preliminary exposure assessment of bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China [J]. Environmental Science & Technology, 2012, 46(24): 13136-13143
[2]Solé M, Porte C, Barceló D. Analysis of the estrogenic activity of sewage treatment works and receiving waters using vitellogenin induction in fish as a biomarker [J]. TrAC Trends in Analytical Chemistry, 2001, 20(9): 518-525
[3]Chemical Information Profile for Bisphenol AF [CAS No. 1478-61-1] [EB/OL]. https://ntp.niehs.nih.gov/ntp/htdocs/chem_background/exsumpdf/bisphenolaf_093008_508.pdf.
[4]Kitamura S, Suzuki T, Sanoh S, et al. Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds [J]. Toxicological Sciences, 2005, 84(2): 249-259
[5]楊洋, 陳亞文, 唐天樂, 等. 雙酚AF暴露對胚胎期和幼魚期斑馬魚的毒性效應(yīng)[J]. 環(huán)境科學(xué)研究, 2015, 28(8): 1219-1226
YangY, Chen Y W, Tang T L, et al. Toxic effects of bisphenol AF on zebrafish embryos and larvae [J]. Research of Environmental Sciences, 2015, 28(8): 1219-1226 (in Chinese)
[6]Westerfield M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) [M]. Eugene: University of Oregon Press, 2000
[7]Organisation for Economic Co-operation and Development (OECD). 230: 21-day Fish Assay A Short-Term Screening for Oestrogenic and Androgenic Activity, and Aromatase Inhibition [R]. Paris: OECD, 2009: 1-38
[8]Babaei F, Ramalingam R, Tavendale A, et al. Novel blood collection method allows plasma proteome analysis from single zebrafish [J]. Journal of Proteome Research, 2013, 12(4): 1580-1590
[9]Hoffmann J, Torontali S, Thomason R, et al. Hepatic gene expression profiling using genechips in zebrafish exposed to 17α-ethynylestradiol [J]. Aquatic Toxicology, 2006, 79(3): 233-246
[10]Meng X, Bartholomew C, Craft J A. Differential expression of vitellogenin and oestrogen receptor genes in the liver of zebrafish, Danio rerio [J]. Analytical and Bioanalytical Chemistry, 2010, 396(2): 625-630
[11]Arukwe A, Nordtug T, Kortner T M, et al. Modulation of steroidogenesis and xenobiotic biotransformation responses in zebrafish (Danio rerio) exposed to water-soluble fraction of crude oil [J]. Environmental Research, 2008, 107(3): 362-370
[12]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J]. Methods, 2001, 25(4): 402-408
[13]Li Y, Burns K A, Arao Y, et al. Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor α and β in vitro [J]. Environmental Health Perspectives, 2012, 120(7): 1029
[14]Feng Y, Yin J, Jiao Z, et al. Bisphenol AF may cause testosterone reduction by directly affecting testis function in adult male rats [J]. Toxicology Letters, 2012, 211(2): 201-209
[15]Lee S, Kim Y K, Shin T-Y, et al. Neurotoxic effects of bisphenol AF on calcium-induced ROS and MAPKs [J]. Neurotoxicity Research, 2013, 23(3): 249-259
[16]Matsushima A, Liu X, Okada H, et al. Bisphenol AF is a full agonist for the estrogen receptor ERalpha but a highly specific antagonist for ERbeta [J]. Environmental Health Perspectives, 2010, 118(9): 1267-1272
[17]Li M, Guo J, Gao W, et al. Bisphenol AF-induced endogenous transcription is mediated by ERalpha and ERK1/2 activation in human breast cancer cells [J]. PloS one, 2014, 9(4): e94725
[18]OECD. OECD Guidelines for the Testing of Chemicals [R]. Paris: OECD, 1994
[19]Copeland P, Sumpter J, Walker T, et al. Vitellogenin levels in male and female rainbow trout (Salmo gairdneri Richardson) at various stages of the reproductive cycle [J]. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 83(2): 487-493
[20]Oakes K D, Sibley P K, Martin J W, et al. Short‐term exposures of fish to perfluorooctane sulfonate: Acute effects on fatty acyl‐CoA oxidase activity, oxidative stress, and circulating sex steroids [J]. Environmental Toxicology and Chemistry, 2005, 24(5): 1172-1181
[21]Mandich A, Bottero S, Benfenati E, et al. In vivo exposure of carp to graded concentrations of bisphenol A [J]. General and Comparative Endocrinology, 2007, 153(1): 15-24
