方思冬,程林松,李彩云,曹仁義,楊 戩,何聰鴿
(1.中國石油大學(xué)(北京)石油工程學(xué)院,北京 102249; 2.中國石油長(zhǎng)慶油田公司 勘探開發(fā)研究院,陜西 西安710000; 3.中國石油勘探開發(fā)研究院,北京 100083)
低滲透致密儲(chǔ)層油氣資源量巨大,但普遍具有低孔隙度低滲透率和較強(qiáng)應(yīng)力敏感等特點(diǎn),開發(fā)難度大[1].對(duì)此,壓裂水平井是關(guān)鍵的開采技術(shù).多年來,已有眾多學(xué)者對(duì)低滲透和致密油氣藏應(yīng)力敏感進(jìn)行實(shí)驗(yàn)和理論研究,得到描述儲(chǔ)層應(yīng)力敏感方法和回歸重要參數(shù),對(duì)高效合理開發(fā)低滲透油藏提供了基礎(chǔ)[2-6].薛永超等[5]通過大量低滲透實(shí)際巖心實(shí)驗(yàn)得到不同滲透率級(jí)別下應(yīng)力敏感因數(shù),而文獻(xiàn)[7]的因數(shù)回歸方法被普遍采用.同時(shí),人們基于勢(shì)理論對(duì)壓裂水平井穩(wěn)定產(chǎn)量[8-11]及基于格林函數(shù)和拉斯變換對(duì)不穩(wěn)定滲流[12-19]進(jìn)行大量研究,并形成系統(tǒng)的理論和方法,但以上穩(wěn)定和不穩(wěn)定方法都是以線性滲流為前提.然而,實(shí)際地層由于復(fù)雜的地應(yīng)力變化,人工裂縫通常與井筒呈一定角度,目前將應(yīng)力敏感表征和多角度縫壓裂水平井結(jié)合起來研究的很少.因此,筆者基于攝動(dòng)理論[20-21],考慮應(yīng)力敏感表征,結(jié)合拉普拉斯變換,建立并求解考慮儲(chǔ)層應(yīng)力敏感的多段多角度裂縫壓裂水平井不穩(wěn)定滲流數(shù)學(xué)模型,分析流動(dòng)形態(tài),明確儲(chǔ)層應(yīng)力敏感性對(duì)產(chǎn)量的影響,得到不同裂縫參數(shù)下的產(chǎn)量特征,其結(jié)果對(duì)于低滲透致密儲(chǔ)層壓裂水平井產(chǎn)量評(píng)價(jià)和參數(shù)優(yōu)化具有指導(dǎo)意義.
水平井穿過多條與水平井筒存在一定夾角α的裂縫見圖1.整個(gè)油藏為水平等厚、均質(zhì)油藏;油藏頂?shù)追忾],只考慮無限大外邊界;水平井僅在裂縫處射孔生產(chǎn);水平井定產(chǎn)生產(chǎn),不考慮井筒摩阻引起的附加壓力降,各條裂縫在井筒處壓力相等;水平井井筒和人工裂縫均為無限導(dǎo)流;地層和流體均微可壓縮,流體為單相,且地層中流動(dòng)符合達(dá)西定理.
1.2.1 地層滲流
地層滲透率應(yīng)力敏感數(shù)學(xué)模型[21]為
式中:K為地層瞬時(shí)滲透率;Ki為地層原始滲透率;γ為應(yīng)力敏感因數(shù);pi為原始地層壓力;p為地層壓力.
引入量綱為一的數(shù)將單相不穩(wěn)定滲流方程化為
1.2.2 攝動(dòng)線性化
式(2)非線性較強(qiáng),不能直接求出解析解,因此引入攝動(dòng)變換,即
將式(2)轉(zhuǎn)化為
由于γD在實(shí)際油藏中通常為一小量,可以將η按照γD展開為級(jí)數(shù)形式,即
對(duì)于低滲透儲(chǔ)層,γD很少超過0.2,二階項(xiàng)的數(shù)量級(jí)遠(yuǎn)遠(yuǎn)小于1階解[22],因此,將式(4)的零階解與一階解同時(shí)進(jìn)行拉普拉斯變換作為下一步求解裂縫流動(dòng)的基函數(shù),即
式(7-8)中:K0為零階貝塞爾函數(shù);E1為冥積分函數(shù);s為拉氏空間變量.
