李 曌,李 鵬,王恒沙,常童潔,高瑩瑩,陳 超,張里程,張立海,張 毅,唐佩福
1解放軍總醫(yī)院,北京 100853;2軍事醫(yī)學(xué)科學(xué)院 基礎(chǔ)醫(yī)學(xué)研究所細(xì)胞生物學(xué)研究室,北京 100850;3北京雪邦科技有限公司,北京 100039;4清華大學(xué)蛋白質(zhì)設(shè)施細(xì)胞影像平臺(tái),北京 100084
Ⅵ型膠原在正常軟骨和骨關(guān)節(jié)炎軟骨中的空間分布
李 曌1,2,李 鵬1,2,王恒沙3,常童潔4,高瑩瑩4,陳 超1,張里程1,張立海1,張 毅2,唐佩福1
1解放軍總醫(yī)院,北京 100853;2軍事醫(yī)學(xué)科學(xué)院 基礎(chǔ)醫(yī)學(xué)研究所細(xì)胞生物學(xué)研究室,北京 100850;3北京雪邦科技有限公司,北京 100039;4清華大學(xué)蛋白質(zhì)設(shè)施細(xì)胞影像平臺(tái),北京 100084
目的 探究骨關(guān)節(jié)炎軟骨中Ⅵ型膠原空間分布的變化規(guī)律。方法 應(yīng)用Hartley豚鼠自發(fā)性骨關(guān)節(jié)炎模型(模型組)和健康豚鼠(對(duì)照組),取膝關(guān)節(jié)軟骨做冷凍切片,進(jìn)行Ⅵ型膠原免疫熒光染色,利用Delta-Vision Elite成像系統(tǒng)和Imaris軟件進(jìn)行斷層掃描、3D重建和定量分析,比較兩組軟骨細(xì)胞體積、Ⅵ型膠原厚度與體積的差異。結(jié)果 正常軟骨中,薄層Ⅵ型膠原層均勻包裹軟骨細(xì)胞,各層細(xì)胞外Ⅵ型膠原層厚度無(wú)統(tǒng)計(jì)學(xué)差異(P>0.05),體積隨細(xì)胞深度增加而增加(P<0.01);骨關(guān)節(jié)炎軟骨中,Ⅵ型膠原體積減?。≒<0.01)且空間分布不規(guī)則,移行層呈蜂窩狀或出現(xiàn)空洞,放射層中呈點(diǎn)、片狀彌散分布,且在細(xì)胞周基質(zhì)外出現(xiàn)散在的Ⅵ型膠原。結(jié)論 在骨關(guān)節(jié)炎軟骨中,Ⅵ型膠原體積減少,不完全包裹軟骨細(xì)胞,出現(xiàn)蜂窩、空洞和彌散分布的現(xiàn)象,這種改變可能是軟骨細(xì)胞變性的誘因之一。
Ⅵ型膠原;軟骨細(xì)胞;骨關(guān)節(jié)炎;豚鼠自發(fā)性骨關(guān)節(jié)炎模型
網(wǎng)絡(luò)出版時(shí)間:2015-04-21 09:26 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.3275.R.20150421.0926.003.html
軟骨細(xì)胞維持著關(guān)節(jié)軟骨的新陳代謝和正常生理功能[1],調(diào)控軟骨細(xì)胞的物理、化學(xué)微環(huán)境和維持正常軟骨細(xì)胞表型的最重要結(jié)構(gòu)是軟骨細(xì)胞周基質(zhì)(pericellular matrix,PCM)[2],Ⅵ型膠原蛋白(type Ⅵ collagen)是PCM的一種主要成分[3],其連接于軟骨細(xì)胞和Ⅱ型膠原網(wǎng)之間,增加了PCM的彈性模量,且與PCM中多種蛋白成分(如纖連蛋白、纖調(diào)蛋白等)結(jié)合[4],因此被認(rèn)為是調(diào)節(jié)軟骨細(xì)胞物理、化學(xué)微環(huán)境的重要物質(zhì)[5-6]。
軟骨細(xì)胞變性是骨關(guān)節(jié)炎(osteoarthritis,OA)病理演變的關(guān)鍵[1],軟骨細(xì)胞物理、化學(xué)微環(huán)境的改變?cè)谄渲衅鸬街匾饔谩ullig等[7]報(bào)道了在OA軟骨中Ⅵ型膠原蛋白含量有明顯改變,因此它可能與軟骨細(xì)胞退變有關(guān)。由于關(guān)節(jié)軟骨的空間結(jié)構(gòu)對(duì)其生物力學(xué)性能有很大影響,因此Ⅵ型膠原蛋白空間分布的變化可能在OA發(fā)病過(guò)程中有重要作用,但目前并無(wú)相關(guān)文獻(xiàn)報(bào)道。因此,本研究利用豚鼠自發(fā)性O(shè)A模型與健康豚鼠對(duì)比[8],通過(guò)3D圖像分析OA軟骨中Ⅵ型膠原的空間分布特征,為深入研究OA的病理機(jī)制提供基礎(chǔ)。
