林承奇,胡恭任,于瑞蓮 (華僑大學環(huán)境科學與工程系,福建 廈門 361021)
福建九龍江下游潮間帶沉積物鉛污染及同位素示蹤
林承奇,胡恭任*,于瑞蓮 (華僑大學環(huán)境科學與工程系,福建 廈門 361021)
通過分析九龍江下游潮間帶23個表層沉積物及周邊地區(qū)典型端元組分的鉛含量和鉛同位素組成(206Pb/207Pb和208Pb/206Pb),以評估鉛的空間分布,并采用鉛同位素二元和三元混合模型探討鉛來源及各源的相對貢獻率.結果表明,九龍江下游潮間帶表層沉積物中鉛含量范圍為38.50~128.50mg/kg(平均80.60mg/kg),地質累積指數法、富集系數法和潛在生態(tài)危害指數法評價結果表明研究區(qū)沉積物中的鉛為輕度~中等污染與輕度潛在生態(tài)危害.沉積物鉛同位素組成中206Pb/207Pb和208Pb/206Pb的范圍分別為1.1651~1.1924和1.9640~2.1071,大多數采樣點處沉積物中的鉛主要來源于九龍江上游鉛鋅礦和土壤母質,受汽車尾氣的影響很??;九龍江河口上端沉積物Pb主要來源為鉛鋅礦、土壤母質和燃煤,相對貢獻率范圍分別為26.74%~56.61%、18.85%~19.91%和24.20%~58.53%;九龍江河口外端沉積物Pb主要來源有鉛鋅礦、土壤母質、燃煤和船舶油漆,相對貢獻率分別為20.06%、13.75%、7.52%和58.67%;其余采樣點處Pb主要來源為鉛鋅礦和土壤母質,相對貢獻率范圍分別為20.00%~95.62%和4.38%~80.00%.
鉛同位素;九龍江下游;沉積物;污染源;貢獻率
鉛被廣泛用于許多工業(yè)生產過程并已成為環(huán)境中的重要污染物,因其具有持久性、生物蓄積性和生物不可降解性,已引起世界的廣泛關注[1-2].自然界中鉛有 4種同位素:204Pb、206Pb、207Pb和208Pb,其中204Pb是穩(wěn)定同位素;206Pb、207Pb、208Pb分別是238U、235U、232Th衰變的終產物,其同位素組成只與源區(qū)的Pb同位素組成特征有關,與重金屬的遷移行為和軌跡無關,具有特殊的“指紋”特征,可用于污染源示蹤[3], 特別是在研究鉛及其他親硫元素(Hg、Ag、Tl、Sb、Zn、Cu等)的重金屬污染來源方面, 已成為一種強有力的手段[4].
九龍江是福建省第二大河流,流經龍巖、漳州等市縣并最終注入廈門灣,不僅是龍巖、漳州、廈門三市的重要飲用水源,也是重要的工農業(yè)生產水源,其水環(huán)境安全對福建省乃至海峽西岸經濟區(qū)意義重大[5].九龍江下游位于廈門港西南部,地處海峽西岸經濟發(fā)展區(qū).近年來,九龍江流域經濟與工業(yè)發(fā)展迅速,造成該河口重金屬污染日趨嚴重.王偉力等[6]對九龍江口表層沉積物重金屬含量進行分析,表明該區(qū)域重金屬存在一定潛在生態(tài)風險;于瑞蓮等[7]對九龍江口表層沉積物重金屬形態(tài)進行分析,表明該區(qū)域重金屬已有不同程度富集,且綜合潛在生態(tài)風險較強.但關于九龍江下游表層沉積物中重金屬污染來源解析尚鮮有報道.
本文通過分析九龍江下游潮間帶表層沉積物鉛含量及其同位素組成,結合九龍江流域潛在污染源端元組分的鉛同位素組成,評價鉛污染狀況并利用鉛同位素的指紋特征示蹤沉積物中鉛污染來源,以期為該地區(qū)重金屬污染防治提供科學依據.
1.1樣品采集及預處理
2012年10月期間潮水退至最低時采集了23個九龍江下游潮間帶表層0~5cm的沉積物樣品(圖1).
