伍 波,李 鵬,張 波,王立章(中國(guó)礦業(yè)大學(xué)環(huán)境與測(cè)繪學(xué)院,江蘇 徐州 221116)
負(fù)載型粒子電極電催化氧化苯酚的研究
伍波,李鵬,張波,王立章*(中國(guó)礦業(yè)大學(xué)環(huán)境與測(cè)繪學(xué)院,江蘇 徐州 221116)
以顆?;钚蕴浚ˋC)為載體,分別采用氧化還原法和熱分解法制備了炭載納米 MnO2、SnO2-Sb-Mn粒子電極,并通過(guò) X射線衍射(XRD)、掃描電鏡(SEM)及電化學(xué)測(cè)試對(duì)其物相組成、微觀形貌和電催化活性進(jìn)行表征.結(jié)果表明,制備的 MnO2晶粒主要以 α-MnO2與δ-MnO2晶型聚團(tuán)存在于 AC孔隙邊緣,SnO2-Sb-Mn活性組分則以固溶體形式分布于 AC表面及孔隙內(nèi),兩類晶體平均粒徑分別為11.47,13.70nm,金屬氧化物鍍層可增加循環(huán)伏安曲線測(cè)試過(guò)程的伏安電荷量,提高粒子電極電催化活性.填充床苯酚模擬廢水電催化降解實(shí)驗(yàn)表明,MnO2/AC與SnO2-Sb-Mn/AC填充床電極反應(yīng)器出水苯酚及COD去除率均高于AC填充床,電流效率增大而能耗降低.在電流密度12.0mA/cm2和反應(yīng)時(shí)間140min條件下,SnO2-Sb-Mn/AC粒子電極的苯酚及COD去除率分別為94.7%和90.4%,電流效率達(dá)62.7%,能耗為20.3kWh/kgCOD.
電催化氧化;負(fù)載型粒子電極;填充床電極反應(yīng)器;苯酚
填充床電極反應(yīng)器因粒子電極的添加,形成了無(wú)數(shù)個(gè)微型電解槽,增加有機(jī)物向電極活性位點(diǎn)的傳質(zhì)效率,從而使得污染物去除效率高,電能消耗量低,被廣泛地應(yīng)用于印染、紡織、焦化廢水及垃圾滲濾液的處理[1-4].電極表面活性組分在析氧過(guò)電位下催生羥基自由基(·OH)的多寡決定了有機(jī)物的氧化程度與電流效率的高低[5-6],提高有機(jī)污染物電催化降解過(guò)程活性物質(zhì)含量成為一個(gè)研究熱點(diǎn)[7,11].陽(yáng)極(DSAs、BDD、石墨等)受其幾何面積的限制,能夠參與有機(jī)物電催化反應(yīng)的活性組分少;粒子電極通常具有較大的比表面積,但存在電催化反應(yīng)過(guò)程復(fù)極化程度低,電極表面有效活性位點(diǎn)數(shù)不足的問(wèn)題,即使改變粒子電極的堆放方式[8]或采用不同粒子電極的機(jī)械混合[9],亦難以提高體系的電催化效率.以負(fù)載金屬催化劑的多孔粒子電極為填料,可有效克服陽(yáng)極電極面積小,粒子電極復(fù)極化程度低的問(wèn)題[10-11].目前,常用的粒子電極有顆粒活性炭(AC)、γ-Al2O3、陶瓷粒子、泡沫鈦等[12-15],其中AC因原材料易得、價(jià)格低廉、耐酸堿腐蝕性強(qiáng)等優(yōu)點(diǎn)而被廣泛使用于工業(yè)有機(jī)廢水的電催化處理[16-17],但AC填充床電極反應(yīng)器亦存在催化活性低而造成活性位點(diǎn)覆蓋、床層過(guò)熱等缺陷,故炭基粒子電極的電化學(xué)性能有待于進(jìn)一步提升.