1 實(shí)驗(yàn)動(dòng)物 雄性Hartley豚鼠1月齡5只,體質(zhì)量300 ~ 350 (332.00±18.91) g;12月齡5只,體質(zhì)量1 000 ~ 1 300 (1 172.00±86.36) g。購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物中心(許可證號(hào):SCXK(京)2012-0001)。
2 主要試劑與儀器 Frozen Section Compound(Leica);蘇木素-伊紅染色試劑(江蘇碧云天);Anti-CollagenⅥantibody(abcam);FITC-IgG(Santa Cruz);DeltaVision-System(GE),搭載平場(chǎng)復(fù)消色差空氣鏡(40×,數(shù)值孔徑0.95)、平場(chǎng)復(fù)消色差油鏡(60×,數(shù)值孔徑1.35)以及軟件SoftWoRx Suite 2.0;Imaris 8.0(Bitplane)。
3 軟骨標(biāo)本的制備 1月齡豚鼠為健康對(duì)照組,12月齡為自發(fā)性O(shè)A組[9];處死豚鼠后解剖雙下肢,于內(nèi)側(cè)脛骨平臺(tái)處,用手術(shù)刀片刮取約0.3 cm× 0.5 cm的軟骨片數(shù)片,PBS溶液沖洗后于濾紙上吸干表面水分并展平,冷凍包埋劑包埋后-70℃冷凍待用。
4 Ⅵ型膠原免疫熒光染色(immunofluorescence staining,IF) 垂直于軟骨表面切取40 μm冷凍切片[6],3%過(guò)氧化氫溶液浸泡60 min,室溫下10%山羊血清封閉20 min,4℃Anti-CollagenⅥ antibody(1∶50)孵育過(guò)夜,PBS漂洗3次,室溫下FITC二抗(1∶100)避光孵育30min,PBS漂洗3次后封片待用。以PBS代替一抗作為陰性對(duì)照,其他染色方法同上。
5 3D圖像采集及處理 在Delta-Vision成像系統(tǒng)[10]觀察IF切片Ⅵ型膠原的分布;40×鏡下選取典型細(xì)胞和區(qū)域,60×下(分辨率2 048×2 048,層掃厚度0.2μm)進(jìn)行細(xì)節(jié)拍攝,7次去卷積處理后,圖像輸入Imaris8.0[11],Slice模式(2D)下選取典型細(xì)胞(每組每帶各10個(gè)),測(cè)量熒光區(qū)域的平均厚度;Surpass模式(3D)下篩選出熒光包裹完整的細(xì)胞(每組每帶各10個(gè)),Surface模塊下對(duì)熒光區(qū)域及熒光包裹區(qū)域進(jìn)行表面重建。測(cè)量重建后的熒光區(qū)域體積(Ⅵ型膠原體積,Vp)、包裹的空腔體積(軟骨細(xì)胞體積,Vc)。
6 統(tǒng)計(jì)學(xué)處理 實(shí)驗(yàn)數(shù)據(jù)采用SPSS19.0統(tǒng)計(jì)軟件進(jìn)行分析,數(shù)據(jù)描述為±s,兩組均數(shù)比較采用成組設(shè)計(jì)的t檢驗(yàn),多組均數(shù)比較采用方差分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 正常軟骨中Ⅵ型膠原的分布 正常軟骨中Ⅵ型膠原均勻包裹在軟骨細(xì)胞表面(圖1A)。表面層Ⅵ型膠原(圖1B)呈盤(pán)狀,長(zhǎng)軸與細(xì)胞表面平行;移行層Ⅵ型膠原(圖1C)近似球體;放射層Ⅵ型膠原包裹的細(xì)胞(圖1D)大多成對(duì)、成組存在,呈橢球體,長(zhǎng)軸方向不定。各層細(xì)胞表面Ⅵ型膠原厚度:表面層(1.09±0.16)μm,移行層(1.16±0.26)μm,放射層(1.02±0.12)μm,各層厚度差異無(wú)統(tǒng)計(jì)學(xué)意義(P=0.30)。軟骨細(xì)胞(Vc)及其周圍Ⅵ型膠原體積(Vp)測(cè)量結(jié)果(圖2A):表面層Vc(154.90± 41.90)μm3,Vp(293.20±55.48)μm3;移行層Vc(709.50±156.20)μm3,Vp(1 033.60±152.99)μm3;放射層Vc(992.60±111.08)μm3,Vp(1 193.00± 277.73)μm3。從表面層到放射層Ⅵ型膠原所代表的PCM體積隨軟骨細(xì)胞體積的增加而增加(P<0.05),但移行層和放射層Ⅵ型膠原體積差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。