[22]Tabata A, Watanabe N, Yamamoto I, et al. The effect of bisphenol A and chlorinated derivatives of bisphenol A on the level of serum vitellogenin in Japanese medaka (Oryzias latipes) [J]. Water Science & Technology, 2004, 50(5): 125-132
[23]白瑤, 張育輝, 翟麗麗, 等. 雙酚A誘導(dǎo)雄性中國林蛙肝細(xì)胞雌激素受體表達(dá)和卵黃蛋白原合成[J]. 動物學(xué)研究, 2011, 32(3): 317-322
Bai Y, Zhang Y H, Zhai L L, et al. Estrogen receptor expression and vitellogenin synthesis induced in hepatocytes of male frogs Rana chensinensis exposed to bisphenol A [J]. Zoological Research, 2011, 32(3): 317-322 (in Chinese)
[24]Van Den Belt K, Verheyen R, Witters H. Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens[J]. Ecotoxicology and Environmental Safety, 2003, 56(2): 271-281
[25]Li M, Yang Y, Yin J, et al. Biotransformation of bisphenol AF to its major glucuronide metabolite reduces estrogenic activity [J]. PloS one, 2012, 8(12): e83170-e83170
[26]Calabrese E J, Baldwin L A. The hormetic dose-response model is more common than the threshold model in toxicology [J]. Toxicological Sciences, 2003, 71(2): 246-250
[27]Schmidt J, Kotnik P, Trontelj J, et al. Bioactivation of bisphenol A and its analogs (BPF, BPAF, BPZ and DMBPA) in human liver microsomes [J]. Toxicology in Vitro, 2013, 27(4): 1267-1276
[28]Wang H, Tan J T, Emelyanov A, et al. Hepatic and extrahepatic expression of vitellogenin genes in the zebrafish, Danio rerio [J]. Gene, 2005, 356: 91-100
[29]Ma L, Li D, Wang J, et al. Effects of adrenergic agonists on the extrahepatic expression of vitellogenin Ao1 in heart and brain of the Chinese rare minnow (Gobiocypris rarus) [J]. Aquatic Toxicology, 2009, 91(1): 19-25
[30]Yin N, Jin X, He J, et al. Effects of adrenergic agents on the expression of zebrafish (Danio rerio) vitellogenin Ao1 [J]. Toxicology and Applied Pharmacology, 2009, 238(1): 20-26
[31]Zucchi S, Blüthgen N, Ieronimo A, et al. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males [J]. Toxicology and Applied Pharmacology, 2011, 250(2): 137-146
[32]黃曄, 任華, 孫竹筠, 等. 壬基酚和雙酚A對雄性斑馬魚(Danio rerio )卵黃蛋白原mRNA的誘導(dǎo)效應(yīng)[J]. 生態(tài)毒理學(xué)報, 2008, 3(3): 274-279
Huang Y, Ren H, Sun Z Y, et al. Vitellogenin mRNA expression in male zebrafish (Danio rerio) induced by nonylphenol and bisphenol-A [J]. Asian Journal of Ecotoxicology, 2008, 3(3): 274-279 (in Chinese)
[33]王德鑫, 陳潔, 王蔚, 等. 金雀異黃素對雄性斑馬魚卵黃原蛋白mRNA的誘導(dǎo)機(jī)理[J]. 環(huán)境科學(xué)研究, 2015, 28(1): 46-51
Wang D X, Chen J, Wang W, et al. Induction mechanism of genistein on Vtg mRNA in male zebrafish (Danio rerio) [J]. Research of Environmental Sciences, 2015, 28(1): 46-51 (in Chinese)
[34]Williams T D, Diab A M, Gubbins M, et al. Transcriptomic responses of European flounder (Platichthys flesus) liver to a brominated flame retardant mixture [J]. Aquatic Toxicology, 2013, 142: 45-52
[35]Yang Y, Yin J, Yang Y, et al. Determination of bisphenol AF (BPAF) in tissues, serum, urine and feces of orally dosed rats by ultra-high-pressure liquid chromatography-electrospray tandem mass spectrometry [J]. Journal of Chromatography B, 2012, 901: 93-97
[36]Kishida M, Mclellan M, Miranda J A, et al. Estrogen and xenoestrogens upregulate the brain aromatase isoform (P450aromB) and perturb markers of early development in zebrafish (Danio rerio) [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2001, 129(2): 261-268
[37]Scholz S, Gutzeit H. 17-α-ethinylestradiol affects reproduction, sexual differentiation and aromatase gene expression of the medaka (Oryzias latipes) [J]. Aquatic toxicology, 2000, 50(4): 363-373
[38]Kumar P, Kamat A, Mendelson C R. Estrogen receptor α (ERα) mediates stimulatory effects of estrogen on aromatase (CYP19) gene expression in human placenta [J]. Molecular Endocrinology, 2009, 23(6): 784-793
[39]Menuet A, Pellegrini E, Brion F, et al. Expression and estrogen‐dependent regulation of the zebrafish brain aromatase gene [J]. Journal of Comparative Neurology, 2005, 485(4): 304-320
[40]Le Page Y, Menuet A, Kah O, et al. Characterization of a cis‐acting element involved in cell‐specific expression of the zebrafish brain aromatase gene [J]. Molecular Reproduction and Development, 2008, 75(10): 1549-1557