本研究將半導(dǎo)體金屬氧化物(MnO2、SnO2-Sb-Mn)負(fù)載于AC基底,采用X射線衍射(XRD)、掃描電鏡(SEM)對(duì)制備的 MnO2/AC、SnO2-Sb-Mn/AC粒子電極物相組成和微觀形貌進(jìn)行表征;在[Fe(CN)6]4-/[Fe(CN)6]3-電解質(zhì)中測(cè)試循環(huán)伏安(CV)性能進(jìn)行粒子電極電催化活性評(píng)估.同時(shí),以AC、MnO2/AC及SnO2-Sb-Mn/AC負(fù)載型粒子電極組建填充床電極反應(yīng)器,借助苯酚廢水氧化降解效率、紫外吸收光譜(UV)分析及氣相色譜-質(zhì)譜聯(lián)用儀(GC-MS)測(cè)試,研究不同粒子電極苯酚電催化氧化苯酚特性,以期為負(fù)載型粒子電極的優(yōu)化制備提供實(shí)驗(yàn)依據(jù).
1.1粒子電極制備與表征
粒子電極制備:AC比表面積為 1660m2/g,經(jīng)煮沸、除灰分預(yù)處理后待用[6].在配制的MnSO4與KMnO4(物質(zhì)的量比 3:2)混合溶液中加入AC,首先超聲分散40min,而后120℃水熱條件下反應(yīng) 2h,于 70℃時(shí)烘干可得 MnO2/AC. 將 Mn(NO3)2、SnCl4·5H2O、SbCl3(物質(zhì)的量比10:10:1)在濃鹽酸、無(wú)水乙醇中溶解制備前驅(qū)體,加入AC超聲分散40min后,靜置3h,在70℃條件下烘干;然后將所得的中間產(chǎn)物在氮?dú)獗Wo(hù)下于550℃煅燒4h;上述步驟重復(fù)2遍后可完成SnO2-Sb-Mn/AC的制備.
粒子電極表征:采用 X射線衍射儀(Bruker Corp,D8Advance)對(duì)粒子電極物相組成進(jìn)行分析;測(cè)試條件:陽(yáng)極靶材料為Cu,管電壓40kV,管電流30mA.掃描電子顯微鏡(FEI Corp,quanta250),工作電壓 30.0kV.粒子電極電化學(xué)性能采用三電極體系在 IM6電化學(xué)工作站(Zahner)上表征,工作條件: IrO2-Ta2O5/Ti為工作電極(尺寸 2cm× 2cm),Pt電極為輔助電極(尺寸4cm×4cm),飽和甘汞電極(SCE)為參比電極.測(cè)試時(shí)將粒子電極置于工作電極和輔助電極之間,于 5.0mmol/L K3Fe(CN)6和5.0mmol/L K4Fe(CN)6溶液中測(cè)定循環(huán)伏安曲線,測(cè)試范圍為 -0.2~1.2V(vs.SCE),掃描速率v為20mV/s.
1.2苯酚電催化氧化
苯酚的電催化氧化分別以IrO2-Ta2O5/Ti、Ti板為陽(yáng)、陰極,尺寸均為10cm×10cm;極板間距為5cm,電極之間分別填充 AC、MnO2/AC、SnO2-Sb-Mn/AC粒子組成填充床電極反應(yīng)器,裝置圖詳見(jiàn)文獻(xiàn)[6].模擬廢水苯酚濃度為600mg/L,Na2SO4質(zhì)量濃度為3%.在電流1.2A,進(jìn)水流速0.5L/h的條件下開(kāi)展動(dòng)態(tài)實(shí)驗(yàn),并定時(shí)取樣進(jìn)行分析.
1.3分析方法
根據(jù)謝樂(lè)公式[10]可計(jì)算粒子電極表面晶粒晶格尺寸D:
式中:k為常數(shù),取 0.89;λ為 X射線波長(zhǎng),為0.154056nm; FW(S)為樣品衍射峰半高寬度,rad;θ為衍射角,rad.
苯酚濃度的測(cè)定采用 4-氨基安替比林分光光度法(HJ 503-2009);使用重鉻酸鉀回流法[18]測(cè)定出水COD濃度并計(jì)算去除率(η):
式中:COD0和CODt分別為初始及t時(shí)刻COD的濃度,mg/L.