2 OA軟骨中Ⅵ型膠原的分布 OA軟骨中的細(xì)胞形態(tài)和Ⅵ型膠原分布與正常軟骨明顯不同(圖3A),軟骨表面未見(jiàn)明顯盤(pán)狀細(xì)胞;移行層Ⅵ型膠原分布不均,呈蜂窩狀,甚至形成大面積空洞(圖3B);放射層有較多成組細(xì)胞,成列或成團(tuán)分布(圖3C、圖3D),Ⅵ型膠原在細(xì)胞周圍呈點(diǎn)狀或片狀彌散分布,不完全包裹軟骨細(xì)胞;此外,在放射層PCM以外的基質(zhì)中出現(xiàn)了無(wú)規(guī)則形狀的散在熒光。OA軟骨中軟骨細(xì)胞體積(Vc')和Ⅵ型膠原體積(Vp')測(cè)量結(jié)果(圖2B):移行層:Vc'(752.60±89.95)μm3,Vp'(599.70±250.92)μm3;放射層Vc'(1 079.30± 161.05)μm3,Vp'(1 043.60±625.50)μm3。OA軟骨無(wú)表面層細(xì)胞,放射層Vc'和Vp'都較移行層明顯增加(P<0.01)。與正常軟骨相比,移行層和放射層的Vc'與正常軟骨差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05),但移行層和放射層的Vp'較正常軟骨明顯減少(P<0.01)。
圖 1 正常軟骨Ⅵ型膠原IF染色及3D重建結(jié)果A: 正常全層軟骨; B ~ D: 正常軟骨細(xì)胞及Ⅵ型膠原的3D重建圖像 (B: 表面層; C: 移行層; D: 放射層)Fig. 1 IF staining and 3D images of type Ⅵ collagen in articular cartilage of healthy knees A: full thickness cartilage (40×); B-D: 3D images of chondrocyte and type Ⅵ collagen coat (B: surface layer; C: transition layer;D: radiation layer) (150-200 serial sections of 2 048×2 048 pixels at an interval of 0.2μm using DeltaVision with 60×objective lens. Chondrocyte was non-transparent while type Ⅵ collagen colored green and was transparent). Scale Bars:40μm, B:3μm, C:3μm, D:4μm
圖 2 正常軟骨和OA軟骨中軟骨細(xì)胞體積和Ⅵ型膠原體積測(cè)量結(jié)果 A: 正常軟骨(Vc、Vp); B: OA軟骨(Vc’、Vp’)Fig. 2 Volumn of chondrocyte (Vc, Vc’) and volumn of type Ⅵ collagen (Vp, Vp’) in each layer in healthy cartilage and OA cartilage A: healthy cartilage (aP<0.01,bP<0.01); B: OA cartilage (aP<0.01,bP<0.01)Note: Surf: surface layer; Trans: transition layer; Radi: radiation layer
圖 3 OA軟骨Ⅵ型膠原IF染色及3D重建結(jié)果A:全層OA軟骨;B ~ D:OA軟骨細(xì)胞及Ⅵ型膠原的3D重建圖像 (B:移行層單細(xì)胞; C:放射層成列細(xì)胞; D:放射層成團(tuán)細(xì)胞)Fig. 3 IF staining and 3D images of type Ⅵ collagen in articular cartilage of OA knees A: full thickness cartilage (40×); B - D: 3D images of chondrocyte and type Ⅵ collagen coat; B: transition layer (left: fluorescent 3D images; right: surface reconstruction images corresponding to the left, chondrocyte colored yellow while type Ⅵ collagen colored green);C: 3 chondrocytes