[41]Le Page Y, Scholze M, Kah O, et al. Assessment of xenoestrogens using three distinct estrogen receptors and the zebrafish brain aromatase gene in a highly responsive glial cell system [J]. Environmental Health Perspectives, 2006, 114(5): 752-758
[42]Zhao C, Fujinaga R, Tanaka M, et al. Region‐specific expression and sex‐steroidal regulation on aromatase and its mRNA in the male rat brain: Immunohistochemical and in situ hybridization analyses [J]. Journal of Comparative Neurology, 2007, 500(3): 557-573
[43]Williams V, Reading B, Hiramatsu N, et al. Multiple vitellogenins and product yolk proteins in striped bass, Morone saxatilis: Molecular characterization and processing during oocyte growth and maturation [J]. Fish Physiology and Biochemistry, 2014, 40(2): 395-415
[44]Sun C, Hu L, Liu S, et al. Antiviral activity of phosvitin from zebrafish Danio rerio [J]. Developmental & Comparative Immunology, 2013, 40(1): 28-34
[45]Akasaka M, Harada Y, Sawada H. Vitellogenin C-terminal fragments participate in fertilization as egg-coat binding partners of sperm trypsin-like proteases in the ascidian Halocynthia roretzi [J]. Biochemical and Biophysical Research Communications, 2010, 392(4): 479-484
[46]Tang T, Yang Y, Chen Y, et al. Thyroid disruption in zebrafish larvae by short-term exposure to bisphenol AF [J]. International Journal of Environmental Research and Public Health, 2015, 12(10): 13069-13084
◆
Effects of Bisphenol AF on Level of Vitellogenin and Expressions of Cytochrome P450 Aromatase(cyp19aandb) in Male Zebrafish
Chen Yawen1,2, Yang Yang1,2, Tang Tianle2,3, Tang Wenhao1,2,*
1. College of Environment and Plant Protection, Hainan University, Haikou 570228, China 2. Haikou Key Laboratory of Environment Toxicology, Hainan University, Haikou 570228, China 3. Haikou Medical College, Haikou 571101, China
28 October 2015accepted 22 December 2015
Bisphenol AF (4,4'-hexafluoroisopropylidene-2-diphenol, BPAF) has endocrine disrupting effects on organisms. To study the effects of low dose of BPAF on organism in aquatic ecosystems, male adult zebrafish (Danio rerio) were exposed to 0.005, 0.05 and 0.5 mg·L-1BPAF for 30 days. The level of vitellogenin (VTG) in plasma, the expression of two kinds of vtg mRNA (vtg-1 and vtg-3) and two kinds of aromatase genes (cyp19a and cyp19b) were analyzed after BPAF exposure. Results showed that a significantly high level of VTG could be induced by 0.005mg·L-1BPAF for 30 day-exposure, but no significant upgrade of VTG was observed with the exposure to higher level of BPAF. Multiple effects were displayed by BPAF on four kinds of genes expression in different tissues. At 0.005mg·L-1BPAF group, the BPAF markedly upregulated the expressions of cyp19b in brain, cyp19a in liver as well as vtg-1 , vtg-3 and cyp19b in gonad. While treated with 0.5 mg·L-1BPAF, the expressions of vtg-1 and vtg-3 mRNA in the brains and cyp19a mRNA in the gonads were significantly increased. These results indicated that BPAF has estrogenic-like effects, which can induce the expression of both vtg genes and aromatase genes of the male zebrafish. BPAF can cause the increase of VTG content in the plasma of zebrafish, thereby interfering with the physiological processes of hypothalamus-pituitary-gonad axis and the immune system which VTG participates.
bisphenol AF; zebrafish; vitellogenin; aromatse(cyp19)
海南省中西部高校提升綜合實(shí)力工作資金資助項目(ZXBJH-XK004);海南省科協(xié)青年科技英才學(xué)術(shù)創(chuàng)新計劃項目(201513)
陳亞文(1991-),女,碩士研究生,研究方向?yàn)樯鷳B(tài)毒理學(xué),E-mail: chenyw0553@126.com;
Corresponding author), E-mail: twh1229@163.com
10.7524/AJE.1673-5897.20151028001
2015-10-28錄用日期:2015-12-22
1673-5897(2015)6-320-08
X171.5
A
陳亞文,楊洋,唐天樂, 等. 雙酚AF對雄性斑馬魚卵黃蛋白原水平與芳香化酶基因表達(dá)的影響[J]. 生態(tài)毒理學(xué)報,2015, 10(6): 320-327
Chen Y W, Yang Y, Tang T L, et al. Effects of bisphenol AF on level of vitellogenin and expressions of cytochrome P450 aromatase (cyp19a and b) in male zebrafish [J]. Asian Journal of Ecotoxicology, 2015, 10(6): 320-327 (in Chinese)