將采集到的樣品放于裝有冰塊的保溫箱中運回實驗室,置于冰箱中-20℃冷凍保存 24h.冷凍后的沉積物樣品置于干凈、通風、陰涼的實驗臺面上晾干,用干凈的木棒搗碎,剔除雜物,用瑪瑙研缽輕輕研磨,過63 μm尼龍篩,篩下樣裝入干凈的聚乙烯自封塑料袋中密封保存?zhèn)溆?
詳細調查九龍江流域及其周邊環(huán)境,九龍江下游鉛污染的潛在污染源可能有四個方面:一是上游鉛鋅礦開采過程釋放;二是汽車尾氣排放;三是工業(yè)生產過程中燃煤等釋放;四是船舶運輸釋放.本研究系統采集了九龍江下游周邊汽車尾氣塵、燃煤塵、九龍江上游鉛鋅礦和九龍江下游土壤母質樣品以及船舶油漆等作為端元組分.端元組分樣品采集方法參見胡恭任等[3]的報道.
圖1 九龍江下游潮間帶表層沉積物采樣點分布圖Fig.1 Sampling locations of intertidal surface sediments in Jiulong River downstream
1.2鉛含量和同位素組成分析
表層沉積物樣品經過預處理后,送至北京核工業(yè)地質研究院分析測試研究中心進行分析測定.鉛含量采用Finnigan-MAT公司的BLEMENT 型ICP-MS進行測定,以近岸海洋沉積物成分分析標準物質GBW07314進行質量控制,測定結果的相對標準偏差(<5.0%)在誤差允許范圍內;表層沉積物和端元組分的鉛同位素比值分析樣品的制備在北京核工業(yè)地質研究院分析測試中心同位素超凈實驗室中完成.按 DZ/T0184.12 -1997標準分析流程對鉛進行分離與純化.同位素比值測定在英國產IsoProbeT熱電離質譜儀上完成,全流程本底鉛為10-9量級,用國際標準物質NBS981監(jiān)控儀器分析工作狀態(tài),NBS981的207Pb/206Pb分析值為 0.91460±0.00005,分析精度優(yōu)于0. 05%.詳細測試過程見文獻[8-9]
2.1表層沉積物中鉛含量S
圖2 九龍江下游潮間表層帶沉積物鉛含量及富集系數Fig.2 Lead contents and enrichment factors of the intertidal surface sediments in Jiulong River downstream
九龍江下游潮間帶表層沉積物中鉛含量見圖2.各采樣點鉛含量范圍為38.50~128.50mg/kg,平均值為80.60mg/kg.除采樣點20#外,其余采樣點沉積物中鉛含量均超過福建省海岸帶土壤環(huán)境背景值[10](39mg/kg),鉛濃度最高出現在采樣點2#處,達到背景值的3.29倍;以Pb作為指標時,九龍江下游沉積物符合中國海洋沉積物質量標準(GB 18668-2002)規(guī)定的第二類沉積物質量標準.九龍江下游潮間帶表層沉積物中鉛含量隨著流域的流向總體呈下降趨勢,表明九龍江上游可能存在鉛污染源;采樣點1#~4#、19#、21#、22# 和23#處鉛含量較高,說明這些采樣點處的Pb可能受其他因素的影響.
2.2表層沉積物中鉛污染評價
采用不同評價方法對九龍江下游潮間帶沉積物中鉛含量進行評價.以福建省海岸帶土壤環(huán)境背景值作為參比值,采用Müller提出的地質累積指數法[11]評價,沉積物中 Pb的地質累積指數Igeo為-0.60~1.14,對照地質累積指數分級標準(表1),82.6%的沉積物中Pb表現為輕度污染,8.7%的沉積物中Pb表現為偏中度污染,其余為無污染.