in row in radiation layer (left: fluorescent 3D image; right: surface reconstruction image, type Ⅵ collagen colored green); D: 5 chondrocytes in crowd in radiation layer (left: fluorescent 3D image; right: surface reconstruction image, type Ⅵ collagen colored green). Scale bars: A: 40μm; B: 2μm; C: 8μm; D: 7μm
骨關(guān)節(jié)炎是最常見(jiàn)的關(guān)節(jié)退行性疾病,關(guān)節(jié)軟骨表層的Ⅱ型膠原變性和蛋白多糖流失是OA的特征性病理改變[12-13],其形成的主要原因是軟骨細(xì)胞表型改變,即退變。Ⅵ型膠原與軟骨細(xì)胞關(guān)系密切,是OA軟骨細(xì)胞表型改變的可能原因。目前關(guān)于OA軟骨中Ⅵ型膠原的分布規(guī)律并未形成共識(shí)。Hambach等[14]報(bào)道了OA軟骨單位中Ⅵ型膠原含量較正常軟骨單位顯著增加;但Polur等[15]通過(guò)原位免疫標(biāo)記觀察證實(shí)OA軟骨中Ⅵ型膠原在酶解作用下含量減少。這種分歧的產(chǎn)生可能是由于關(guān)節(jié)軟骨是非均一物質(zhì),從表面帶到深層的鈣化帶,無(wú)論細(xì)胞還是基質(zhì)的形態(tài)和性質(zhì)都有很大差異,基于酶解分離的軟骨細(xì)胞研究[14-16]或基于二維圖像的物質(zhì)定量[15,17]都忽視了原位細(xì)胞和基質(zhì)的空間結(jié)構(gòu),因此難以得到一致的結(jié)論。
Youn等[18]和Choi等[19]利用激光共聚焦顯微鏡斷層掃描圖像構(gòu)建正常軟骨細(xì)胞及PCM的3D模型,實(shí)現(xiàn)了軟骨微觀結(jié)構(gòu)的原位重現(xiàn)和定量分析。受之啟發(fā),將軟骨組織在Delta-Vision Elite成像系統(tǒng)下進(jìn)行3D觀察,并且利用其自帶的SoftWoRx軟件的還原型迭代去卷積模塊減少散射熒光的影響,使3D圖像分辨率和處理效果進(jìn)一步提高?;谝陨蠈?shí)驗(yàn)方法的改進(jìn),本研究對(duì)正常軟骨和OA軟骨中Ⅵ型膠原進(jìn)行了體積測(cè)量及空間分布的描述,結(jié)果顯示,OA軟骨中Ⅵ型膠原體積減小,形態(tài)不規(guī)則,PCM中的Ⅵ型膠原呈蜂窩狀,甚至出現(xiàn)大面積空洞,且空洞的位置無(wú)明顯規(guī)律。本實(shí)驗(yàn)測(cè)得正常軟骨中,軟骨細(xì)胞體積與相關(guān)文獻(xiàn)相近,但各層細(xì)胞PCM中的Ⅵ型膠原厚度和體積均較?。?8]。其主要原因是去卷積處理后,散射熒光被去除,熒光范圍減??;同時(shí),Imaris軟件中進(jìn)行表面重建時(shí),設(shè)定的熒光閾值較小。以上兩種處理方法使3D圖像能更接近組織的真實(shí)情況,減小了Ⅵ型膠原厚度和體積測(cè)量的誤差。
此外,在放射層出現(xiàn)了無(wú)規(guī)則形狀的散在熒光,這些熒光距細(xì)胞甚遠(yuǎn),存在于PCM以外的基質(zhì)中,可能是S?der等[4]報(bào)道的Ⅵ型膠原含量升高的主要原因。根據(jù)OA軟骨中軟骨細(xì)胞的表型改變和數(shù)量減少,可以推測(cè)其來(lái)源于軟骨細(xì)胞的異常分泌作用[16]或軟骨細(xì)胞凋亡[20]后殘留分散的Ⅵ型膠原。S?der等[4]曾描述過(guò)這種散在熒光,并且認(rèn)為與正常軟骨中Ⅵ型與Ⅱ型膠原存在交聯(lián)不同,這些散在的Ⅵ型膠原與Ⅱ型膠原并無(wú)交際。因此,推測(cè)這些Ⅵ型膠原與正常軟骨細(xì)胞周基質(zhì)中的Ⅵ型膠原有所不同,其理化性質(zhì)有待進(jìn)一步研究。
1 Zamli Z, Sharif M. Chondrocyte apoptosis: a cause or consequence of osteoarthritis?[J]. Int J Rheum Dis, 2011, 14(2):159-166.
