楊鵬飛, 趙留濤, 趙新芳 ,閆峰賓 ,杜寶寶, 劉忠虎(河南農(nóng)業(yè)大學(xué)牧醫(yī)工程學(xué)院, 河南 鄭州 450002)
?
中華大蟾蜍視網(wǎng)膜Müller細(xì)胞形態(tài)觀察
楊鵬飛, 趙留濤, 趙新芳 ,閆峰賓 ,杜寶寶, 劉忠虎
(河南農(nóng)業(yè)大學(xué)牧醫(yī)工程學(xué)院, 河南 鄭州 450002)
為了解兩棲動(dòng)物中華大蟾蜍(Bufo gargarizans)視網(wǎng)膜中神經(jīng)膠質(zhì)細(xì)胞形態(tài)結(jié)構(gòu)及分布,利用生物顯微技術(shù)、投射電鏡技術(shù)和免疫組化技術(shù)顯示了中華大蟾蜍視網(wǎng)膜膠質(zhì)細(xì)胞形態(tài)結(jié)構(gòu)。觀察結(jié)果顯示,中華大蟾蜍視網(wǎng)膜中僅分布有Müller細(xì)胞。 光鏡下Müller細(xì)胞在視網(wǎng)膜中成單層分布,細(xì)胞長(zhǎng)軸沿著眼球半徑成放射狀排列,胞體位于內(nèi)核層,胞體發(fā)出至少2個(gè)主干突起。電鏡下視網(wǎng)膜Müller細(xì)胞的胞質(zhì)及胞核著色較周圍細(xì)胞深,細(xì)胞內(nèi)有明顯的纖維成分,與其他神經(jīng)成分易于區(qū)別。Müller細(xì)胞近鞏膜側(cè)的主干突起延伸到視桿與視錐細(xì)胞的內(nèi)節(jié)與胞核交界處,并彼此相互連接形成外界膜,近玻璃體側(cè)的突起末端形成圓錐形的終足,錐形的底部緊鄰玻璃體,且在此處彼此相互連接形成內(nèi)界膜。
中華大蟾蜍;視網(wǎng)膜;Müller 細(xì)胞
脊椎動(dòng)物視網(wǎng)膜含有多種膠質(zhì)細(xì)胞,如星形膠質(zhì)細(xì)胞(Astrocytes)、小膠質(zhì)細(xì)胞(Microglial cell)、少突膠質(zhì)細(xì)胞(Oligdendrocytes)和Müller細(xì)胞等。但不同種的脊椎動(dòng)物視網(wǎng)膜膠質(zhì)細(xì)胞分布類型存在差異。FISCHER等[1]認(rèn)為,小膠質(zhì)細(xì)胞和Müller細(xì)胞是視網(wǎng)膜中穩(wěn)定存在細(xì)胞,星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞在不同物種視網(wǎng)膜中存在情況不同。如在雞、豚鼠和兔等有血管視網(wǎng)膜(Vascular retina)中分布有少突膠質(zhì)細(xì)胞,它們形成神經(jīng)纖維層(Nerve fiber layer ,NFL) 節(jié)細(xì)胞軸突的髓鞘[2-4],同時(shí)有血管視網(wǎng)膜中也分布有大量星形膠質(zhì)細(xì)胞,這些細(xì)胞緊密貼附在視網(wǎng)膜內(nèi)血管的壁上[5-7], 而內(nèi)部無(wú)血管分布的視網(wǎng)膜幾乎沒(méi)有星形膠質(zhì)細(xì)胞[8]。研究認(rèn)為星形膠質(zhì)細(xì)胞并非由視網(wǎng)膜神經(jīng)上皮細(xì)胞分化形成,而是在視網(wǎng)膜發(fā)育過(guò)程中沿著視神經(jīng)由腦部遷移而來(lái)的[9,10]。少突膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞是有共同祖細(xì)胞分化形成的[11]。小膠質(zhì)細(xì)胞是在視網(wǎng)膜發(fā)育早期階段由視神經(jīng)處的中胚層細(xì)胞分化形成,且形成后潛伏入視網(wǎng)膜層中,或由伴隨血管延伸入視網(wǎng)膜的細(xì)胞而來(lái)[12]。Müller細(xì)胞是視網(wǎng)膜中主要膠質(zhì)細(xì)胞,也是僅存在于視網(wǎng)膜中的膠質(zhì)細(xì)胞,且該類細(xì)胞與視網(wǎng)膜神經(jīng)元是由同一祖細(xì)胞分化形成的[13]。 Müller細(xì)胞對(duì)視網(wǎng)膜中的神經(jīng)元不僅起著支持、營(yíng)養(yǎng)、保護(hù)、絕緣等功能,而且具有其他多種重要功能[14-15]。如視網(wǎng)膜內(nèi)Müller細(xì)胞表達(dá)大量的電壓門(mén)控通道(Voltage-gated channels)和神經(jīng)遞質(zhì)受體(Neurotransmitter receptors),可以識(shí)別多種神經(jīng)信號(hào)、觸發(fā)細(xì)胞去極化和引起細(xì)胞內(nèi)Ca2+流變化。