夏冰, 趙楊, 魏穎娟, 黃敏, 敖和軍, 鄒應斌
(湖南農(nóng)業(yè)大學農(nóng)學院,長沙 410128)
不同種植地點超級雜交稻產(chǎn)量及氮磷鉀吸收積累特點
夏冰, 趙楊, 魏穎娟, 黃敏, 敖和軍, 鄒應斌*
(湖南農(nóng)業(yè)大學農(nóng)學院,長沙 410128)
為探明不同生態(tài)條件下超級雜交稻產(chǎn)量與氮、磷、鉀養(yǎng)分的吸收積累特點及其基因型差異。以兩優(yōu)培九、中浙優(yōu)1號等8個代表性的超級雜交稻品種為材料,普通雜交稻汕優(yōu)63和超級常規(guī)稻勝泰1號為對照,于2007—2009年在湖南省桂東、長沙、南縣進行了大田栽培試驗。結(jié)果表明不同基因型超級雜交稻產(chǎn)量與氮磷鉀養(yǎng)分吸收量的地點間、年度間、品種間差異顯著。不同超級雜交稻品種產(chǎn)量3年3地點平均為9.32~10.25 t/hm2,比汕優(yōu)63增產(chǎn)5.1%~15.6%,比勝泰1號增產(chǎn)8.9%~19.7%;氮、磷、鉀養(yǎng)分需要量分別為18.48~19.85 kg,3.75~4.63 kg 和15.90~17.40 kg;氮、磷、鉀養(yǎng)分吸收量分別為177.69~189.09 kg/hm2,36.94~39.80 kg/hm2和153.38~165.39 kg/hm2,其中稻谷中氮素、磷素分別為61.2%~65.3%和67.6%~74.4%,稻草中鉀素為86.9%~89.6%;氮素吸收率在分蘗中期約為20%,穗分化期25%~30%,抽穗期30%~40%,成熟期約為20%;磷素分別約15%,20%~30%,40%~45%,10%~20%;鉀素分別為15%~20%,25%~35%,30%~40%,15%~20%??梢?超級雜交稻具有顯著的增產(chǎn)優(yōu)勢,養(yǎng)分需要量低于對照品種,說明超級雜交稻有利于實現(xiàn)高產(chǎn)與養(yǎng)分高效利用相協(xié)調(diào)。
超級稻; 產(chǎn)量; 氮磷鉀養(yǎng)分; 地點
水稻的生長發(fā)育和產(chǎn)量與土壤氮、磷、鉀等養(yǎng)分供應能力及施肥有關(guān),尤其與氮肥用量及施用時間關(guān)系密切[1-20]。已有研究[1-10]表明不同基因型水稻氮素積累量和利用效率存在顯著差異,不僅在秈亞種與粳亞種間、常規(guī)稻與雜交稻間差異顯著,而且在相同亞種不同品種間也表現(xiàn)出顯著差異,但其差異變化范圍不完全一致,既與氮肥用量、土壤背景氮等栽培環(huán)境條件有關(guān)[7-10],也與生物產(chǎn)量、葉面積指數(shù)、株高、籽粒產(chǎn)量及其產(chǎn)量構(gòu)成等農(nóng)藝性狀有關(guān)[9-11]。水稻成熟期氮素積累量大的品種,通常其單位面積穗數(shù)、庫容量、葉面積系數(shù)、生物產(chǎn)量增加,但其每穗穎花數(shù)、經(jīng)濟系數(shù)、結(jié)實率和千粒質(zhì)量卻會降低[10-15]。水稻氮素利用效率的基因型差異顯著,已引起水稻育種學家及栽培專家的共同關(guān)注,具有高氮素利用率及高吸收率的品種[11-16]以及反映水稻氮素高效利用的農(nóng)藝性狀指標也相應地被提出[15-17]。超級稻氮、磷、鉀養(yǎng)分的吸收能力強且總吸收量大,同時超級粳稻比秈稻品種的氮素需要量高17.5%[21],但由于超級稻的收獲指數(shù)和籽粒產(chǎn)量高,按單位籽粒產(chǎn)量的氮、磷、鉀養(yǎng)分需要量卻并不增加[18-20]。唐啟源等[22]研究發(fā)現(xiàn)后期施氮能明顯增加超級稻兩優(yōu)培九光合產(chǎn)物的積累量。胡泓等[23]研究表明鉀肥可促進超級雜交水稻氮磷養(yǎng)分從莖葉部位向穗部輸送,增加產(chǎn)量。Chen等[24]研究發(fā)現(xiàn)在不施氮肥或低氮肥條件下,超級稻與普通稻品種產(chǎn)量沒有顯著差異,但在高氮肥條件下,超級稻產(chǎn)量和氮肥農(nóng)學利用率顯著高于普通稻。陳露等[25]認為超級稻品種在高氮水平下具有更高的產(chǎn)量。但是,超級雜交稻高產(chǎn)是否與氮、磷、鉀養(yǎng)分高效利用相協(xié)調(diào)還不明確。本研究試圖在前人研究的基礎(chǔ)上,研究不同超級雜交稻氮磷鉀養(yǎng)分吸收積累規(guī)律及其產(chǎn)量表現(xiàn)的基因型差異、地點間和年度間差異,旨在為超級雜交稻的高產(chǎn)栽培,為篩選具有高氮素利用率和高吸收率的水稻品種提供理論依據(jù)。