2 Guilak F, Alexopoulos LG, Upton ML, et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage[J]. Ann N Y Acad Sci, 2006, 1068:498-512.
3 Zhang ZJ, Jin W, Beckett J, et al. A proteomic approach for identification and localization of the pericellular components of chondrocytes[J]. Histochem Cell Biol, 2011, 136(2): 153-162.
4 S?der S, Hambach L, Lissner R, et al. Ultrastructural localization of type VI collagen in normal adult and osteoarthritic human articular cartilage[J]. Osteoarthritis Cartilage, 2002, 10(6):464-470.
5 Zelenski N, Leddy HA, Sanchez-Adamsj S, et al. CollagenVI: the Link between the extracellular matrix and chondrocyte mechanotranduction[J]. Trans Orthop Res Soc, 2014, 39: 192.
6 Alexopoulos LG, Youn I, Bonaldo P, et al. Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix[J]. Arthritis Rheum, 2009, 60(3):771-779.
7 Pullig O, Weseloh G, Swoboda B. Expression of type VI collagen in normal and osteoarthritic human cartilage[J]. Osteoarthritis Cartilage, 1999, 7(2): 191-202.
8 Zamli Z, Adams MA, Tarlton JF. Increased chondrocyte apoptosis is associated with progression of osteoarthritis in spontaneous Guinea pig models of the disease[J]. Int J Mol Sci, 2013, 14(9): 17729-17743.
9 Muraoka T, Hagino H, Okano T, et al. Role of subchondral bone in osteoarthritis development: a comparative study of two strains of guinea pigs with and without spontaneously occurring osteoarthritis[J]. Arthritis Rheum, 2007, 56(10):3366-3374.
10 Ohlson MB, Huang ZW, Alto NM, et al. Structure and function of salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation[J]. Cell Host Microbe, 2008, 4(5): 434-446.
11 Davis C-, Kim KY, Bushong EA, et al. Transcellular degradation of axonal mitochondria[J]. Proc Natl Acad Sci U S A, 2014, 111(26):9633-9638.
12 Loeser RF, Goldring SR, Scanzello CR, et al. Osteoarthritis: a disease of the joint as an organ[J]. Arthritis Rheum, 2012, 64(6):1697-1707.
13 Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage[J]. Matrix Biol,2014, 39:25-32.