苯酚電催化氧化過(guò)程中能耗(Esp, kWh/ kgCOD)和電流效率(ACE)的計(jì)算公式[10,19]可表述為:
人壽險(xiǎn)可以選擇定期壽險(xiǎn)及終身壽險(xiǎn),從性價(jià)比上來(lái)看,定期壽險(xiǎn)會(huì)是較優(yōu)的選擇,一般來(lái)說(shuō)女性費(fèi)率更低,繳費(fèi)期限選擇較長(zhǎng)的較好。健康險(xiǎn)除了上述的百萬(wàn)醫(yī)療,還可以額外為自己加一份女性特定重疾保障。意外險(xiǎn)建議選擇30萬(wàn)或50萬(wàn)保額,保障責(zé)任可以以自己需求來(lái)選擇。
式中:U為操作電壓,V;I為電流,A;Q為進(jìn)水流速, L/h; F為法拉第常數(shù)(96485C/mol).
采用紫外可見(jiàn)分光光度計(jì)(型號(hào) SP756PC)在190~300nm波長(zhǎng)范圍內(nèi)對(duì)水樣吸光度進(jìn)行掃描. GC-MS(型號(hào)安捷倫5975c-7890A),測(cè)試條件:進(jìn)樣體積 0.2uL;色譜柱(DB-5MS,30mDB-5M mmB-5MS μm);進(jìn)樣口溫度250℃;爐溫50℃,保留 4min,以 8℃/min的速率升溫至 110℃,再以10℃/min升溫至250℃,保留4.5min;載氣為氦氣,柱流速度 1.2mL/min;質(zhì)譜條件:電轟擊(EI)電離方式,電子能量70eV,質(zhì)量數(shù)范圍35~500.
2.1XRD分析
由圖1可看出,在2θ為12.784, 18.107, 28.841, 37.522, 41.968, 49.864, 60.274°處出現(xiàn)了明顯的特征衍射峰(圖 1(a)),參照標(biāo)準(zhǔn) PDF卡 No.44-0141可斷定為α-MnO2的特征峰[20];根據(jù)標(biāo)準(zhǔn)卡No.52-0556在衍射角 12.340, 24.799, 42.167, 65.494°處有δ-MnO2特征衍射峰[22].由于α-MnO2和δ-MnO2分子內(nèi)較大的羥基含量以及易于離子擴(kuò)散的構(gòu)型而具有較強(qiáng)的催化氧化活性[21-22].此外,依據(jù)標(biāo)準(zhǔn)PDF卡No.50-0927可知MnO2/AC粒子電極XRD譜圖在衍射角50.493° 和74.198°處發(fā)現(xiàn)微弱的炭基底衍射峰,說(shuō)明形成的MnO2晶體存在于AC表面,基底炭裸露較少. 圖1(b)中活性組分SnO2可由XRD譜圖在衍射角26.611, 33.893, 51.780°的衍射峰確定(JCPDS 41-1445),同時(shí)在 2θ為 18.107, 28.841, 37.522, 60.274, 69.711°處發(fā)現(xiàn)了 α-MnO2(JCPDS 44-0141),但未檢測(cè)到銻氧化物;這是由于 5價(jià)的Sb原子能夠取代SnO2晶格中4價(jià)的Sn原子而進(jìn)入到 SnO2顆粒中[23-24],其與二氧化錫的晶粒衍射峰無(wú)明顯差別.與此同時(shí),SnO2-Sb-Mn/AC粒子電極較弱的衍射峰強(qiáng)度表明錫銻錳金屬氧化物以不規(guī)則的無(wú)定形狀態(tài)存在,這與3類氧化物的固溶存在形式有關(guān)[25].依據(jù)炭原子標(biāo)準(zhǔn)PDF卡No.26-1081在衍射角為 43.450°和 75.302°顯示基底衍射峰,相對(duì) MnO2/AC粒子,基底衍射峰有所增強(qiáng).采用 MnO2/AC粒子電極 XRD譜圖α-MnO2的(110)、(310)、(211)衍射峰半高寬度,SnO2-Sb-Mn/AC粒子電極XRD譜圖(211)、(521)衍射峰的半高寬度,由謝樂(lè)公式計(jì)算出兩粒子電極表面晶體平均尺寸分別為11.47,13.70nm.