式(8)中積分項(xiàng)用四節(jié)點(diǎn)高斯—拉蓋爾數(shù)值積分[23]表示為
1.2.3 人工裂縫
將每條裂縫離散成一維單元見圖1.整個(gè)滲流方程是非線性的,無法直接利用疊加原理,但疊加原理可以用于攝動(dòng)解,零階和一階攝動(dòng)解均是線性解.基于此,分別在零階和一階攝動(dòng)空間下線積分得到裂縫單元線源函數(shù)表達(dá)式為
假設(shè)壓裂的裂縫條數(shù)為n,每條裂縫離散單元個(gè)數(shù)為m(i),i=1~n,每一條壓裂裂縫都可以在井筒的任意位置.認(rèn)為壓裂裂縫都在相同的井筒壓力下生產(chǎn),即為水平井無限導(dǎo)流能力模型.裂縫為無限導(dǎo)流能力,即同一條裂縫不同單元壓力相同水平井總的流量是每條壓裂裂縫中流出流量的總和.
零階攝動(dòng)空間下流量ql0i和壓力ηD0ij滿足表達(dá)式為
式(12-13)中:nt為裂縫分段數(shù);j=1/nt.
將每個(gè)單元對(duì)應(yīng)式(12)、(13)相應(yīng)的公式形式寫成矩陣方程組為
在Laplace空間下分別計(jì)算得到井底壓力零階和一階攝動(dòng)解,再利用Stehfest數(shù)值反演方法[24]求得實(shí)空間下井底壓力零階和一階攝動(dòng)解,并變換得到井底壓力pD為
利用拉普拉斯空間下無因次壓力和無因次產(chǎn)量的關(guān)系[25],由定產(chǎn)生產(chǎn)井底壓力解求出定壓生產(chǎn)的產(chǎn)量qD,即
式中:qD為無因次產(chǎn)量
以無因次應(yīng)力敏感因數(shù)γD為0.1,3條無限導(dǎo)流裂縫壓裂水平井為例,定產(chǎn)油量分析井底壓力,將模型計(jì)算結(jié)果與數(shù)值模擬軟件Eclipse考慮應(yīng)力敏感的裂縫LGR加密計(jì)算結(jié)果進(jìn)行對(duì)比.該壓裂水平井模型數(shù)值模擬壓力分布見圖2(a),對(duì)比圖2(b)中模型無因次井底壓降和數(shù)值模擬無因次井底壓降,2條無因次曲線基本重合.
壓裂水平井流動(dòng)形態(tài)與流動(dòng)階段受水平井長(zhǎng)度(水平井只在裂縫處射孔)和裂縫條數(shù)影響很小,見圖3(a).因此,假設(shè)油藏為各向同性,選取存在3條與井筒呈不同角度的壓裂裂縫,裂縫兩翼不等長(zhǎng).無因次參考長(zhǎng)度選取最長(zhǎng)裂縫半長(zhǎng).各參數(shù)取值:裂縫1半長(zhǎng)依次為100m;夾角依次為0.33π(60°);裂縫2半長(zhǎng)依次為120m;夾角為0.5π(90°);裂縫3半長(zhǎng)依次為80m,夾角依次為0.38π(70°);裂縫間距為80m.裂縫為無限導(dǎo)流.無因次化后計(jì)算考慮應(yīng)力敏感和不考慮應(yīng)力敏感無因次井底壓降見圖3(b).根據(jù)壓力和壓力導(dǎo)數(shù)曲線分析,流動(dòng)形態(tài)分3種:(1)地層線性流動(dòng)階段,指在流動(dòng)初期地層中流體線性的流向各條壓裂裂縫,無因次壓降分布見圖4(a).在雙對(duì)數(shù)圖上表現(xiàn)為無因次壓力導(dǎo)數(shù)曲線為1/2斜率的直線段.(2)過渡流階段,該階段沒有明顯特征.(3)擬徑向流動(dòng)階段,是指對(duì)于整個(gè)油藏,如果生產(chǎn)時(shí)間很長(zhǎng),且壓力波未傳播到邊界,則流體以擬徑向流的形式向水平井及壓裂裂縫區(qū)域流動(dòng),無因次壓降分布見圖4(b).對(duì)于無應(yīng)力敏感油藏,該流動(dòng)段在雙對(duì)數(shù)診斷圖上表現(xiàn)為無因次壓力導(dǎo)數(shù)曲線為0.5水平直線段;而存在應(yīng)力敏感油藏,其徑向流階段,壓力導(dǎo)數(shù)曲線上翹,主要因?yàn)榈貙訅毫ο陆?,近井裂縫區(qū)滲透率下降很大,造成流動(dòng)阻力增大.