1.1 試驗材料
試驗材料為農(nóng)業(yè)部認定的超級雜交稻品種D優(yōu)527(DY-527)、Ⅱ優(yōu)084(EY-084)、Ⅱ優(yōu)航1號(EYH-1)、兩優(yōu)培九(LYPJ)、內(nèi)兩優(yōu)6號(NLY-6)、Y兩優(yōu)1號(YLY-1)、準兩優(yōu)527(ZLY-527),中浙優(yōu)1號(ZZY-1)、對照超級常規(guī)稻品種勝泰1號(STai-1)和普通雜交稻品種汕優(yōu)63(SY-63)。種子由中國水稻研究所、國家雜交水稻工程研究中心等育種單位提供。
1.2 試驗設計
試驗于2007—2009年在湖南省桂東縣寨前鄉(xiāng)水灣村(北緯 25°08′,東經(jīng)113°55′,海拔724 m)、南縣南洲鎮(zhèn)北洋村(北緯29°20′,東經(jīng)112°25′,海拔32 m)和湖南農(nóng)業(yè)大學水稻試驗基地(北緯28°12′,東經(jīng)113°04′,海拔53 m)大田栽培條件下進行,各試驗地點的品種和方法相同。田間采用隨機區(qū)組排列,3次重復,小區(qū)面積25 m2,各試驗地點肥料用量相同,即施尿素375 kg/hm2,過磷酸鈣750 kg/hm2,氯化鉀210 kg/hm2。其中:尿素分基肥(50%)、分蘗肥(20%)、穗肥(30%)3次施用;鉀肥分基肥和穗肥2次施用;磷肥作基肥于插秧前1次施用。各試驗地點稻田土壤肥力水平中等偏上(表1),排灌方便,田間栽培管理一致。桂東點于4月15至20日播種,長沙點和南縣點于5月15至20日播種,濕潤育秧,播種量15 g/m2,秧齡25 d。栽插密度23.33 cm×23.33 cm,每穴栽插2本苗,雜交稻和常規(guī)稻相同。在插秧后淺水灌溉,當多數(shù)品種達到夠苗期時開始曬田,曬田15 d后保持淺水灌溉到抽穗期,抽穗后至收割前7 d,采用間歇灌溉;均按照高產(chǎn)栽培要求嚴格控制病害和蟲害,不施用除草劑,采用人工中耕除草。
表1 不同試驗地點稻田土壤有機質(zhì)及養(yǎng)分含量
1.3 試驗測定的內(nèi)容與方法
于2007年成熟期,2008—2009年分蘗中期(移栽后20 d)、穗分化期、抽穗期、成熟期取樣測定干物質(zhì)量。成熟期沿小區(qū)對角線取植株10穴(不包括邊3行),其他時期每小區(qū)取代表性植株6穴。取樣時連根拔起,用自來水沖洗干凈,剪除根系,計數(shù)每穴株數(shù)或穗數(shù)。分蘗中期和穗分化期樣品分為莖、葉2部分;抽穗期樣品分為莖、葉、穗3部分;成熟期樣品手工脫粒后,稻谷用清水漂洗,分為實粒(下沉)和空秕粒(上浮),樣品分為稻草、實粒和空秕粒3部分。將全部樣品在105 ℃恒溫條件下殺青20 min,然后在80 ℃恒溫條件下,烘干至恒重,冷卻后稱量。
產(chǎn)量構(gòu)成因子包括有效穗數(shù)、每穗粒數(shù)、結(jié)實率和千粒質(zhì)量。在每個小區(qū)的邊3行以內(nèi),調(diào)查每穴的有效穗數(shù),連續(xù)調(diào)查30穴,按栽插密度計算有效穗數(shù)。每個小區(qū)從成熟期實粒樣品中稱取30 g樣品3份計數(shù),空秕粒全部計數(shù),計算所取樣品的每穗總粒數(shù)、結(jié)實率(%)和千粒質(zhì)量(g,烘干質(zhì)量)。在每個小區(qū)的邊3行以內(nèi),連續(xù)收割125穴脫粒,曬干后稱量,同時取樣500 g,在80 ℃恒溫條件下烘干至恒重,按照13.5%標準含水量計算稻谷質(zhì)量,再按照栽插密度計算各處理的稻谷產(chǎn)量。
將全部樣品粉碎消煮后測定氮磷鉀含量。其中,氮含量采用法國Alliance全自動流動注射儀(型號:Fortuna)測定;磷含量測定采用鉬藍比色法;鉀含量測定采用火焰光度計(型號:FP640)。氮磷鉀養(yǎng)分吸收有關(guān)指標計算方法為
氮磷鉀吸收量/(kg/hm2)=植株氮磷鉀含量×單位面積植株干物質(zhì)量;
氮磷鉀收獲指數(shù)=籽粒氮磷鉀吸收量/植株氮磷鉀吸收量;
氮磷鉀需要量/(kg/1 000 kg)=單位面積植株氮磷鉀吸收量/收割的稻谷產(chǎn)量.