圖1 MnO2/AC (a)、SnO2-Sb-Mn/AC (b)粒子電極的XRD譜圖Fig.1 XRD spectrums of MnO2/AC (a) and SnO2-Sb-Mn/AC (b) particulate electrodes
2.2SEM分析
由圖2可見(jiàn),未負(fù)載的活性炭表面具有顯著的裂縫和大孔結(jié)構(gòu),負(fù)載MnO2、SnO2-Sb-Mn活性組分后炭表面變的平整,不規(guī)則孔隙結(jié)構(gòu)消失,且不同類型金屬氧化物在活性炭表面存在的形式不同,這主要體現(xiàn)在活性組分對(duì)炭表面結(jié)構(gòu)覆蓋情況以及存在形態(tài).MnO2/AC表面的錳氧化物顆粒聚團(tuán)生長(zhǎng),形成球狀結(jié)構(gòu)固著于炭顆??紫哆吘?不利于活性點(diǎn)的形成,同時(shí)這種結(jié)構(gòu)的活性層較易脫落,從而影響粒子電極的使用壽命和廢水處理效果;另外,大量絡(luò)合存在的MnO2晶粒亦能使MnO2/AC粒子電極炭原子的XRD檢出峰微弱.SnO2-Sb-Mn/AC出現(xiàn)了結(jié)晶化的活性組分,且以納米半導(dǎo)體錫銻錳氧化物形成的固溶活性體存在于 AC孔隙及裂縫結(jié)構(gòu)中,保障了粒子電極的壽命及孔隙內(nèi)有機(jī)污染物的電催化氧化;同時(shí)SnO2-Sb-Mn/AC粒子電極的炭基底裸露較多,這也與 XRD譜圖中出現(xiàn)的較強(qiáng)炭原子衍射峰相對(duì)應(yīng).
圖2 粒子電極SEM圖Fig.2 SEM images of particulate electrodes
2.3CV分析
圖3?。跢e(CN)6]4-/[Fe(CN)6]3-體系中不同粒子電極的CV曲線Fig.3 Cyclic voltammetric curves of different particulate electrodes in a [Fe(CN)6]4-/[Fe(CN)6]3-system
2.4苯酚電催化氧化降解分析
由圖4可知,負(fù)載半導(dǎo)體金屬氧化物的粒子電極降解苯酚效果均優(yōu)于 AC:反應(yīng) 140min時(shí),MnO2/AC、SnO2-Sb-Mn/AC粒子電極的苯酚和COD去除率分別為 74.8%、72.1%和 94.7%、90.4%,高于AC粒子電極體系的70.1%、67.6%;這主要是因?yàn)?AC表面存在的活性組分增強(qiáng)了粒子催生·OH的能力,從而顯著強(qiáng)化了體系的電催化效率.同時(shí),與 MnO2/AC粒子電極相比, SnO2-Sb-Mn/AC粒子電極在氧化苯酚時(shí)表現(xiàn)出尤為明顯的優(yōu)勢(shì),一方面SnO2與MnO2協(xié)同作用于陽(yáng)極氧化副產(chǎn)物 O2,使其轉(zhuǎn)化為·OH 、·O-2、·O-、·HO-2等氧化劑[28],并且 Sb元素在提高復(fù)合氧化物導(dǎo)電性的同時(shí),可增強(qiáng) SnO2-Sb-Mn/AC粒子電極在外電場(chǎng)的極化作用,進(jìn)一步催生·OH;另一方面錫銻錳氧化物形成的納米固溶體分布于 AC孔隙及裂縫結(jié)構(gòu)中,可增加粒子電極孔隙內(nèi)吸附的有機(jī)污染物與電催化產(chǎn)生的活性基團(tuán)的接觸面積,繼而加速氧化反應(yīng)的發(fā)生.由圖5可以看出,反應(yīng)時(shí)間為140min時(shí), MnO2/AC 與SnO2-Sb-Mn/AC粒子電極的AC E、Esp分別為62.7%、20.3kWh/kgCOD和50.9%、26.1kWh/ kgCOD,與AC粒子電極(48.4%、29.1kWh/kgCOD)相比,炭載金屬氧化物活性組分能夠有效提高電催化氧化體系的電流效率并節(jié)約能耗.