與前面假設(shè)相似,以3條無限導(dǎo)流裂縫壓裂水平井為例,計(jì)算不同無因次應(yīng)力敏感因數(shù)下產(chǎn)量qD變化見圖5.由圖5可知,壓裂水平井流動(dòng)初期為地層向裂縫的線性流動(dòng),壓降幅度小,應(yīng)力敏感對(duì)產(chǎn)量影響較小,圖中初期5條曲線幾乎重合.但當(dāng)擬徑向流動(dòng)階段,隨著壓降范圍和幅度的增大,應(yīng)力敏感因數(shù)對(duì)產(chǎn)量影響變大,并且產(chǎn)量變化幅度隨著應(yīng)力敏感因數(shù)增大而增大.
根據(jù)以往文獻(xiàn)資料[9,10,15]和本文模型特點(diǎn)分析在應(yīng)力敏感條件下裂縫條數(shù)和裂縫角度對(duì)產(chǎn)量的影響.而針對(duì)常規(guī)裂縫參數(shù)對(duì)壓力動(dòng)態(tài)和產(chǎn)量的影響在以往的文獻(xiàn)中有詳細(xì)的分析[24,26].
隨著壓裂工藝技術(shù)的不斷完善和提高,多裂縫壓裂得到廣泛應(yīng)用.提高裂縫條數(shù)是增加產(chǎn)量的重要手段,然而裂縫條數(shù)越多,產(chǎn)量增加幅度越小,在一定經(jīng)濟(jì)條件下過多的壓裂是不合理的.應(yīng)力敏感油藏裂縫條數(shù)對(duì)產(chǎn)量的影響見圖6,圖6(a)沒有考慮應(yīng)力敏感,圖6(b)考慮應(yīng)力敏感(無因次應(yīng)力敏感因數(shù)為0.15),裂縫條數(shù)對(duì)初期產(chǎn)量影響較大,后期影響程度減小,然而考慮應(yīng)力敏感的曲線后期產(chǎn)量差距明顯,應(yīng)力敏感減弱了裂縫間干擾作用.因此,實(shí)際油藏存在應(yīng)力敏感的情況下,壓裂裂縫數(shù)目應(yīng)比不考慮應(yīng)力敏感優(yōu)化的裂縫條數(shù)多才能達(dá)到同樣的增產(chǎn)效果.
目前對(duì)裂縫與井筒角度對(duì)壓力和產(chǎn)量的影響研究較少.假設(shè)水平井壓裂3條裂縫,裂縫半長(zhǎng)為100 m,裂縫間距為50m,裂縫為無限導(dǎo)流能力,通過分析不同裂縫與井筒角度井底壓力(見圖7),裂縫與井筒角度越大,無因次產(chǎn)量越大,當(dāng)裂縫與井筒垂直時(shí),產(chǎn)量達(dá)到最大值.對(duì)比圖7(a)不考慮應(yīng)力敏感和圖7(b)考慮應(yīng)力敏感(無因次應(yīng)力敏感因數(shù)為0.1)曲線特征知,兩者曲線形態(tài)幾乎相同,都是角度對(duì)初期產(chǎn)量影響大,后期影響弱,因?yàn)閼?yīng)力敏感對(duì)產(chǎn)量后期影響大,而線性流動(dòng)階段影響較?。划?dāng)裂縫與井筒角度小于0.33π,角度越小,產(chǎn)量減少越多.
(1)基于攝動(dòng)方法,推導(dǎo)拉普拉斯空間下零階和一階裂縫線源解,分別利用疊加原理,求解多角度多裂縫在零階和一階攝動(dòng)空間的井底壓力,并利用變換式得到實(shí)空間下考慮應(yīng)力敏感非線性滲流壓裂水平井產(chǎn)量.