此外,Müller細(xì)胞可以通過(guò)調(diào)節(jié)細(xì)胞外神經(jīng)活性物質(zhì)的濃度影響視網(wǎng)膜中神經(jīng)元的活動(dòng),如Müller細(xì)胞可以通過(guò)其高親和性載體的吸收作用調(diào)節(jié)谷氨酸和GABA濃度,通過(guò)Na+-HCO3-共轉(zhuǎn)移作用和碳酸酐酶(Carbonic anhydrase)的酶促作用來(lái)調(diào)節(jié)H+濃度等。Müller細(xì)胞和神經(jīng)元之間的雙向信息交流說(shuō)明了其在視網(wǎng)膜中起著非常重要的作用。另外,一些研究報(bào)道Müller細(xì)胞與視網(wǎng)膜損傷后神經(jīng)元再生有關(guān),是神經(jīng)祖代細(xì)胞(Nerve progenitor)來(lái)源之一[16~18]。關(guān)于兩棲動(dòng)物視網(wǎng)膜膠質(zhì)細(xì)胞國(guó)外已有部分資料報(bào)道[14,19-21],KALININA[21]對(duì)湖蛙(RanaridibundaPall)研究認(rèn)為該蛙視網(wǎng)膜中存在4種膠質(zhì)細(xì)胞: Müller 細(xì)胞、少突膠質(zhì)細(xì)胞、小膠質(zhì)細(xì)胞和spider 細(xì)胞。SKATCHKOV等[22]認(rèn)為,在兩棲類視網(wǎng)膜中Müller細(xì)胞是唯一的膠質(zhì)細(xì)胞。國(guó)內(nèi)關(guān)于Müller細(xì)胞僅有少量對(duì)人視網(wǎng)膜Müller細(xì)胞報(bào)道[23-24],對(duì)兩棲動(dòng)物視網(wǎng)膜Müller細(xì)胞形態(tài)和分布還未見(jiàn)報(bào)道,兩棲動(dòng)物視網(wǎng)膜Müller細(xì)胞數(shù)量較多,易于分離[14],是用于研究Müller細(xì)胞的形態(tài)結(jié)構(gòu)和生理功能理想的模型系統(tǒng)。本研究利用光鏡、電鏡技術(shù)和免疫組化染色法顯示膠質(zhì)細(xì)胞中特有的膠質(zhì)纖維酸性蛋白(Glial fibrillary acidic protein, GFAP),系統(tǒng)觀察了中華大蟾蜍Müller細(xì)胞在視網(wǎng)膜中的形態(tài)和分布特征,為研究Müller細(xì)胞在兩棲類視網(wǎng)膜中的生理功能和視神經(jīng)損傷再生過(guò)程中的作用提供形態(tài)學(xué)基礎(chǔ)。
1.1 試驗(yàn)動(dòng)物
健康3年齡成體中華大蟾蜍(Bufogargarizans)10只(雄性6只,雌性4只),平均體長(zhǎng)(9±0.3)cm。由河南農(nóng)業(yè)大學(xué)動(dòng)物房提供。
1.2 光鏡觀察
中華大蟾蜍用2% MS-222麻醉后迅速摘除眼球,清除球外眼組織角膜、晶狀體及玻璃體后,將組織立即投入預(yù)冷Bouin,s液固定2 d,常規(guī)石蠟包埋,切片厚度6 μm,選取過(guò)眼球最大直徑的切面, H.E染色后顯微鏡下(BA310 DIGITAL C,MOTIC廈門(mén))觀察并采集數(shù)碼照片(Motic Advanced3.2)和進(jìn)行顯微測(cè)量統(tǒng)計(jì)。
1.3 免疫組織化學(xué)
眼睛常規(guī)石蠟包埋和切片(同1.2),經(jīng)二甲苯脫蠟和乙醇復(fù)水,PBS(0.01 mol·L-1,pH7.4)沖洗3次,每次5 min,3%H2O2室溫15 min滅活內(nèi)源性過(guò)氧化物酶活性,PBS沖洗, 正常羊血清封閉室溫1 h,鼠抗GFAP抗體,4℃過(guò)夜。PBS沖洗,羊抗兔IgG室溫1 h,辣根過(guò)氧化物酶標(biāo)記鏈霉卵白素室溫1 h,DAB顯色5 min,蘇木精復(fù)染,中性樹(shù)膠封片。陰性對(duì)照切片以正常羊血清替代一抗。顯微鏡下觀察并采集數(shù)碼照片和進(jìn)行顯微測(cè)量統(tǒng)計(jì)。
1.4 透射電鏡