為探究不同粒子電極對(duì)苯酚的降解特性,分別對(duì) 600mg/L苯酚溶液不同反應(yīng)時(shí)間出水取樣進(jìn)行UV和GC-MS分析,結(jié)果分別如圖6、7所示.由圖 6可知,處理前的水樣在 269.4nm和217nm波長(zhǎng)處出現(xiàn)了苯酚特征吸收峰,且隨著電催化氧化的進(jìn)行,3種粒子電極的出水在該波長(zhǎng)處的吸光度逐漸降低,說(shuō)明苯環(huán)共軛體系被逐漸破壞.采用AC粒子電極時(shí),水樣在波長(zhǎng)235nm處出現(xiàn)了新的吸收峰,該峰是環(huán)境毒害性更強(qiáng)的醌類化合物的特征峰[31],而負(fù)載型粒子電極體系在235nm波長(zhǎng)處并未出相應(yīng)特征峰,表明炭載金屬氧化物粒子電極可在顯著增強(qiáng)電催化性能的同時(shí),減少了有毒有害中間產(chǎn)物的積累.對(duì)比圖6(b)與 6(c),還可觀察到與 MnO2/AC粒子電極相比,SnO2-Sb-Mn/AC在269.4nm和217nm波長(zhǎng)處苯酚的吸光度下降速率更快,這與其苯酚氧化結(jié)果(圖4)相一致.圖7發(fā)現(xiàn),不同粒子電極140min出水中除含有未降解的苯酚(保留時(shí)間8.552min)外,AC粒子電極在保留時(shí)間 14.292min和5.422min還存在苯醌、馬來(lái)酸特征離子峰[32],而負(fù)載型粒子電極出水并未檢測(cè)出苯醌,說(shuō)明負(fù)載型粒子電極具有縮短苯酚降解路徑的特性;同時(shí),MnO2/AC粒子電極電催化氧化出水中還檢測(cè)到微量的馬來(lái)酸類小分子有機(jī)物,而 SnO2-Sb-Mn/AC出水水樣中未捕捉到中間產(chǎn)物,表明AC表面錫銻錳氧化物形成的活性固溶體對(duì)苯酚的礦化效果較MnO2單組分明顯提高.
圖5 不同粒子電極電催化氧化苯酚ACE和Esp對(duì)比Fig.5 The contrast of ACE and Espof different particulate electrodes on phenol oxidation
圖6 不同粒子電極出水UV譜圖Fig.6 UV spectra of different particulate electrodes (a) AC;(b) MnO2/AC;(c)SnO2-Sb-Mn/AC
圖7 不同粒子電極反應(yīng)140min時(shí)出水GC-MS譜圖Fig.7 The GC-MS spectra of different particulate electrodes at reaction time of 140min
3.1實(shí)驗(yàn)表征結(jié)果顯示制備的 MnO2晶粒主要以α-MnO2、δ-MnO2晶型聚團(tuán)固著于AC孔隙邊緣,SnO2-Sb-Mn活性組分則以固溶體形式存在于 AC孔隙及裂縫結(jié)構(gòu)中,兩粒子電極表面晶格平均尺寸分別為11.47nm和13.70nm.
3.2AC、MnO2/AC與SnO2-Sb-Mn/AC粒子電極體系的循環(huán)伏安測(cè)試結(jié)果說(shuō)明負(fù)載金屬氧化物可增加伏安電量數(shù)值,即提高粒子電極催化活性,且三者的伏安電荷量分別為0.361C、0.436C、0.912C.
3.3苯酚模擬廢水電催化氧化實(shí)驗(yàn)表明, MnO2/AC、SnO2-Sb-Mn/AC粒子電極可實(shí)現(xiàn)高效節(jié)能,且未出現(xiàn)苯醌類等環(huán)境毒害較強(qiáng)物質(zhì)的積累,具有縮短苯酚降解路徑的特性.
[1] Xiong Y, Strunk P J, Xia H G, et al. Treatment of dye wastewater containing acid orangeⅡusing a cell with three-phase threedimensional electrode [J]. Water Research, 2001,35(7):4226-4230.
[2] Jung K W, Hwang M J, Park D S, et al. Combining fluidized metal-impregnated granular activated carbon in threedimensional electrocoagulation system: feasibility and optimization test of color and COD removal from real cotton textile wastewater [J]. Separation and Purification Technology, 2015,146:154-167.
[3] Lv Y L, Wang Y Q, Shan M G, et al. Denitrification of coking wastewater with micro-electrolysis [J]. Journal of Environmental Sciences, 2011,23:S128-S131.
[4] Rao N N, Rohit M, Nitin G, et al. Kinetics of elecrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reator [J]. Chemosphere, 2009,76(9):1206-1212.