1.4 數(shù)據(jù)統(tǒng)計分析
全部數(shù)據(jù)結(jié)果用Excel軟件和美國統(tǒng)計分析軟件Statistix 8.0分析處理。
2.1 產(chǎn)量及其構(gòu)成
不同基因型超級雜交稻品種稻谷產(chǎn)量、產(chǎn)量構(gòu)成、干物質(zhì)量均存在顯著的地點間差異和年度間差異(表2)。年度間稻谷產(chǎn)量以2009年最高,3地點平均達到10.1 t/hm2,其原因是干物質(zhì)量大、有效穗數(shù)多和穎花數(shù)多(有效穗數(shù)×每穗粒數(shù))。地點間以桂東點產(chǎn)量最高,其原因是干物質(zhì)量大、有效穗數(shù)多、穎花數(shù)多、結(jié)實率高。表2還表明不同超雜交稻品種間產(chǎn)量差異顯著,其中以兩優(yōu)培九產(chǎn)量最高,準兩優(yōu)527產(chǎn)量次之。其高產(chǎn)的原因前者是單位面積穎花數(shù)多,后者是千粒質(zhì)量大、結(jié)實率高。超級雜交稻品種平均產(chǎn)量達到9.71 t/hm2,比普通雜交稻品種汕優(yōu)63增產(chǎn)9.5%,增幅為5.1%~15.6%,比常規(guī)稻品種勝泰1號增產(chǎn)13.5%,增幅為8.9%~19.7%。
2.2 氮、磷、鉀養(yǎng)分吸收量及其在稻草和稻谷中的分配
不同基因型超級雜交稻地上部全株氮素吸收量差異顯著(表3),其中以準兩優(yōu)527最高,其次為中浙優(yōu)1號,兩優(yōu)培九和內(nèi)兩優(yōu)1號,顯著高于其余4個超級雜交稻品種及對照品種汕優(yōu)63和勝泰1號。不同基因型超級雜交稻稻草氮素積累量差異不大,然而實粒氮素積累量存在顯著差異。表3還表明稻草、實粒、空秕粒、全株的氮素積累量均存在明顯的地點間和年度間差異,其中地點間以桂東點植株氮素積累量最高,3年平均為214.9 kg/hm2,年度間以2009年最高,3地點平均為206.30 kg/hm2。從氮素在器官中的分配來看,實粒平均占62.56%(61.2%~65.3%),稻草平均占32.8%(31.8%~33.6%),空秕粒平均占4.6%(2.8%~5.5%)。
表4是超級雜交稻地上部植株磷素吸收量及其在稻草和實粒中的分配。從表4可看出,不同基因型超級雜交稻地上部全株磷素吸收量差異顯著,Ⅱ優(yōu)航1號全株磷吸收顯著高于對照品種汕優(yōu)63和勝泰1號;其次為兩優(yōu)培九、D優(yōu)527,顯著高于勝泰1號,但與其他超級雜交稻品種差異不顯著。表4還表明,不同超級雜交稻稻草、實粒磷素積累量均存在顯著的基因型差異,地點間以桂東點植株磷素積累量最高,3年平均為44.56 kg/hm2,年度間以2008年最高,3地點平均為43.91 kg/hm2。從磷素在器官中的分配來看,實粒平均占71.0%(67.6%~74.4%),稻草平均占24.3%(21.7%~27.4%),空秕粒平均占4.7%(2.8%~5.5%)。
表2 不同超級稻品種產(chǎn)量及其構(gòu)成的地點間差異和年度間差異
同列數(shù)列后不同小寫字母表示同一項目不同處理間在P<0.05水平下差異有統(tǒng)計學意義.
Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.
表3 超級雜交稻地上部植株氮素吸收量及其分配
同列數(shù)列后不同小寫字母表示同一項目不同處理間在P<0.05水平下差異有統(tǒng)計學意義.
Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.
表4 超級雜交稻地上部植株磷素吸收量及其分配
同列數(shù)列后不同小寫字母表示同一項目不同處理間在P<0.05水平下差異有統(tǒng)計學意義.
Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.