中華大蟾蜍用2% MS-222麻醉后迅速摘除眼球,清除球外眼組織角膜、晶狀體及玻璃體后,經(jīng)2.5%戊二醛-1.5%多聚甲醛固定液中固定2 d,在視網(wǎng)膜中央?yún)^(qū)和邊緣區(qū)分別剪取大小2 mm×3 mm視網(wǎng)膜組織塊,經(jīng)1%鋨酸后固定1 h,乙醇-丙酮脫水,Epon812樹(shù)脂包埋,半薄切片定位,選取過(guò)眼球半徑的切面和過(guò)眼球切向的切面進(jìn)行超薄切片,醋酸鈾-檸檬酸鉛染色。電鏡(JEM-100SX型)觀察和采集數(shù)碼圖像。
2.1 光鏡下中華大蟾蜍視網(wǎng)膜組織形態(tài)
中華大蟾蜍視網(wǎng)膜常規(guī)組織學(xué)觀察可見(jiàn)明顯的內(nèi)界膜(Inner limiting membrane, ILM)與外界膜(Outer limiting membrane, OLM)(圖1),Müller細(xì)胞即分布于視網(wǎng)膜外界膜與內(nèi)界膜之間的區(qū)域。
中華大蟾蜍視網(wǎng)膜組織形態(tài),H.E染色示視網(wǎng)膜各層結(jié)構(gòu)。RPE,視網(wǎng)膜色素上皮;OLM,外界膜;ONL,外核層;OPL,外網(wǎng)層;INL,內(nèi)核層;IPL,內(nèi)網(wǎng)層;GCL,節(jié)細(xì)胞層;NFL,神經(jīng)纖維層;ILM,內(nèi)界膜。
The histological section of retina showing the structure of retina ofBufogargarizansstaining with H.E. RPE,retina pigmented epthelium; OLM,outer limiting menbrane; ONL,outer nuclear layer; OPL,outer plexiform layer; INL,inner nuclear layer; IPL,inner plexiform layer; GCL,ganglion cell layer; NFL,nerve fiber layer; ILM,inner limiting membrane.
圖1 中華大蟾蜍視網(wǎng)膜組織形態(tài)
Fig.1 Structure ofBufogargarizansCantor’s retina
視網(wǎng)膜切片免疫組化染色發(fā)現(xiàn),在沿視網(wǎng)膜輻向切面和切向切面上均可見(jiàn)到免疫組化染色呈棕色的陽(yáng)性結(jié)構(gòu),在輻向切面上可以觀察到Müller細(xì)胞成單層排列,細(xì)胞長(zhǎng)軸沿著眼球半徑方向成放射狀排列(圖2-A)。在視網(wǎng)膜輻向切面上Müller細(xì)胞長(zhǎng)度為(62.1±0.54)μm;每100 μm 長(zhǎng)度視網(wǎng)膜切面中Müller細(xì)胞的密度為(6.2±0.1)個(gè)。
Müller細(xì)胞胞體位于內(nèi)核層(Inner nuclear layer,INL)中部(圖2-B),自胞體分別發(fā)出伸向視網(wǎng)膜近玻璃體側(cè)和近鞏膜側(cè)的至少2個(gè)主干突起(Stem processe,sp)。伸向視網(wǎng)膜近玻璃體側(cè)的主干突起(Vitread stem processe,vsp)終止于節(jié)細(xì)胞層(Ganglion cell layer, GCL)或神經(jīng)纖維層(Nerve fiber layer, NFL),且其主干終末膨大為圓錐型終足(endfood,ef)(圖2-A)。伸向視網(wǎng)膜近鞏膜側(cè)的主干突起(Sclera stem process,ssp)終止于外核層(Uuter nuclear layer,ONL)外側(cè),突起之間相互聯(lián)接包繞在每個(gè)光感受器細(xì)胞的周圍形成外界膜(圖2-A, 圖2-B)。對(duì)內(nèi)網(wǎng)層中的vsp和內(nèi)核層ssp的橫切面的面積和個(gè)數(shù)進(jìn)行了統(tǒng)計(jì)。其中內(nèi)網(wǎng)層每100 μm 長(zhǎng)度視網(wǎng)膜切面中含vsp個(gè)數(shù)為(43.4±0.42)個(gè),每個(gè)面積為(3.61±0.32)μm2;內(nèi)核層100 μm 長(zhǎng)度視網(wǎng)膜切面中含ssp個(gè)數(shù)為(27.8±0.72)個(gè),每個(gè)面積為(9.56±0.65)μm2(圖2-C)。