14 Hambach L, Neureiter D, Zeiler G, et al. Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage[J]. Arthritis Rheum, 1998, 41(6):986-996.
15 Polur I, Lee PL, Servais JM, et al. Role of HTRA1, a serine protease, in the progression of articular cartilage degeneration[J]. Histol Histopathol, 2010, 25(5): 599-608.
16 Horikawa O, Nakajima H, Kikuchi T, et al. Distribution of type VI collagen in chondrocyte microenvironment: study of chondrons isolated from human normal and degenerative articular cartilage and cultured chondrocytes[J]. J Orthop Sci, 2004, 9(1): 29-36.
17 Quinn TM, Hunziker EB, Hauselmann HJ. Variation of cell and matrix morphologies in articular cartilage among locations in the adult human knee[J]. Osteoarthritis Cartilage, 2005, 13(8): 672-678.
18 Youn I, Choi JB, Cao L, et al. Zonal variations in the threedimensional morphology of the chondron measured in situ using confocal microscopy[J]. Osteoarthritis Cartilage, 2006, 14(9):889-897.
19 Choi JB, Youn I, Cao L, et al. Zonal changes in the threedimensional morphology of the chondron under compression:The relationship among cellular, pericellular, and extracellular deformation in articular cartilage[J]. J Biomech, 2007, 40(12):2596-2603.
20 Mobasheri A, Matta C, Zákány R, et al. Chondrosenescence:definition, hallmarks and potential role in the pathogenesis of osteoarthritis[J]. Maturitas, 2015, 80(3):237-244.
Changes of distribution of type Ⅵ collagen in osteoarthritis cartilage based on threedimensional images in situ
LI Zhao1,2, LI Peng1,2, WANG Hengsha3, CHANG Tongjie4, GAO Yingying4, CHEN Chao1, ZHANG Licheng1, ZHANG Lihai1,ZHANG Yi2, TANG Peifu1
1Chinese PLA General Hospital, Beijing 100853, China;2Department of Cell Biology, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China;3Soonbio Pathology Technology Laboratory, Beijing 100039, China;4Imaging Core Facility, Tsinghua University Branch of China National Center for Protein Sciences, Beijing 100084, China
Corresponding author: TANG Peifu. Email: pftang301@163.com; ZHANG Yi. Email: zhangyi612@hotmail.com
Objective To explore the changes of spatial distribution of typeⅥ collagen in osteoarthritis cartilage. Methods Frozen sections of full thick cartilage from osteoarthritis and healthy knee of guinea pig in mode group and control group were performed immunofluorescence staining, and then scanned by Delta-Vision Elite system. The scanning data were processed and analyzed by Imaris software, the volume of chondrocyte (Vc), thickness and volume of typeⅥ collagen (Vp) of the two groups were measured. Results In healthy cartilage, every chondrocyte wore a thin coat of type Ⅵ collagen, whose thickness had no significant difference(P>0.05), and the volume increased (P<0.01) with the increase of depth. In osteoarthritis cartilage, the volume of typeⅥcollagen coat decreased and distributed irregularly. It showed honeycomb distribution and scattered distribution in transition layer and radiation layer, respectively (P<0.01). Moreover, the scattered type Ⅵ collagen was found in extracellular matrix. Conclusion The irregular distribution of typeⅥ collagen in the osteoarthritis cartilage may be one of the factors which induces chondrocyte degeneration.
type Ⅵ collagen; chondrocyte; osteoarthritis; spontaneous guinea pig model of osteoarthritis
R 684.3
A
2095-5227(2015)07-0734-04
10.3969/j.issn.2095-5227.2015.07.025
2015-03-24
李曌,男,在讀碩士。研究方向:骨關(guān)節(jié)炎發(fā)病機(jī)制。Email: lizhao0215@163.com
唐佩福,男,主任醫(yī)師,博士生導(dǎo)師,骨科醫(yī)院院長(zhǎng)。Email: pftang301@163.com;張毅,女,研究員,博士生導(dǎo)師,主任。Email: zhangyi612@hotmail.com
解放軍醫(yī)學(xué)院學(xué)報(bào)2015年7期