表1 地質累積指數(Igeo)與污染程度Table 1 Index of geoaccumulation (Igeo) and pollutiondegree
為了進一步評估沉積物中鉛的富集程度,應用富集系數(EF)進行分析,公式如下[12]:
式中:(Pb/Y)i為沉積物中 Pb元素與參比元素(Y)的比值;(Pb/Y)lith為自然背景中Pb元素與參比元素(Y)的比值.參比元素的選取應滿足在風化、沉積等表生過程中化學性質穩(wěn)定等條件[13].實際應用中常作為參比元素的有:Al、Cs、Zr、Nb、Y、Li、Fe、Sc、Co等[12,14].本研究中同時測定了元素 Fe、Co、Sc等在沉積物中的含量,結果發(fā)現Sc元素在沉積物中的含量相對較穩(wěn)定(CV=0.11),且接近于背景值.故將 Sc作為參比元素,用于評估Pb的富集程度(圖2).沉積物中Pb的富集系數范圍為0.9~3.15,平均值為1.79.根據EF值對元素富集程度的評價標準[15],九龍江下游潮間帶69.5%的沉積物中Pb表現為輕度富集(1<EF<2),其余沉積物中Pb表現為中等富集(2<EF<5).
采用 Hakanson提出的潛在生態(tài)危害指數(RI)法[16]進行評價,沉積物中Pb的潛在生態(tài)危害系數為 4.96~16.47,對照潛在生態(tài)危害系數分級標準(表2),沉積物中Pb均表現為輕度潛在生態(tài)危害.
綜上可知,九龍江下游潮間帶沉積物中Pb表現為輕度~中度污染與輕度潛在生態(tài)危害.
表2 潛在生態(tài)危害程度分級Table 2 Degree of potential ecological risk
九龍江下游潮間帶沉積物中Pb含量與世界上其他流域下游及河口等沉積物中鉛含量對比(表 3)表明:九龍江下游潮間帶表層沉積物中鉛含量比廈門西港、泉州灣、珠江、長江等一些國內河流下游或海灣以及國外如印度Dhamara河口等地區(qū)沉積物中的鉛含量高,已存在一定程度的污染,應引起一定的重視.
表3 不同研究區(qū)域表層沉積物中鉛含量Table 3 Lead Contents in the surface sediments indifferent studied area
2.3潛在污染源與表層沉積物中鉛同位素組成
九龍江下游潛在污染源端元組分中鉛同位素組成測定結果列于表 4.可見,土壤母質、上游鉛鋅礦、汽車尾氣塵、火電廠燃煤、船舶油漆的206Pb/207Pb的值分別為:1.1923~1.2012(平均值1.1956)、1.1752~1.1832(平均值1.1796)、1.1111~1.1489(平均值1.1301)、1.1430~1.1630(平均值1.1508)和1.1678~1.1757(平均值1.1717);上述各端元組分的208Pb/206Pb值分別為 2.0722~2.0888(平均值 2.0787)、2.1003~2.1060(平均值2.1025)、2.0310~2.1252(平均值2.0692)、2.0979~ 2.1401(平均值 2.1238)和 1.8475~1.8910(平均值1.8693).其中,土壤母質具有最高的206Pb/207Pb值,火電廠燃煤具有最高的208Pb/206Pb值.各端元組分的鉛同位素組成存在明顯差異,因此可以通過鉛同位素組成來區(qū)分不同污染來源的鉛.
九龍江下游潮間帶表層沉積物中鉛同位素組成見表 5.各采樣點沉積物中206Pb/207Pb和208Pb/206Pb的值分別為1.1651~1.1924和2.9640~2.1071.
表4 潛在污染源鉛同位素組成Table 4 Lead isotopic composition of potential sources
比較潛在污染源端元組分和沉積物樣品的鉛同位素組成可知,沉積物樣品的鉛同位素組成與汽車尾氣塵的鉛同位素組成差異較大,說明汽車尾氣不是九龍江下游沉積物中鉛污染的主要來源.
表5 九龍江下游潮間帶表層沉積物鉛同位素組成Table 5 Lead isotopic composition of intertidal surface sediments in Jiulong River downstream
2.4沉積物中鉛來源分析
鉛同位素組成可以用來示蹤鉛的來源,因204Pb含量低,208Pb/204Pb、207Pb/204Pb、206Pb/204Pb的測定容易受到不同因素干擾,很難全面反映鉛的變化趨勢并有效識別污染源[3],因此許多學者采用測試精度較高的208Pb/206Pb和206Pb/207Pb比值對鉛污染源進行示蹤.土壤母質、鉛鋅礦、汽車尾氣塵和火電廠燃煤等端元組分的206Pb/207Pb 和208Pb/206Pb的比值相差較大,故可用206Pb/207Pb 和208Pb/206Pb的比值來追蹤九龍江下游潮間帶沉積物中鉛的污染來源.