Müller細(xì)胞在視網(wǎng)膜中的分布及密度。ef,終足;GCL,節(jié)細(xì)胞層;INL,內(nèi)核層;IPL內(nèi)網(wǎng)層;M,Müller細(xì)胞胞體;OLM,外界膜;ssp,近鞏膜側(cè)主干突;vsp,近玻璃體側(cè)主干突起。A、B為沿眼球半徑方向切面,示Müller細(xì)胞縱切面突起結(jié)構(gòu)。C為沿眼球切向切面,示Müller細(xì)胞突起結(jié)構(gòu)橫切面。
The distribution and density of Müller cell in the retina ofBufogargarizans. ef,endfood;GCL,ganglion cell layer;INL,inner nuclear layer;IPL,inner plexiform layer; M, Müller cell body; OLM, out limiting membrane; ssp, the scleral stem processes; vsp, the vitread stem processes. A,B: Sections cross the radius of eyeball,showing the lognitudinal processes of Müller cell. C:Sections cross the tangent of eyeball,showing tranverse section of Müller cell processes.
圖2 中華大蟾蜍視網(wǎng)膜GFAP免疫組化染色
Fig.2 The retinal section staining by immunohistology with antibody to GFAP
由Müller細(xì)胞發(fā)出的2個(gè)方向上的主干突起在幾乎橫跨整個(gè)視網(wǎng)膜同時(shí),又發(fā)出許多細(xì)小的側(cè)向分支突起,尤其是在內(nèi)網(wǎng)層(Inner plexiform layer,IPL)與外網(wǎng)層(Outer plexiform layer, OPL)這些側(cè)支充滿了神經(jīng)元樹(shù)突和軸突之間(圖2-C)。
2.2 電鏡下觀察中華大蟾蜍視網(wǎng)膜Müller細(xì)胞
在透射電鏡下,視網(wǎng)膜內(nèi)、外核及節(jié)細(xì)胞層對(duì)其進(jìn)行了細(xì)致的觀察。外核層及視錐、視桿細(xì)胞層中(圖3-A、3-B),Müller細(xì)胞胞突向外伸至視錐、視桿細(xì)胞外側(cè)與內(nèi)節(jié)之間,形成Müller細(xì)胞的近鞏膜側(cè)突起ssp,突起內(nèi)有細(xì)絲,應(yīng)為細(xì)胞內(nèi)的GFAP纖維(圖3-B)。Müller細(xì)胞外側(cè)突起頂端之間、Müller細(xì)胞外側(cè)突起與視細(xì)胞內(nèi)節(jié)之間及視細(xì)胞內(nèi)節(jié)與內(nèi)節(jié)之間有連接復(fù)合體,共同構(gòu)成外界膜如圖中箭頭所示(圖3-A)。外界膜并不是一層膜,而是由細(xì)胞與細(xì)胞之間的連接結(jié)構(gòu)粘連小帶所構(gòu)成。在內(nèi)核層中可見(jiàn)Müller細(xì)胞(圖3-B中M示Müller細(xì)胞)較其他內(nèi)核層中細(xì)胞深染,突起內(nèi)也可見(jiàn)明顯的纖維成分。
A. 箭頭所示為外界膜,E為光感受器橢球體,Pn為光感受器細(xì)胞核。B. M為內(nèi)核層中的Müller細(xì)胞,INL為內(nèi)核層,Pn為光感受器細(xì)胞核,ssp為包繞在光感受器細(xì)胞外的Müller細(xì)胞近鞏膜側(cè)突起。C. ef為終足,GC為節(jié)細(xì)胞核,IPL為內(nèi)網(wǎng)層,vsp為內(nèi)核層中的Müller細(xì)胞近玻璃體側(cè)突起。
A.Arrows showing the outer limiting membrane;E,ellipsoid body of photoreceptor cell;Pn,the nuclear of photoreceptor cell ;B. M,Müller cells ;INL,inner nuclear layer;ssp,the scleral stem processes. C. ef,endfood;GC,ganglion cell nuclear;IPL,inner plexiform layer; vsp, the vitread stem processes.