(2)應(yīng)力敏感油藏壓裂水平井流動(dòng)形態(tài)在壓力導(dǎo)數(shù)的雙對(duì)數(shù)曲線也呈現(xiàn)較明顯的裂縫線性流與系統(tǒng)徑向流動(dòng)形態(tài),然而應(yīng)力敏感模型所得的雙對(duì)數(shù)壓力及其導(dǎo)數(shù)曲線在系統(tǒng)徑向流階段出現(xiàn)上翹,且無量綱滲透率模量數(shù)值越大,曲線上翹越明顯,說明壓差增加,應(yīng)力敏感對(duì)產(chǎn)量影響越大.
(3)應(yīng)力敏感因數(shù)越大,流動(dòng)后期產(chǎn)量越小;而應(yīng)力敏感效應(yīng)減弱了縫間干擾作用,不同裂縫條數(shù)考慮應(yīng)力敏感的曲線后期產(chǎn)量差距比不考慮應(yīng)力敏感明顯,因此,實(shí)際油藏存在應(yīng)力敏感的情況下,壓裂裂縫數(shù)目應(yīng)比不考慮應(yīng)力敏感優(yōu)化的裂縫條數(shù)多才能達(dá)到同樣的增產(chǎn)效果;裂縫與井筒夾角越大,無因次產(chǎn)量越大,當(dāng)裂縫與井筒垂直時(shí),產(chǎn)量達(dá)到最大值.
(References):
[1]黃延章.低滲透油層滲流機(jī)理[M].北京:石油工業(yè)出版社,1998:58-79.Huang Yanzhang.The mechanism of flow in low permeability reservoir[M].Beijing:Petroleum Industry Press,1998:58-79.
[2]李傳亮.應(yīng)力敏感對(duì)油井產(chǎn)量的影響[J].西南石油大學(xué)學(xué)報(bào):自然科學(xué)版,2009,31(1):170-172.Li Chuanliang.Stress sensitivity influence on oil well productivity[J].Journal of Southwest Petroleum University:Science & Technology Edition,2009,31(1):170-172.
[3]高建,呂靜,王家祿.儲(chǔ)層條件下低滲透巖石應(yīng)力敏感評(píng)價(jià)[J].巖石力學(xué)與工程學(xué)報(bào),2009(S2):3899-3902.Gao Jian,Lv Jing,Wang Jialu.Evaluation on stress sensitivity of low permeability rock under reservoir condition[J].Chinese Journal of Rock Mechanics and Engineering,2009(S2):3899-3902.
[4]代平.低滲透應(yīng)力敏感油藏實(shí)驗(yàn)及數(shù)值模擬研究[D].成都:西南石油大學(xué),2006.Dai Ping.The experiment and reservoir simulation of low permeability stress sensitive reservoirs[D].Chengdu:Southwest Petroleum University,2006.
[5]薛永超,程林松.不同級(jí)別滲透率巖心應(yīng)力敏感實(shí)驗(yàn)對(duì)比研究[J].石油鉆采工藝,2011,33(3):38-41.Xue Yongchao,Cheng Linsong.Experimental comparison study on stress sensitivity of different permeability cores[J].Oil Drilling &Production Technology,2011,33(3):38-41.
[6]孫賀東,韓永新,肖香姣,等.裂縫性應(yīng)力敏感氣藏的數(shù)值試井分析[J].石油學(xué)報(bào),2008,29(2):270-273.Sun Hedong,Han Yongxin,Xiao xiangjiao.Numerical well test analysis of stress-sensitive fractured gas reservoir[J].Acta Petrolei Sinica,2008,29(2):270-273.
[7]王培璽,劉仁靜.低滲透儲(chǔ)層應(yīng)力敏感因數(shù)統(tǒng)一模型[J].油氣地質(zhì)與采收率,2012,19(2):75-77.Wang Peixi,Lu Renjing.Universal model of stress sensitive coefficient for low permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2012,19(2):75-77.
[8]張德良,張烈輝,趙玉龍.低滲透氣藏多級(jí)壓裂水平井穩(wěn)態(tài)產(chǎn)量模型[J].油氣地質(zhì)與采收率,2013,20(3):107-110.Zhang Deliang,Zhang Liehui,Zhao Yulong.Study on steady productivity of fractured horizontal well in low permeability gas reservoir[J].Petroleum Geology and Recovery Efficiency,2013,20(3):107-110.
