蔡明建
(中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計學(xué)學(xué)院,武漢430074)
一類雙調(diào)和方程環(huán)繞解的存在性
蔡明建
(中南民族大學(xué) 數(shù)學(xué)與統(tǒng)計學(xué)學(xué)院,武漢430074)
在Steklov邊值條件下,討論了一類雙調(diào)和方程, 當非線性項滿足特定條件時,利用環(huán)繞定理,證明了該方程非平凡解的存在性.
雙調(diào)和方程;環(huán)繞定理;非平凡解;Steklov特征值
本文考慮一類雙調(diào)和方程:
(1)
雙調(diào)和方程的研究興趣主要來源于兩個方面.其一,在彈性力學(xué)中,該方程可以反映薄板的應(yīng)力學(xué)分析,例如所謂的Kirchoff-Love模型[1]:
(2)
受上述文章的啟發(fā),本文擬考慮問題(1)滿足下列條件時非平凡解的存在性.我們假設(shè)g滿足如下條件:
(iii) 當|u|→0時,g(x,u)=o(u),在Ω上一致成立.
本文的主要結(jié)果為定理1.
與方程組(1)所對應(yīng)的能量泛函可以寫為:
(3)
當u∈E滿足:
設(shè)E為一實的希爾伯特空間,泛函I∈C1(E,R).我們說{un}為I的P.S.序列:如果當n→∞時,有I(un)→c.泛函I在指標c∈R處滿足P.S.條件是指,上述{un}存在一個收斂的子序列.若I(u)=c,I′(u)=0時,稱u為I在E上的臨界點,c為I的臨界值.
設(shè)E為一Banach空間,S是E中的閉子集,Q是E中的子流形,記其邊界為?Q.若:
(1)S∩?Q=?,
(2) 任選h∈C0(E,E),當h|?Q=id時,總有h(Q)∩S≠?,則稱S與?Q環(huán)繞.
考慮當g(x,u)=0時,方程(1)的Steklov特征值問題,即此時若方程(1)有非零解,則稱d為方程(1)的特征值,對應(yīng)的解稱為其特征函數(shù).設(shè):
為了證明定理1,我們將用到文[16]中提出的環(huán)繞定理即引理1.
引理1 設(shè)E為一Banach空間,I∈C1(E,R)且I滿足P.S.條件.設(shè)S是E中的閉子集,Q是E中的子流形,記其邊界為?Q,若:
(1)S與?Q環(huán)繞.
令Γ={h∈C0(E,E);h|?Q=id},
引理2 假設(shè)條件(i)~(iii),(K)成立,則有I滿足P.S.條件.
證明 (1)任取{un}?E滿足I(un)→c并且I′(un)→0,那么{un}有界.
事實上
因此c(1+‖u‖)≥K(θ,d)‖u‖2-c1,可知{un}有界.
這里當n→∞,(I′(u)-I′(un),un-u)→0.
由(i),(iii)及H?lder不等式可知:
S={u∈V1;‖u‖=ρ},
0≤s≤R1,u2∈V2,‖u2‖≤R2},
(1) S與?Q環(huán)繞.
證明 結(jié)論(1)見文[16].下證結(jié)論(2).事實上,當u∈V2時,
再由Sobolev嵌入定理可知:
定理1的證明 定理1可直接由引理1~3得到.
[1] Kirchhoff G R. Uber das gleichgewicht und die bewegung einer elastischen scheibe[J]. J Reine Angew Math, 1850,40:51-88.
[2] Ferrero A, Gazzola F, Weth T. On a fourth order Steklov eigenvalue problem [J]. Anal,2005, 25: 315-332.
[3] Bucur D, Gazzola F. The first biharmonic Steklov eigenvalue:positive preserving and shape optimization [J]. Milan J Math,2011, 79(1):247-258.
[4] Edmunds D E, Fortunato D, Jannelli E. Critical exponents, critical dimensions and the biharmonic operator[J]. Arch Ration Mech Anal, 1990,112:269-289.
[5] Pucci P, Serrin J. Critical exponents and critical dimensions for polyharmonic operators[J]. J Math Pures Appl, 1990,69:55-83.
[6] Lin C S. A classification of solutions of a conformally invariant fourth order equation inRn[J]. Comment Math Helv, 1998,73:206-231.
[8] Zen X Z, Deng Y B. Existence of multiple solutions for a semilinear Biharmonic equation with critical exponent[J]. Acta Math Sci, 2000,20(4):547-554.
[9] Bernis F, García Azorero J, Peral I. Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order[J]. Adv Differential Equations, 1996,1:219-240.
[10] Bahri A, Coron J M. On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain[J]. Comm Pure Appl Math,1988,41:253-294.
[11] Zhou H S. An application of a Mountain Pass theorem [J]. Acta Math Scie, 2002, 18(1):27-36.
[12] Xu X. Uniqueness theorem for the entire positive solutions of biharmonic equations inRn[J]. Proc Roy Soc Edinburgh Sect A ,2000,130 (3): 651-670.
[13] Wang Y J, Shen Y T. Infinitely many sign-changing solutions for a class of biharmonic equation without symmetry[J]. Nonl Anal Theo,2009,71:967-977.
[14] Liu Y , Wang Z P. Biharmonic equations with asymptotically linear nonlinearities[J].Acta Math Sci,2007, 27 (3): 549-560.
[15] 彭超權(quán).一類漸近線性方程非平凡解的存在性[J].中南民族大學(xué)學(xué)報:自然科學(xué)版,2010,29(4):118-120.
[16] Benci V, Rabinowitz P H. Critical point theorems for indefinite functionals[J]. Invent Math, 1979,52:241-273.
Existence of Linking Solutions for A Class of Biharmonic Equations
CaiMingjian
(College of Mathematics and Statistics,South-Central University for Nationalities, Wuhan 430074, China)
Under the Steklov boundary condition, this paper uses Linking Theorem to prove the existence of the nontrivial solutions to the biharmonic problems with some special nonlinearities.
biharmonic equations; Linking Theorem; nontrivial solutions;Steklov eigenvalues
2015-05-06
蔡明建(1981-),男,講師,博士,研究方向:偏微分方程,E-mail: cmj9904@mail.scuec.edu.cn
中南民族大學(xué)中央高校基本科研業(yè)務(wù)費專項資金資助項目(CZQ12014)
O175.25
A
1672-4321(2015)03-0126-03