圖3 中華大蟾蜍視網(wǎng)膜電鏡觀察
Fig.3 The structures of Müller cells ofBufogargarizanson electron microscopy
內(nèi)網(wǎng)層中Müller細(xì)胞的近玻璃體側(cè)突起vsp較該層中神經(jīng)細(xì)胞突起粗且染色深(圖3-C),vsp及其分支在節(jié)細(xì)胞層中伸于節(jié)細(xì)胞核之間,形成神經(jīng)元周圍的微環(huán)境。vsp末端膨成錐形,形成終足。終足的底部彼此相互連接共同組成視網(wǎng)膜內(nèi)界膜。內(nèi)界膜直接與玻璃體相鄰,將視網(wǎng)膜細(xì)胞與玻璃體隔開(kāi)。
對(duì)Müller細(xì)胞形態(tài)和分布的研究過(guò)去多采用硝酸銀浸染法,但這種方法過(guò)程復(fù)雜,且結(jié)果不穩(wěn)定。以后又出現(xiàn)了特殊的染色法,以及活性染料視網(wǎng)膜整染法[25]。在對(duì)人視網(wǎng)膜研究中曾有利用烯醇化酶NNE(Non-neuronal enolase)抗體來(lái)顯示膠質(zhì)細(xì)胞的[23],但人視網(wǎng)膜中還有其他類型的膠質(zhì)細(xì)胞,且烯醇化酶(Enolase)是糖酵解過(guò)程中重要的酶,與細(xì)胞的代謝過(guò)程密切相關(guān),膠質(zhì)細(xì)胞染色結(jié)果受細(xì)胞生理狀態(tài)影響。
本研究利用免疫組化法顯示視網(wǎng)膜中的GFAP陽(yáng)性細(xì)胞即Müller細(xì)胞,在脊椎動(dòng)物視網(wǎng)膜中存在的膠質(zhì)細(xì)胞類型不完全與腦組織中的相對(duì)應(yīng),且因動(dòng)物進(jìn)化地位不同而不同,少突膠質(zhì)細(xì)胞和星型膠質(zhì)細(xì)胞是在腦組織中存在的2種大膠質(zhì)細(xì)胞(macroglia),少突膠質(zhì)細(xì)胞在大多數(shù)動(dòng)物視網(wǎng)膜中完全沒(méi)有分布,星型膠質(zhì)細(xì)胞僅存在于哺乳動(dòng)物視網(wǎng)膜中,而且星型膠質(zhì)細(xì)胞僅分布于哺乳動(dòng)物視網(wǎng)膜的NFL;對(duì)兩棲動(dòng)物豹蛙(Rana pipiens)研究發(fā)現(xiàn)Müller細(xì)胞是視網(wǎng)膜中唯一觀察到的膠質(zhì)細(xì)胞[22]。另外,本研究觀察到的GFAP細(xì)胞個(gè)體大,其突起橫跨整個(gè)視網(wǎng)膜層,胞體位于內(nèi)核層,完全符合 Müller細(xì)胞的特征[14-25]。因此,利用抗GFAP抗體顯示兩棲類的Müller細(xì)胞是一種較好的方法。
本研究觀察到伸向視網(wǎng)膜近玻璃體側(cè)的主干突起終末膨大為圓錐型終足,終足圓錐型結(jié)構(gòu)的底部緊貼與玻璃體,此結(jié)構(gòu)特點(diǎn)被認(rèn)為與兩棲類動(dòng)物穩(wěn)定細(xì)胞外K+濃度有關(guān),光激活視網(wǎng)膜神經(jīng)元,在2個(gè)突觸層(IPL和OPL) 誘發(fā) K+濃度增高。這種增高的K+必須被迅速清除,否則神經(jīng)元的興奮性程度會(huì)發(fā)生激烈的變動(dòng)[26]。在兩棲類中Müller 細(xì)胞首先將神經(jīng)元釋放的多余的K+攝入細(xì)胞內(nèi),然后通過(guò)終足區(qū)將大部分K+轉(zhuǎn)移至玻璃體,這種空間緩沖機(jī)制清除多余K+的效率比單純經(jīng)由胞外空間擴(kuò)散要高1倍以上[26]。
在內(nèi)核層的內(nèi)中間區(qū),從Müller細(xì)胞的胞體發(fā)出放射狀突起,這些堅(jiān)韌的突起縱貫視網(wǎng)膜全層,幾乎占據(jù)了神經(jīng)細(xì)胞所沒(méi)有占據(jù)的空間。從形態(tài)學(xué)上支持Müller細(xì)胞是整個(gè)視網(wǎng)膜的支架。在神經(jīng)纖維層,放射狀突起的終末端呈圓錐形膨大,參與內(nèi)界膜的結(jié)構(gòu)。在外核層、內(nèi)核層及神經(jīng)節(jié)細(xì)胞層,從Müller細(xì)胞放射狀突起的側(cè)壁發(fā)出帶狀分支,這些分支突起形成網(wǎng)狀,包繞著神經(jīng)細(xì)胞的胞體,有利于視網(wǎng)膜微環(huán)境的穩(wěn)定。在外網(wǎng)狀層、內(nèi)網(wǎng)狀層及神經(jīng)纖維層,從Müller細(xì)胞放射狀突起的側(cè)壁向水平方向發(fā)出細(xì)微的分支,這些水平分支包繞著神經(jīng)細(xì)胞的樹(shù)突、軸突及其突觸。跟中樞神經(jīng)系統(tǒng)的神經(jīng)膠質(zhì)細(xì)胞類似,Müller細(xì)胞對(duì)視網(wǎng)膜神經(jīng)細(xì)胞神經(jīng)沖動(dòng)的傳遞可能會(huì)起到絕緣作用。