表5是超級雜交稻地上部植株鉀素吸收量及其在稻草和實粒中的分配。從表5可看出,不同超級雜交稻地上部全株鉀素吸收量存在顯著的基因型差異,準兩優(yōu)527最高, 其次為兩優(yōu)培九、D優(yōu)527,汕優(yōu)63和Ⅱ優(yōu)航1號,顯著高于勝泰1號。不同基因型超級雜交稻的稻草、實粒鉀素積累量也均存在顯著的基因型差異,其中實粒鉀素積累量以中浙優(yōu)1號最高,以汕優(yōu)63和勝泰1號最低。表5還表明超級雜交稻的稻草、實粒、全株鉀素積累量均存在顯著的地點間和年度間差異,其中地點間以桂東點植株鉀素積累量最高,年度間以2009年最高。從鉀素在器官中的分配來看,稻草平均占87.2%(85.8%~88.6%),實粒平均占11.6%(10.4%~13.1%),空秕粒平均占1.2%(0.7%~1.5%)。
表5 超級雜交稻地上部植株鉀素吸收量及其分配
同列數(shù)列后不同小寫字母表示同一項目不同處理間在P<0.05水平下差異有統(tǒng)計學意義.
Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.
2.3 氮、磷、鉀養(yǎng)分需要量
表6表明超級雜交稻氮素需要量為18.48~19.85 kg,不同基因型品種間差異顯著,但都顯著低于汕優(yōu)63(20.52 kg)和勝泰1號(20.68 kg)。超級雜交稻磷素需要量為3.75~4.63 kg/hm2,品種間差異顯著,除Ⅱ優(yōu)航1號外,其他品種與對照品種汕優(yōu)63 (4.43 kg)和勝泰1號(4.36 kg)沒有顯著差異。超級雜交稻鉀素需要量為15.90~17.40 kg/hm2,品種間差異顯著,均顯著低于汕優(yōu)63(18.08 kg),與對照勝泰1號17.09 kg差異不顯著。表6還表明超級稻氮素、磷、鉀的需要量存在地點間和年度間差異,其中地點間均以長沙點最高,這可能與長沙點的收割產(chǎn)量低和收獲指數(shù)不高有關(guān),因為氮、磷、鉀養(yǎng)分的吸收量包括實粒和稻草2部分的積累量,收獲指數(shù)低于50%,說明稻草積累的養(yǎng)分質(zhì)量分數(shù)大,養(yǎng)分需要量高。
表6 超級稻每生產(chǎn)1 000 kg稻谷植株的氮、磷、鉀養(yǎng)分需要量
同列數(shù)列后不同小寫字母表示同一項目不同處理間在P<0.05水平下差異有統(tǒng)計學意義.
Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.
2.4 氮、磷、鉀養(yǎng)分吸收積累過程
從表7可以看出,超級雜交稻不同生育時期氮素吸收量在地點間和年度間差異顯著,但品種間除抽穗前以ZLY-527顯著高于EY-084和EYH-1外,其他各時期品種間差異不顯著。從表7還可以看出,從移栽期到分蘗中期,氮素吸收率2008年和2009年分別為25.4%和16.0%,差異顯著;不同地點以桂東最高(23.7%),顯著高于長沙點(18.6%)和南縣點(19.8%);品種間為20.1%~21.4%,差異不顯著。從分蘗中期到幼穗分化期,氮素吸收率2年分別為19.3%和34.4%,差異顯著;地點間為25.5%~27.7%,差異不顯著;品種間為23.7%~32.2%,差異顯著。從穗分化期到抽穗期,氮素吸收率2年分別為30.8%和35.9%,差異顯著;地點間為31.7%~36.1%,差異不顯著;品種間為29.6%~37.7%,差異不顯著。從抽穗期到成熟期,氮素吸收率2年分別為26.3%和14.2%,差異顯著;地點間為17.8%~22.9%,差異顯著;品種間為17.4%~22.8%,差異不顯著。另外,除了成熟期ZLY-527氮素吸收量顯著高于常規(guī)稻勝泰1號外,超級雜交稻品種不同生育時期氮素吸收量及吸收率與對照品種的差異不顯著。
表8是不同生育時期的磷素吸收量及占總吸收量的百分率。超級雜交稻不同生育時期的磷素吸收積累量和吸收率年度間差異顯著,但地點間吸收率在生育中期差異不顯著。表8還表明,超級雜交稻不同生育時期磷素吸收率的品種間差異不一致,從移栽期到幼穗分化期、從抽穗期到成熟期品種間差異顯著;但從穗分化期到抽穗期差異不顯著。另外,與汕優(yōu)63和勝泰1號比較,超級雜交稻品種不同生育時期磷素吸收量及吸收率的差異不顯著。
表9表明超級雜交稻不同生育時期鉀素吸收量和吸收率年度間差異顯著,地點間除分蘗中期的鉀素吸收量和分蘗中期至穗分化期的鉀素吸收率差異不顯著外,其他各生育時期的鉀素吸收量和吸收率差異均顯著。不同超級雜交稻品種生長前期,即從移栽期到分蘗中期,或者從分蘗中期到幼穗分化期,鉀素吸收率品種間差異均顯著;在生長中、后期,即從穗分化期到抽穗期,或從抽穗期到成熟期,鉀素吸收率品種間差異不顯著。另外,與汕優(yōu)63和勝泰1號比較,超級雜交稻品種不同生育時期的鉀素吸收量和吸收率的差異不顯著。
表7 不同生育時期超級稻氮素吸收量及其占總吸收量的百分率
MT:分蘗中期(移栽后20 d);PI:幼穗分化始期;HD:抽穗期;MA:成熟期;YT:移栽期。同列數(shù)列后不同小寫字母表示同一項目不同處理間在P<0.05水平下差異有統(tǒng)計學意義.