[5] Panizzaa M, Kapalka A, Comninellis Ch. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis[J]. Electrochimica Acta, 2008,53(5):2289-2295.
[6] Wang L Z, Fu J F, Qiao Q C, et al. Kinetic modeling of electrochemical degradation of phenol in a three-dimension electrode process [J]. Journal of Hazardous Materials, 2007, 144(1/2):118-125.
[7] Fierro S, Ouattara L, Comninellis C, et al. Investigation of formic acid oxidation on Ti/IrO2electrodes [J]. Electrochimica Acta, 2009, 54:2053-2061.
[8] 鐘銳超,周德鴻,陳衛(wèi)國(guó),等.粒子電極堆放方式對(duì)三維電極體系性能的影響研究 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2011,31(10):2174-2178.
[9] 班福忱,劉炯天,程 琳,等.不同類型填料的三維電極/Fenton試劑法處理苯酚廢水 [J]. 環(huán)境污染與防治, 2009,31(4):24-27.
[10] Li P, Zhao Y M, Wang L Z, et al. New strategy of using stannic oxide as catalyst in a three-dimension electrode reactor for the electro-oxidation of organic matter [J]. Journal of New Materials for Electrochemical Systems, 2014,17(4):243-249.
[11] 孫玲芳,喻澤斌,彭振波,等.Fe-Ni-TiO2/AC粒子電極的制備及可見(jiàn)光光電催化協(xié)同降解RhB [J]. 中國(guó)環(huán)境科學(xué), 2014,34(12):3119-3126.
[12] Zhao X, Li A Z, Ran M, et al. Electrochemical removal of haloacetic acids in a three-dimensional electrochemical reactor with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode [J]. Water Research, 2014,51:134-143.
[13] Yuan S H, Mao X H, Alshawabkeh A. Efficient degradation of TCE in groundwater using Pd and electro-generated H2and O2:A shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions [J]. Environmental Science & Technology, 2012,46(6):3398-3405.
[14] 徐海青,劉秀寧,王育喬,等.復(fù)合金屬氧化物 Sn-Sb-Mn/陶瓷粒子電極體系的電催化性能 [J]. 物理化學(xué)學(xué)報(bào), 2009,25(5):840-846.
[15] Fockedey E, Lierde A V. Coupling of anodic and cathodic reactions for phenolelectro-oxidation using three-dimensional electrodes [J]. Water Research, 2002,36:4169-4175.
[16] Liu Zh G, Wang F F , Li Y S, et al. Continuous electrochemical oxidation of methyl orange waste water using a threedimensional electrode reactor [J]. Journal of Environmental Sciences, 2011,23:S70-S73.
[17] Gedam N, Rao N N. Carbon attrition during continuous electrolysis in carbon bed based three-phase three-dimensional electrode reactor: treatment of recalcitrant chemical industry wastewater [J]. Journal of Environmental Chemical Engineering, 2014,2(3):1527-1532.
[18] 奚旦立,孫裕生,劉秀英.環(huán)境監(jiān)測(cè) [M]. 北京:高等教育出版社, 2002:109-111.
[19] Andrade L S, Tasso T T, Bocchi N, et al. On the performances of lead dioxide and boron-doped diamond electrodes in the anodic oxidation of simulated wastewater containing the Reactive Orange 16dye [J]. Electrochimica Acta, 2009,54(7):2024-2030.
[20] Wang H G, Lu Z G, Qian D, et al. Facile synthesis and electrochemical characterization of hierarchical α-MnO2spheres[J]. Journal of Alloys and Compounds, 2008,466(1/2):250-257.
[21] Selvakumar K, Senthil K S M, Thangamuthu R, et al. Development of shape-engineered α-MnO2materials as bifunctional catalysts for oxygen evolution reaction and oxygen reduction reaction in alkaline medium [J]. International Journal of Hydrogen Energy, 2014,39(36):21024-21036.
[22] Zhu M X, Wang Z, Xu S H. Decolorization of methylene blue by δ-MnO2-coated montmorillonite complexes: Emphasizing redox reactivity of Mn-oxide coatings [J]. Journal of Hazardous Materials, 2010,181(1-3):57-64.