[1] FISCHER A J, ZELINKA C, SCOTT M A. Heterogeneity of glia in the retina and optic nerve of birds and mammals[J]. PLoS ONE,2010,5(6):e10774.
[2] NARANG H K, Right-left asymmetry of myelin development in epiretinal portion of rabbit optic nerve[J]. Nature,1977,266: 855-856.
[3] KOHSAKA S, TAKAMATSU K, NISHIMURA Y, et al. Neurochemical characteristics of myelin-like structure in the chick retina[J]. J Neurochem,1980,34: 662-668.
[4] WYSE J P, SPIRA A W. Ultrastructural evidence of a peripheral nervous system pattern of myelination in the avascular retina of the Guinea pig[J]. Acta Neuropathol,1981,54: 203-210.
[5] WEST H, RICHARDSON W D, FRUTTIGER M .Stabilization ofthe retinal vascular network by reciprocal feedback between blood vessels and astrocytes[J]. Development ,2005,132: 1855-1862.
[6] FRIEDLANDER M, DORRELL M I, RITTER M R, et al. Progenitor cells and retinal angiogenesis[J]. Angiogenesis ,2007,10: 89-101.
[7] DORRELL M I, FRIEDLANDER M. Mechanisms of endothelial cell guidance and vascular patterning in the developing mouse retina[J]. Prog Retin Eye Res,2006,25: 277-295.
[8] WON M H, KANG T C, CHO S S .Glial cells in the bird retina: immunochemical detection[J]. Microsc Res Tech,2000, 50: 151-160.
[9] STONE J, DREHER Z. Relationship between astrocytes, ganglion cells and vasculature of the retina[J].J Comp Neurol,1987;255:35-49
[10] CHAN L T. Glial neuronal and vascular interactions in the mammalian retina[J]. Prog Ret Eye Res,1994,13:357-389.
[11] ROMPANI S B, CEPKO C L. A common progenitor for retinal astrocytes and oligodendrocytes[J]. J Neurosci, 2010,30(14):4970-4980.
[12] Gallego A. Comparative studies on horizontal cells and a note on microglial cells[J].Prog Ret Eye Res,1986,5:165-206.
[13] TURNER D L, CEPKO C L. A common progenitor for neurons and glia persists in rat retina late in development[J]. Nature,1987;128:131-136.