MT: Middle tillering stage (20 d after transplanting); PI: Young panicle differentiation stage; HD: Heading stage; MA: Maturity stage; YT: Transplanting stage. Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.
表8 不同生育時期超級稻磷素吸收量及其占總吸收量的百分率
MT:分蘗中期(移栽后20 d);PI:幼穗分化始期;HD:抽穗期;MA:成熟期;YT:移栽期.同列數(shù)列后不同小寫字母表示同一項目不同處理間在P<0.05水平下差異有統(tǒng)計學意義.
MT: Middle tillering stage (20 d after transplanting); PI: Young panicle differentiation stage; HD: Heading stage; MA: Maturity stage; YT: Transplanting stage. Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.
表9 不同生育時期超級稻鉀素吸收量及其占總吸收量的百分率
MT:分蘗中期(移栽后20 d);PI:幼穗分化始期;HD:抽穗期;MA:成熟期;YT:移栽期。同列數(shù)列后不同小寫字母表示同一項目不同處理間在P<0.05水平下差異有統(tǒng)計學意義.
MT: Middle tillering stage (20 d after transplanting); PI: Young panicle differentiation stage; HD: Heading stage; MA: Maturity stage; YT: Transplanting stage. Values within a column followed by different lowercase letters indicate the significant difference of the same item among different treatment groups at the 0.05 probability level.
超級雜交稻生物產(chǎn)量和稻谷產(chǎn)量高,氮、磷、鉀養(yǎng)分吸收量高于普通雜交稻和常規(guī)稻[17-22]。本研究表明超級雜交稻地上部全株成熟期氮素、磷素、鉀素的吸收量品種間差異顯著,不同品種3年3 地點平均,品種間氮素變化幅度為177.69~189.09 kg/hm2,磷素為36.94~39.80 kg/hm2,鉀素為153.38~165.39 kg/hm2,這與前人研究結(jié)果一致[1-20]。本研究還發(fā)現(xiàn),氮素和磷素主要集中在稻谷中,分別為61.2%~65.3%和67.6%~74.4%;而鉀素主要集中在稻草中,達到86.9%~89.6%??梢?在稻草還田條件下,水稻所吸收的鉀素約85%以上可歸還給土壤,有利于水稻生產(chǎn)的可持續(xù)發(fā)展。
超級雜交稻高產(chǎn)與氮、磷、鉀養(yǎng)分高效利用協(xié)調(diào)。與普通雜交稻及常規(guī)稻比較,超級雜交稻的產(chǎn)量增加,但氮、磷、鉀養(yǎng)分需要量沒有增加[18-20]。本研究證明不同基因型超級雜交稻氮、磷、鉀養(yǎng)分需要量品種間差異顯著,其中氮素為18.48~19.85 kg,磷素為3.75~4.63 kg,鉀素為15.90~17.40 kg。與對照品種比較,超級雜交稻比汕優(yōu)63增產(chǎn)5.1%~15.6%,比勝泰1號增產(chǎn)8.9%~19.7%,氮素需要量顯著低于勝泰1號(20.68 kg/hm2),鉀素需要量顯著低于汕優(yōu)63(18.26 kg/hm2),這與前人有關(guān)秈型超級稻品種的研究結(jié)果一致[18-20],但與前人以粳稻品種為材料的研究結(jié)果不同[26]。由于本研究沒有設置不施氮肥、磷肥、鉀肥的處理,有關(guān)超級雜交稻氮、磷、鉀養(yǎng)分利用率的品種間差異還有待進一步研究。
不同生育時期的氮、磷、鉀養(yǎng)分吸收率,即氮、磷、鉀養(yǎng)分吸收量占成熟期吸收量的比例協(xié)調(diào)與否,與超級雜交稻產(chǎn)量形成關(guān)系密切[21-23]。本研究證明不同超級雜交稻品種氮素吸收率在分蘗中期約20%,穗分化期25%~30%,抽穗期30%~40%,成熟期約20%;磷素分別約15%,20%~30%,40%~45%,10%~20%;鉀素分別為15%~20%,25%~35%,30%~40%,15%~20%??梢?超級雜交稻抽穗后仍具有較強的氮、磷、鉀等養(yǎng)分吸收能力[17-22]。值得注意的是不同超級雜交稻品種與對照品種汕優(yōu)63和勝泰1號的差異因品種而異,即有的品種與對照差異顯著,有的品種與對照差異不顯著。
超級雜交稻單位面積有效穗數(shù)和每穗粒數(shù)等產(chǎn)量構(gòu)成因子間協(xié)調(diào),3年3地點平均產(chǎn)量顯著高于對照品種(汕優(yōu)63和勝泰1號),不同生育時期氮、磷、鉀養(yǎng)分吸收量與對照品種差異不顯著,但養(yǎng)分需要量低于對照品種,說明超級雜交稻有利于實現(xiàn)高產(chǎn)與養(yǎng)分高效利用相協(xié)調(diào)。
[1] Inthapanya P, Sihavong P, Sihathep V,etal. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized conditions.FieldCropsResearch, 2000,65(1):57-68.