不同采樣點表層沉積物與潛在污染源端元組分的鉛同位素組成對比見圖3.各采樣點表層沉積物的鉛同位素組成與鉛鋅礦和土壤母質的鉛同位素組成較接近,說明九龍江下游潮間帶表層沉積物中鉛主要來源于上游鉛鋅礦和土壤母質;采樣點 1#、4#和 5#的鉛同位素組成還與燃煤的鉛同位素組成接近,說明燃煤對這3個采樣點處沉積物中 Pb具有一定的貢獻;采樣點23#的鉛同位素組成落于燃煤、鉛鋅礦、土壤母質和船舶油漆之間,說明采樣點 23#處沉積物中Pb來源有燃煤、鉛鋅礦、土壤母質和船舶油漆四個源.汽車尾氣塵的鉛同位素組成與各采樣點沉積物的鉛同位素組成相差較大,說明汽車尾氣對九龍江下游潮間帶表層沉積物中鉛污染的貢獻很小.
圖3 表層沉積物與端元物質鉛同位素組成對比Fig.3 Comparison between lead isotopes composition of the surface sediments and the potential sources
2.5鉛污染源貢獻率計算
利用208Pb/206Pb-206Pb/207Pb作圖并進行對比分析,只能定性分析鉛污染的來源,不能計算各污染源的相對貢獻率.為了進一步評估鉛污染源,需對其進行定量解析,目前,用于定量解析的方法主要有二元模型和三元模型[29].
二元模型即樣品中的鉛可以看成 2個主要污染源的混合,計算公式如下[30]:
式中:f1、f2分別為兩個污染源的相對貢獻率.
根據表層沉積物與端元物質鉛同位素組成對比圖(圖3),各采樣點(除采樣點1#、4#、5#和23#)與鉛鋅礦和土壤母質的鉛同位素組成具有較好的線性關系,說明沉積物中鉛來源于鉛鋅礦和土壤母質兩個主要污染源的混合[31],令 f1和f2分別代表鉛鋅礦和土壤母質的相對貢獻率,則(206Pb/207Pb)1和(206Pb/207Pb)2分別為 1.1796和1.1956.
三元模型用于計算 3個主要的污染源和樣品同位素均已知的情況下各污染源的貢獻率,Li等[32]建立的三元模型如下:
式中:f為相對貢獻率;C為鉛含量,mg/kg;下標s、1、2、3分別代表樣品和3個主要污染源.
根據表層沉積物與端元物質鉛同位素組成對比圖(圖3),1#、4#和5#采樣處沉積物中Pb來源貢獻率可使用鉛鋅礦-燃煤-土壤母質三元模型計算,令下標1、2、3分別代表鉛鋅礦、燃煤和土壤母質, f1、f2和f3分別為鉛鋅礦、燃煤和土壤母質的相對貢獻率;則(206Pb/207Pb)1、(206Pb/207Pb)2、(206Pb/207Pb)3的值分別為1.1796、1.1508和1.1956;C1、C2、C3的值分別為1118.98, 92.93, 31.09mg/kg.
采樣點 23#處沉積物中鉛來源較復雜,可能有鉛鋅礦、燃煤、土壤母質和船舶油漆四個來源,目前尚沒有能計算四個鉛源貢獻率的模型,從圖3可以看出,采樣點23#處沉積物的鉛同位素比值在船舶油漆、燃煤和土壤母質3個源鉛同位素比值的三角形區(qū)域內,同時也在船舶油漆、鉛鋅礦和土壤母質 3個鉛源同位素比值的三角形區(qū)域內,可利用兩個三元模型(船舶油漆-燃煤-土壤母質、船舶油漆-鉛鋅礦-土壤母質)相結合的方式進行計算其貢獻率,分別計算兩個三元模型中各鉛源的相對貢獻率,然后各鉛源貢獻率取平均得各鉛源相對貢獻率.