[14] NEWMAN E, REICHENBACH A. The Müller cell: a functional element of the retina [J]. Trends Neurosci, 1996, 19:307-312.
[15] 楊雄里. Müller 細(xì)胞與視網(wǎng)膜功能[J]. 生理科學(xué)進(jìn)展,1998 , 29 (1): 7-10.
[16] FISCHER A J. Neural regeneration in the chick retina [J]. Prog Retin Eye Res, 2005, 24(2):161-182.
[17] FISCHER A J, REH T A. Potential of Müller glia to become neurogenic retinal progenitor cells [J]. Glia, 2003, 43(1):70-76.
[18] HITCHCOCK P, OCHOCINSKA M, SIEH A, et al. Persistent and injury-induced neurogenesis in the vertebrate retina [J]. Prog Retin Eye Re., 2004 , 23(2):183-194.
[19] UGA S S. Comparative study of the fine structure of retinal Muller cells in various vertebrates [J]. Invest Ophthalmol, 1973 , 12(6):434-448.
[20] ZHU B S,GIBBINS I. Müller cells in the retina of the cane toad,Bufomarinus, express neuropeptide Y-like immunoreactivity[J]. Visual Neuroscience,1996, 13: 501-508.
[21] KALININA A V. Glial cells of the retina in Rana ridibunda pall[J],Arkh Anat Gistol Embriol.,1983, 84(4):33-38.
[22] SKATCHKOV S N, KRUSEK J, REICHENBACH A, et al. Potassium buffering by Müller cells isolated from the center and periphery of the frog retina[J]. Glia,1999,27(2):171-180.
[23] 周國(guó)民,肖虹蕾, 佘振鈺,等.視網(wǎng)膜中 Müller細(xì)胞分布的組織化學(xué)研究[J]. 上海醫(yī)科大學(xué)學(xué)報(bào), 1994,21(5):382-384 .
[24] 李愛(ài)冬, 羊惠君. 胎兒視網(wǎng)膜Müller細(xì)胞免疫組化研究[J]. 四川解剖學(xué)雜志,1995 , 3(2):108-116.
[25] UCKERMANN O, IANDIEV I, FRANCEK M, et al. Selective staining by vital dyes of müller Glial cells in retinal wholemounts[J]. Glia, 2004, 45:59-66.
[26] REICHENBACH A , HENKE A , EBERHARDT W , et al. K+regulation in retina[J]. Can J Physiol Pharmacol, 1992, 70( Suppl):239-247.
(責(zé)任編輯:蔣國(guó)良)
Research on morphology of retinal Müller cells inBufogargarizans
YANG Pengfei, ZHAO Liutao, ZHAO Xinfang, YAN Fengbin, DU Baobao, LIU Zhonghu
(Engineering College of Animal Husbandry and Veterinary Science, Henan Agricultural University,Zhengzhou 450002,China)
The morphology and distribution of neuroglial cells in retina of Amphibian,Bufogargarizanswas shown by light microscopy,transmission electron microscope and immunohistochemical staining method in the retinas of the toads. The results show that there is only one kind of the neuroglial cell the Müller cells within retina.The Müller cells arrayed in regular monolayer, the long axes of cells stretched radially along the radiuses of eyeball. The somata of the Müller cells lay in the inner nuclear layer and gave rise to at least two opposite stem processes,the scleral stem processes (ssp) and the vitread stem processes (vsp).At the ultrastructural level, retinal Müller cells were deeper in color than the surrounding cytoplasm and nuclei of cells and other neural components.There were lots of visible fibers in the Müller cells processes, so the Müller cells were remarkably different from the other neural cells component of retina. The ssp of Müller cells radially oriented to the base of the inner segments of the photoreceptor cells,here ssp enclosed the photoreceptor cells and formed the outer limiting membrane,the vsp of Müller cells lay the inner plexiform layer and ganglion cell layer,the terminal of vsp were adjacent to the surface of the vitreous,and expanded as conical endfeet,the endfeet junctioned each other and form the inner limiting membrane.
Bufogargarizans;retina;Müller cell
2015-05-21
河南省教育廳自然科學(xué)基礎(chǔ)與前沿項(xiàng)目(13A240482)
楊鵬飛(1990-),男,河南汝州人,碩士研究生,從事動(dòng)物細(xì)胞生物學(xué)方面的研究。
劉忠虎(1964-),男,河南博愛(ài)人,副教授,博士。
1000-2340(2015)06-0822-05
Q954.6
A