[2] 單玉華,王余龍,山本由德,等.不同類型水稻在氮素吸收及利用上的差異.揚州大學學報:自然科學版,2001,4(3):42-45,50. Shan Y H, Wang Y L, Yamamoto Y,etal. Study on the differences of nitrogen uptake and use efficiency in different types of rice.JournalofYangzhouUniversity:NaturalScienceEdition, 2001,4(3):42-45, 50. (in Chinese with English abstract)
[3] 江立庚,戴廷波,韋善清,等.南方水稻氮素吸收與利用效率的基因型差異及評價.植物生態(tài)學報,2003,27(4):464-471. Jiang L G, Dai T B, Wei S Q,etal. Genotypic differences and valuation in nitrogen uptake and utilization efficiency in rice.ActaPhytoecologicaSinica, 2003,27(4):464-471. (in Chinese with English abstract)
[4] 張岳芳,王余龍,張傳勝,等.秈稻品種間氮素吸收利用的差異及其對產(chǎn)量的影響.江蘇農(nóng)業(yè)學報,2006,22(4):318-324. Zhang Y F, Wang Y L, Zhang C S,etal. Differences of nitrogen absorption and utilization and their influences on grain yield of conventionalindicarice cultivars.JiangsuJournalofAgriculturalSciences, 2006,22(4):318-324. (in Chinese with English abstract)
[5] Walker T W, Bond J A, Ottis B V,etal. Hybrid rice response to nitrogen fertilization for mid-southern United States rice production.AgronomyJournal, 2008,100(2):381-386.
[6] Tala G, Heiko B. Genetic variation in nitrogen efficiency among cultivars of irrigated rice in Senegal.JournalofAgriculturalBiotechnologyandSustainableDevelopment, 2013,3(3):35-43.
[7] Norman R, Roberts T, Slaton N,etal. Nitrogen uptake efficiency of a hybrid compared with a conventional, Pure-line rice cultivar.SoilScienceSocietyofAmericaJournal, 2013,77:1235-1240.
[8] Harrell D L, Blanche S B. Tillage, seeding, and nitrogen rate effects on rice density yield, and yield components of two rice cultivars.AgronomyJournal, 2010,102(2):592-597.
[9] Kumar D R, Pramanik K, Saha1 T,etal. Growth. Growth, yield components and yield of hybrid rice as influenced by nitrogen levels and time of homo-brassinolide application.InternationalJournalofAgriculture,EnvironmentandBiotechnology, 2014,7(4):817-824.
[10] 董桂春, 王余龍, 張岳芳,等.不同氮素籽粒生產(chǎn)效率類型秈稻品種產(chǎn)量及其構(gòu)成的基本特點.作物學報,2006,32(10):1511-1518. Dong G C, Wang Y L, Zhang Y F,etal. Characteristics of yield and yield components in conventionalindicarice cultivars with different nitrogen use efficiency for grain output.ActaAgronomicSinica, 2006,32(10):1511-1518. (in Chinese with English abstract)
[11] 馮躍華,潘劍,何騰兵,等.不同施氮水平對超級稻源庫特性的影響.中國農(nóng)學通報,2010,26(15):252-256. Feng Y H, Pan J, He T B,etal. Effect of different fertilizer-N application rate on source-sink characteristics of super hybrid rice.ChineseAgriculturalScienceBulletin, 2010,26(15):252-256. (in Chinese with English abstract)
[12] Singh U, Ladha J K, Castillo E G,etal. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice.FieldCropsResearch, 1998,58(1):35-53.
[13] Ohnishi M, Horie T, Homma K,etal. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand.FieldCropsResearch, 1999,64(1/2):109-120.