根據以上鉛污染源相對貢獻率計算模型,對九龍江下游潮間帶沉積物中鉛污染源的貢獻率進行定量計算(表6).九龍江下游潮間帶沉積物中鉛主要來源為上游鉛鋅礦,其貢獻率為 20.00%~95.62%,其次為土壤母質,其貢獻率為 4.38%~80.00%,采樣點1#、4#和5#處燃煤鉛相對貢獻率分別為26.80%、58.53%和24.20%.這可能與采樣點4#附近的造紙廠使用燃煤鍋爐和采樣點5#北部及采樣點 1#東部的角美綜合工業(yè)區(qū)中的燃煤企業(yè)有關.采樣點 23#處,船舶油漆、燃煤、鉛鋅礦和土壤母質的相對貢獻率分別為 58.67%、7.52%、20.06%和13.75%.對計算結果用式(7)和式(8)計算進行驗證. (206Pb/207Pb)計算和(208Pb/206Pb)計算的值分別為1.1750和1.9652,與23#處鉛同位素組成的測定值(表 3)相符,因此計算結果可行.采樣點 23#處沉積物中的燃煤鉛貢獻可能來源于附近的嵩嶼電廠,船舶油漆鉛貢獻可能與嵩嶼碼頭較頻繁的船舶運輸有關.
式中:f為相對貢獻率;下標1、2、3和4分別代表船舶油漆、燃煤、鉛鋅礦和土壤母質.
鉛同位素分析表明采樣點 19#、21#和 22#處沉積物中較高的鉛含量主要來源于上游鉛鋅礦和土壤母質,這與 Hu等[33]的研究結果有些出入(該文認為嵩嶼電廠燃煤對這些采樣處沉積物具有較多的燃煤鉛貢獻),可能因Hu等采用的是全國燃煤的鉛同位素組成進行分析,其數值跨度較大而造成一定的誤差,而本文采用的是嵩嶼電廠燃煤鉛同位素組成進行分析,結果應更符合實際情況.采樣點19#、21#和22#處沉積物中鉛含量較高可能是因其處于九龍江入??诒眰葹晨趨^(qū),水動力環(huán)境復雜,來自九龍江上游和廈門西港的污染物易在此區(qū)域隨泥沙沉積,和轉等[34]研究發(fā)現該區(qū)域沉積物以細顆粒(粉砂和黏土)為主,而細顆粒沉積物中鉛等重金屬含量一般較高.
表6 九龍江下游潮間帶表層沉積物中鉛主要污染源貢獻率Table 6 Contribution of main sources to total Pb of the intertidal surface sediments in Jiulong River downstream
3.1九龍江下游潮間帶表層沉積物中鉛含量范圍為 38.50~128.50mg/kg,平均 80.60mg/kg,超過福建省海岸帶土壤環(huán)境背景值,與其他流域下游及河口區(qū)沉積物中鉛相比含量略高.地質累積指數法、富集系數法和潛在生態(tài)危害指數法的評價結果顯示,九龍江下游潮間帶表層沉積物中Pb表現為輕度~中等污染與輕度潛在生態(tài)危害.
3.2九龍江下游潮間帶表層沉積物的鉛同位素組成中206Pb/207Pb、208Pb/206Pb比值分別為1.1651~1.1924和 1.9640~2.1071.對比沉積物和潛在污染源端元組分的鉛同位素組成進行污染源定性和定量分析,結果表明,九龍江河口上端沉積物中Pb主要來源于鉛鋅礦、土壤母質和燃煤,相對貢獻率分別為 26.74%~56.61%、18.85%~19.19%和24.20%~58.53%;河口外端沉積物中Pb主要來源于鉛鋅礦、土壤母質、燃煤和船舶油漆,相對貢獻率分別為 20.06%、13.75%、7.52%和58.67%,其余采樣點沉積物中 Pb主要來源為鉛鋅礦和土壤母質,相對貢獻率分別為 20.00%~95.62%和4.38%~80.00%.
[1] Cheng H, Hu Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review [J]. Environmental Pollution, 2010,158(5):1134-1146.
[2] Bindler R. Contaminated lead environments of man: reviewing the lead isotopic evidence in sediments, peat, and soils for the temporal and spatial patterns of atmospheric lead pollution in Sweden [J]. Environmental Geochemistry and Health, 2011, 33(4):311-329.