[9]牟珍寶,袁向春,朱筱敏.低滲透油藏壓裂水平井產(chǎn)量計(jì)算方法[J].現(xiàn)代地質(zhì),2009,23(2):37-40.Mu Zhenbao,Yuan Xiangchun,Zhu Xiaomin.The calculating method of horizontal wells with hydraulic fractures for low permeability reservoirs[J].Geoscience,2009,23(2):37-40.
[10]范子菲,方宏長(zhǎng),牛新年.裂縫性油藏水平井穩(wěn)態(tài)解產(chǎn)量公式研究[J].石油勘探與開發(fā),1996,15(3):52-57.Fan Zifei,F(xiàn)ang Hongchang,Niu Xinnian.A steady solution formula of horizontal well productivity in a fractured reservoir[J].Petroleum Exploration and Development,1996,15(3):52-57.
[11]王志平,朱維耀,岳明,等.低、特低滲透油藏壓裂水平井產(chǎn)量計(jì)算方法[J].北京科技大學(xué)學(xué)報(bào),2012,34(7):750-754.Wang Zhiping,Zhu Weiyao,Yue Ming,et al.A method to predict the production of fractured horizontal wells in low/ultralow permeability reservoirs[J].Journal of University of Science and Technology Beijing,2012,34(7):750-754.
[12]Gringarten A C,Ramey H J.Unsteady-state pressure distributions created by a well with a single horizontal fracture,partial penetration,or restricted entry[R].SPE 3819,1974.
[13]Guo G,Evans R D.Pressure-transient behavior and inflow performance of horizontal wells intersecting discrete fractures[R].SPE 26446,1993.
[14]Valko P,Amini S.The method of distributed volumetric sources for calculating the transient and pseudosteady-state productivity of complex well-fracture configurations[R].SPE 106279,2007.
[15]Zhu D,Magalhaes F,Valko P.Predicting the productivity of multiple-fractured horizontal gas wells[R].SPE 106280,2007.
[16]Ozkan E,Raghavan R.Some new solutions to solve problems in well test analysis:part 1-analytical considerations[R].SPE,1998.
[17]Raghavan R S,Chen C C,Agarwal B.An analysis of horizontal wells intercepted by multiple fractures[R].SPE 27652,1997.
[18]Brown M,Ozkan E,Raghavan R,et al.Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs[R].SPE 125043,2010.
[19]Ozkan E,Brown M L,Raghavan R.Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs[R].SPE 121290,2010.
[20]Pedrosa O A.Pressure transient response in stress-sensitive formations[R].SPE 15115,1986.
[21]同登科,陳欽雷,廖新維.非線性滲流力學(xué)[M].北京:石油工業(yè)出版社,2003:97-104.Tong Dengke,Chen Qinlei,Liao Xinwei.Nonlinear flow dynamics in porous media[M].Beijing:Petroleum Industry Press,2003:97-104.
[22]劉春鳳,何亞麗.應(yīng)用數(shù)值分析[M].北京:冶金工業(yè)出版社,2005:155.Liu Chunfeng,He Yali.Applied numerical analysis[M].Beijing:Metallurgical Industry Press,2005:155.
[23]同登科,陳欽雷.關(guān)于Laplace數(shù)值反演stehfest方法的一點(diǎn)注記[J].石油學(xué)報(bào),2001,11(6):91-92.Tong Dengke,Chen Qinlei.A note on stehsfest numerical inversion of Laplace transforms[J].Acta Petrolei Sinica,2001,11(6):91-92.
[24]Van Everdingen,Hurst H W.The application of the Laplace transformation to flow problems in reservoirs[R].SPE 949305,1949.
[25]尹洪軍,楊春城,徐子怡,等.分段壓裂水平井壓力動(dòng)態(tài)分析[J].東北石油大學(xué)學(xué)報(bào),2014,34(3):75-80.Yin Hongjun,Yang Chuncheng,Xu Ziyi,et al.Pressure analysis of multi-fractured horizontal well[J].Journal of Northeast Petroleum University,2014,34(3):75-80.
[26]任俊杰,郭平,王德龍,等.頁巖氣藏壓裂水平井產(chǎn)量模型及影響因素[J].東北石油大學(xué)學(xué)報(bào),2012,36(6):76-81.Ren Junjie,Guo Ping,Wang Delong,et al.Productivity model of fractured horizontal wells in shale gas reservoirs and analysis of influential factors[J].Journal of Northeast Petroleum University,2012,36(6):76-81.