[14] 董明輝,張洪程,戴其根,等.不同粳稻品種氮素吸收利用特點的研究.揚州大學學報:農(nóng)業(yè)與生命科學版,2002,23(4):43-46,65. Dong M H, Zhang H C, Dai Q G,etal. Research on the nitrogen absorption and utilization of different rice varieties.JournalofYangzhouUniversity:AgriculturalandLifeSciencesEdition, 2002,23(4):43-46,65. (in Chinese with English abstract)
[15] Bond J A, Walker T W, Ottis B V,etal. Rice seeding and nitrogen rate effects on yield and yield components of two rice cultivars.AgronomyJournal, 2008,100(2):393-397.
[16] Ghaley B B, H?gh-Jensen H, Christiansen J L. Recovery of nitrogen fertilizer by traditional and improved rice cultivars in the Bhutan highlands.PlantandSoil, 2010,332(1):233-246.
[17] 周江明,俞乒乒,吳新明,等.不同水平氮磷鉀對超級稻養(yǎng)分吸收和轉(zhuǎn)運的影響.浙江農(nóng)業(yè)學報,2009,21(1):39-44. Zhou J M, Yu B P, Wu X M,etal. Effect of different NPK supply levels in nutrient absorption and transport of super rice.ActaAgriculturaeZhejiangensis, 2009,21(1):39-44. (in Chinese with English abstract)
[18] 朱德峰,林賢青,陳葦,等.超級稻協(xié)優(yōu)9308營養(yǎng)特性與施肥技術(shù).中國稻米,2002(2):18-19. Zhu D F, Lin X Q, Chen W,etal. Nutritional characteristics and fertilizing technologies for super rice Xieyou 9308.ChinaRice, 2002(2):18-19. (in Chinese)
[19] 杜永,劉輝,楊成,等.超高產(chǎn)栽培遲熟中粳稻養(yǎng)分吸收特點的研究.作物學報,2007,33(2):208-215. Du Y, Liu H, Yang C,etal. Characteristics of nutrient absorption in super-high-yielding mid-season and late-maturityjaponicarice.ActaAgronomicaSinica, 2007,33(2):208-215. (in Chinese with English abstract)
[20] 敖和軍,王淑紅,鄒應斌,等.不同施肥水平下超級雜交稻對氮、磷、鉀的吸收累積規(guī)律.中國農(nóng)業(yè)科學,2008,41(10):3123-3132. Ao H J, Wang S H, Zou Y B,etal. Characteristics of nutrient uptake and utilization of super hybrid rice under different fertilizer application rates.ScientiaAgriculturaSinica, 2008,41(10):3123-3132. (in Chinese with English abstract)
[21] 龔金龍,邢志鵬,胡雅杰,等.秈、粳超級稻氮素吸收利用與轉(zhuǎn)運差異研究.植物營養(yǎng)與肥料學報,2014,20(4):796-810. Gong J L, Xing Z P, Hu Y J,etal. Differences of nitrogen uptake, utilization and translocation betweenindicaandjaponicasuper rice.JournalofPlantNutritionandFertilizer, 2014,20(4):796-810. (in Chinese with English abstract)
[22] 唐啟源,鄒應斌,米湘成,等.不同施氮條件下超級雜交稻的產(chǎn)量形成特點與氮肥利用.雜交水稻,2003,18(1):44-48. Tang Q Y, Zou Y B, Mi X C,etal. Grain yield construction and N fertilizer efficiency of super hybrid rice under different N applications.HybridRice, 2003,8(1):44-48. (in Chinese with English abstract)
[23] 胡泓,王光火.施鉀條件下雜交水稻氮磷養(yǎng)分吸收利用特點.土壤通報,2003,34(3):2002-2004. Hu H, Wang G H. Nature of nitrogen and phosphorus uptake by a hybrid rice under the potassium fertilizer treatment.ChineseJournalofSoilScience, 2003,34(3):2002-2004. (in Chinese with English abstract)
[24] Chen S, Wang D, Xu C,etal. Responses of super rice (OryzasativaL.) to different planting methods for grain yield and nitrogen-use efficiency in the single cropping season.PLoSONE, 2014,9(8):e104950.
[25] 陳露,張偉楊,王志琴,等.施氮量對江蘇不同年代中粳稻品種產(chǎn)量與群體質(zhì)量的影響.作物學報,2014,40(8):1412-1423. Chen L, Zhang W Y, Wang Z Q,etal. Effects of nitrogen application rate on grain yield and population quality of mid-seasonjaponicarice cultivars at different decades in Jiangsu Province.ActaAgronomicaSinica, 2014,40(8):1412-1423. (in Chinese with English abstract)
[26] 凌啟鴻,張洪程,戴其根,等.水稻精確定量施氮研究.中國農(nóng)業(yè)科學,2005,38(12):2457-2467. Ling Q H, Zhang H C, Dai Q G,etal. Study on precise and Quantitative N application in rice.ScientiaAgriculturaSinica, 2005,38(12):2457-2467. (in Chinese with English abstract)
Characteristics of grain yield and nitrogen, phosphorus, potassium uptake and accumulation of super hybrid rice grown in different locations.