[3] 胡恭任,于瑞蓮,鄭志敏.鉛穩(wěn)定同位素在沉積物重金屬污染溯源中的應用 [J]. 環(huán)境科學學報, 2013,33(5):1326-1331.
[4] Gulson B, Korsch M, Winchester W, et al. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring [J]. Environmental Research, 2012, 112:100-110.
[5] 郭洲華,王翠,顏利,等.九龍江河口區(qū)主要污染物時空變化特征 [J]. 中國環(huán)境科學, 2012,32(4):679-686.
[6] 王偉力,耿安朝,劉花臺,等.九龍江口表層沉積物重金屬分布及潛在生態(tài)風險評價 [J]. 海洋科學進展, 2009,27(4):502-508.
[7] 于瑞蓮,余偉河,胡恭任,等.九龍江河口上游表層沉積物中重金屬賦存形態(tài)及生態(tài)風險 [J]. 環(huán)境化學, 2013,32(12):2321-2328.
[8] 何海星,于瑞蓮,胡恭任,等.廈門西港近岸沉積物重金屬污染歷史及源解析 [J]. 中國環(huán)境科學, 2014,34(4):1045-1051.
[9] Hu G, Zhang B, Yu R. Petrology, age and geochemistry of the proterozoic amphibolites from Xiangshan, central Jiangxi Province [J]. Chinese Journal of Geochemistry, 1999,18(2):139-149.
[10] 劉用清.福建省海岸帶土壤環(huán)境背景值研究及其應用 [J]. 海洋環(huán)境科學, 1995,14(2):68-73.
[11] Muller G. Index of geoaccumulation in sediments of the Rhine River [J]. Geojournal, 1969,2(3):108-118.
[12] N'Guessan Y M, Probst J L, Bur T, et al. Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from? [J]. Science of TheTotal Environment, 2009,407(8):2939-2952.
[13] Peng B, Tang X Y, Yu C X, et al. Geochemistry of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan Province (P.R.China): implications on sources of trace metals [J]. Environmental Earth Sciences, 2011,64(5):1455-1473.
[14] Roussiez V, Ludwing W, Probst J L, et al. Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): an approach based on 133Cs normalized and lead isotope measurements [J]. Environmental Pollution, 2005,138:167-177.
[15] Sutherland R A. Bed sediment-associated trace elements in an urban stream, Oahu, Hawai [J]. Environmental Geology, 2000, 39:330-341.
[16] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8):975-986.
[17] Zhang L, Ye X, Feng H, et al. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China [J]. Marine Pollution Bulletin, 2007,54(7):974-982.
[18] Hu G, Yu R, Zhao J, et al. Distribution and enrichment of acid-leachable heavy metals in the intertidal sediments from Quanzhou Bay, southeast coast of China [J]. Environmental Monitoring and Assessment, 2011,173(1-4):107-116.
[19] Chen B, Liang X, Xu W, et al. The changes in trace metal contamination over the last decade in surface sediments of the Pearl River Estuary, South China [J]. Science of the Total Environment, 2012,439:141-149.
[20] 賈英,方明,吳友軍,等.上海河流沉積物重金屬的污染特征與潛在生態(tài)風險 [J]. 中國環(huán)境科學, 2013,33(1):147-153.
[21] Zhang W, Feng H, Chang J, et al. Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes [J]. Environmental Pollution, 2009,157(5):1533-1543.
[22] Hu B, Li J, Zhao J, et al. Heavy metal in surface sediments of the Liaodong Bay, Bohai Sea: distribution, contamination, and sources [J]. Environmental Monitoring and Assessment, 2013, 185(6):5071-5083.
[23] Gao X, Chen C A. Heavy metal pollution status in surface sediments of the coastal Bohai Bay [J]. Water Research, 2012, 46(6):1901-1911.
[24] Asa S C, Rath P, Panda U C, et al. Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India [J]. Environmental Monitoring and Assessment, 2013,185(8):6719-6737.
[25] Mil-Homens M, Costa A M, Fonseca S, et al. Characterization of heavy-metal contamination in surface sediments of the Minho River Estuary by way of factor analysis [J]. Archives of Environmental Contamination and Toxicology, 2013,64(4):617-631.
[26] Lu Z, Cai M, Wang J, et al. Levels and distribution of trace metals in surface sediments from Kongsfjorden, Svalbard, Norwegian Arctic [J]. Environmental Geochemistry and Health, 2013,35(2):257-269.