[23] Kim S, Choi S K, Yoon B Y, et al. Effects of electrolyte on the electrocatalytic activities of RuO2/Ti and Sb-SnO2/Ti anodes for water treatment [J]. Applied Catalysis B: Environmental, 2010, 97(1/2):135-141.
[24] Feng Y J, Cui Y H, Liu J F, et al. Factors affecting the electrocatalytic characteristics of Eu doped SnO2/Sb electrode [J]. Journal of Hazardous Materials, 2010,178(1-3):29-34.
[25] 褚秋霞,梁鎮(zhèn)海,孫顏發(fā),等.稀土Y摻雜Ti/SnO2+MnOx/PbO2電極的電化學(xué)性能研究 [J]. 稀有金屬材料與工程, 2009,38(5):821-825.
[26] 李保松,林安,甘復(fù)興.Ti/IrO2-Ta2O5陽(yáng)極的制備及其析氧電催化性能研究 [J]. 稀有金屬材料與工程, 2007,36(2):245-249.
[27] Wong K N, Khiew P S, Isa D, et al. Facile synthesis of flowerlike PbO as a precursor to form nanodendritic PbO2for positive active material (PAM) of lead-acid electrochemical Storage devices [J]. Materials Letters, 2014,128:97-100.
[28] 張芳,李光明,盛怡,等.電催化氧化法處理苯酚廢水的Mn-Sn-Sb/γ-Al2O3粒子電極研制 [J]. 化學(xué)學(xué)報(bào), 2006,64(3):235-239.
[29] Kong J T, Shi S Y, Zhu X P, et al. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2electrodes in the oxidation of 4-chlorophenol [J]. Journal of Environmental Sciences, 2007,19(11):1380-1386.
[30] Lin H, Niu J F, Ding S Y, et al. Eletrochemical degradation of perfluorooctanonic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2, and Ti/SnO2-Sb/MnO2anodes [J]. Water Research, 2012,46(7):2281-2289.
[31] Feng Y J, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution [J]. Water Research, 2003,37(10):2399-2407.
[32] 張芳,李光明,張志剛,等.Mn-Sn-Sb/γ-Al2O3粒子電極對(duì)苯酚的降解特性 [J]. 化工學(xué)報(bào), 2006,57(10):2515-2521.
Electro-catalytic performance of the activated carbon supported metal oxide as particulate electrode for phenol oxidation.
WU Bo, LI Peng, ZHANG Bo, WANG Li-zhang*(School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China).
China Environmental Science, 2015,35(8):2426~2432
Granular activated carbon (AC) was used as substrate for fabricating of nano MnO2and SnO2-Sb-Mn loaded catalytic particulate electrodes with redox and thermal decomposition methods, respectively. The phase composition, micro-morphology and electrocatalytic activity of the newly prepared particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques as well as electrochemical test. The results showed that the as-prepared manganese oxide was mainly shaped in α-MnO2and δ-MnO2, which fixed in AC pore edge. SnO2-Sb-Mn component exist as the solid solution distributed on the surface and in the pore structure of AC. The average size of the two crystal was 11.47 and 13.70nm. Metal oxide coatings could increase voltammetric charges during the cyclic voltammetry (CV) scanning process, and improve electrical catalytic activity of particle electrodes. Bulk electrolysis experiments in packed bed electrochemical reactor were conducted with simulated phenol wastewater. The experiments data displayed that the removal of phenol and COD concentration with MnO2/AC and SnO2-Sb-Mn/AC filling were better than that of virgin AC, higher current efficiency and lower energy consume would be realized. The removal ratio of phenol and COD on SnO2-Sb-Mn/AC particles was as high as 94.7%, 90.4% under 12mA/cm2current density during 140min purification, with concurrent ACE reached about 62.7% and Esp20.3kWh/kgCOD.
electro-catalytic oxidation;supported particulate electrode;packed bed electrochemical reactor;phenol
X703
A
1000-6923(2015)08-2426-07
2015-01-16
國(guó)家自然科學(xué)基金委員會(huì)創(chuàng)新研究群體科學(xué)基金(51221462);國(guó)家自然科學(xué)基金項(xiàng)目(50908226);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(2013QNA20)
* 責(zé)任作者, 副教授, dhxktz@126.com
伍波(1990-)男,湖南長(zhǎng)沙人,中國(guó)礦業(yè)大學(xué)碩士研究生,主要從事水處理技術(shù)研究.