Journal of Zhejiang University (Agric. & Life Sci.), 2015,41(5):547-557
Xia Bing, Zhao Yang, Wei Yingjuan, Huang Min, Ao Hejun, Zou Yingbin*
(AgronomyCollegeofHunanAgriculturalUniversity,Changsha410128,China)
Rice is one of the most important staple food crop in China and other Asian countries. Breeding high yielding varieties and improving resource-use efficiency are eternal themes in the areas of both rice research and rice production. In recent years, many super hybrid rice varieties with high yield potential have been widely grown by rice farmers in China, but the rule of nutrient uptake and accumulation is not fully clear.
This paper attempted to ascertain the characteristics and genetic differences of grain yield performance and nitrogen (N), phosphorus (P), potassium (K) uptake and accumulation of super hybrid rice under different ecological conditions. The field experiments with 8 representative super hybrid rice varieties (i.e., Liangyoupeijiu, Zhongzheyou 1, Zhunliangyou 527, Y-liangyou 1, Ⅱ-you 084, Ⅱ-youhang 1, Neiliangyou 6 and D-you 527) were conducted in Guidong County, Changsha City and Nanxian County of Hunan Province in China from 2007 to 2009, of which a common hybrid rice variety Shanyou 63 and a super inbred rice variety Shengtai 1 were taken as the control. The varieties were arranged in a randomized block design with 3 replications. Germinated seeds were sown at the rate of 15 g/m2on 15-20th May in Guiding and on 15-20th April in Changsha and Nanxian. Twenty five-days old seedling were transplanted with 2 seedlings per hill and a hill spacing is 23.33 cm×23.33 cm. Crop management followed high yielding cultivation practices.
The results showed that there were significantly genetic and regional differences in grain yield and nitrogen, phosphorus, potassium (NPK) uptake and accumulation. Averaged across 3 locations and 2 years, grain yields of super hybrid rice varieties were 9.32-10.25 t/hm2, which were 5.1%-15.6% and 8.9%-19.7% higher than those of Shanyou 63 and Shengtai 1, respectively. Guidong had the highest average grain yield of 11.45 t/hm2, which was 38.1% and 30.0% higher than that in Changsha and Nanxian, respectively. The high grain yield in Guiding was attributed to high panicle number and filled grain percentage. In addition, there was significant difference in grain yield among years. The highest average grain yield of 10.01 t/hm2was obtained in 2009 and the lowest one of 8.29 t/hm2was recorded in 2007, of which the former was resulted from high panicle number and the latter was cased by small panicle size. Nutrient requirement for producing 1 000 kg grains of super hybrid rice appeared as N 18.48-19.85 kg, P 3.75-4.63 kg and K 15.90-17.40 kg. There were no significant differences in the NPK requirements between super hybrid rice and the control except for that Shengtai 1 showed significantly less N requirement. Nutrient uptake rate of super hybrid rice appeared as N 177.69-189.09 kg/hm2, P 36.94-39.80 kg/hm2and K 153.38-165.39 kg/hm2, of which 61.2%-65.3% of N and 67.6%-74.4% of P accumulated in rice grains and 86.9%-89.6% of K accumulated in rice straw. Compared with super hybrid and common hybrid rice, inbred rice Shengtai 1 showed significantly less NK uptake rates but similar P uptake rate. Percentage of N uptake rate to the total was about 20% until to mid-tillering stage (20 d after transplanting), 25%-30% from mid-tillering stage to panicle initiation stage, 30%-40% from panicle initiation stage to heading stage and about 20% after heading, and the percentage of P was 15%,20%-30%,40%-45% and 10%-20%, respectively, and the percentage of K was 15%-20%, 25%-35%, 30%-40% and 15%-20%, respectively. There were no significant differences in NPK accumulation rates at each growth stage between hybrid rice and inbred rice.
As above,super hybrid rice displayed significantly higher yield potential but lower nutrient requirements for NPK than those of common hybrid rice and inbred rice. It is concluded that high grain yield can be achieved with high nutrient-use efficiency in super hybrid rice.
super rice; grain yield; nitrogen, phosphorus and potassium nutrients; location
國家水稻產(chǎn)業(yè)技術(shù)體系崗位專家項目(CARS-01);湖南省科技計劃一般項目(2012FJ6118)。
聯(lián)系方式:夏冰(http://orcid.org/0000-0001-8122-9103),E-mail:fifaice@163.com
2015-05-18;接受日期(Accepted):2015-06-08;網(wǎng)絡出版日期(Published online):2015-09-18
S 511
A
*通信作者(Corresponding author):鄒應斌(http://orcid.org/0000-0003-1638-1488),E-mail:ybzou123@126.com
URL:http://www.cnki.net/kcms/detail/33.1247.s.20150918.1756.012.html