[27] Hyun S, Lee C H, Lee T, et al. Anthropogenic contributions to heavy metal distributions in the surface sediments of Masan Bay, Korea [J]. Marine Pollution Bulletin, 2007,54(7):1059-1068.
[28] Villaescusa-Celaya J A, Gutiérrez-Galindo E A, Flores-Mu?oz G. Heavy metals in the fine fraction of coastal sediments from Baja California (Mexico) and California (USA) [J]. Environmental Pollution, 2000,108(3):453-462.
[29] 趙多勇,魏益民,郭波莉,等.鉛同位素比率分析技術在食品污染源解析中的應用 [J]. 核農學報, 2011,25(3):534-539.
[30] 于瑞蓮,胡恭任,鄭志敏,等.泉州灣洛陽江河口潮間帶柱狀沉積物鉛同位素組成的變化與來源 [J]. 環(huán)境科學學報, 2013,33(6):1756-1762.
[31] Peng B, Yan X Y, Yu C X. Heavy metal contamination of inlet sediments of the Xiangjiang River and Pb isotopic geochemical implication [J]. Acta Geologica Sinica, 2011,85:282-299.
[32] Li H B, Yu S, Li G L, et al. Contamination and source differentiation of Pb in park soils along an urban-rural gradient in Shanghai [J]. Environmental Pollution, 2011,159:3536-3544.
[33] Hu X, Ding Z, Liu X, et al. Lead content and isotope composition in surface sediments in Western Xiamen Bay and its vicinity:implication for possible source [J]. Asian Journal of Chemistry, 2013,25(6):3229-3232.
[34] 和轉,胡毅,陳堅.九龍江河口區(qū)表層沉積物重金屬元素分布特征及其沉積環(huán)境 [J]. 臺灣海峽, 2009,28(4):455-459.
Lead pollution and isotopic tracing in intertidal sediments of Jiulong River downstream.
LIN Cheng-qi, HU Gong-ren*, YU Rui-lian (Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China).
China Environmental Science, 2015,35(8):2503~2510
Lead isotopes have been widely applied to tracing lead sources in the environment. Lead concentration and isotopic compositions (206Pb/207Pb and208Pb/206Pb) of 23 intertidal surface sediments collected from Jiulong River downstream and surrounding known sources were analyzed to assess the spatial variation of lead, and to discuss the lead sources and their relative contributions using the dual member model and the three-end member model of lead isotopic ratios. The results show that the range of lead concentration in the intertidal surface sediments of Jiulong River downstream was 38.50~128.50mg/kg with the mean value of 80.60mg/kg. According to geoaccumulation index, enrichment factor and potential ecological risk index, the lead pollution degree was mild to moderate and the potential ecological risk of lead was mild in the sediments. The ranges of lead isotopic ratios of206Pb/207Pb and208Pb/206Pb are 1.1651~1.1924 and 1.9640~2.1071, respectively. Lead pollutants in most studied sediments mainly came from Fujian Pb-Zn deposit and parent soil material while seldom from vehicle exhaust. At the upstream of Jiulong River estuary, lead in the sediments were mainly from Pb-Zn deposit, parent soil material and coal, with the contribution rates of 26.74%~56.61%, 18.85%~19.91% and 24.20%~58.53%, respectively. At the outer end of Jiulong River estuary, lead were mainly from Pb-Zn deposit, parent soil material, coal and marine paints, with the contribution rates of 20.06%, 13.75%, 7.52% and 58.67%, respectively. At other sampling sites, the sediment lead mainly derives from Pb-Zn deposit and parent soil material with the contribution rates of 20.00%~95.62% and 4.38%~80.00%, respectively.
lead isotopes;Jiulong River downstream;sediment;source of pollution;contribution rate
X142
A
1000-6923(2015)08-2503-08
2014-11-28
國家自然科學基金項目(21077036,21177043)和福建省自然科學基金項目(2014J01159)
* 責任作者, 教授, grhu@hqu.edu.cn
林承奇(1991-),男,福建漳州人,華僑大學碩士研究生,研究方向為環(huán)境監(jiān)測與評價.發(fā)表論文1篇.