王奇,陳佳,王超,李敏,陳彤,陸勝勇,李曉東,蔣旭光,嚴(yán)建華
(1浙江大學(xué)能源清潔利用國(guó)家重點(diǎn)實(shí)驗(yàn)室, 浙江 杭州 310027;2中國(guó)船舶重工集團(tuán)公司第七一一研究所,上海 201108)
中國(guó)醫(yī)療廢物的產(chǎn)生量逐年增加,由此造成的環(huán)境問題日益突出。醫(yī)療廢物的處理方法有焚燒、高溫滅菌、化學(xué)處理和微波輻射等技術(shù)[1],其中焚燒法具有處理徹底、處置周期短、無害化和減量化等諸多優(yōu)點(diǎn),已被廣泛實(shí)踐[2]。值得注意的是,固體廢物焚燒過程中二英類持久性有機(jī)污染物的排放受到廣泛關(guān)注,研究者關(guān)于焚燒爐二英排放的環(huán)境影響開展了大量工作[3-5]。
中國(guó)在2007年向《POPs公約》秘書處遞交的《中國(guó)履行<關(guān)于持久性有機(jī)污染物的斯德哥爾摩公約>國(guó)家實(shí)施計(jì)劃》中給出了以2004年為基準(zhǔn)年的二英排放清單,清單顯示中國(guó)的廢棄物焚燒中,危險(xiǎn)廢物和醫(yī)療廢物單位質(zhì)量二英排放量更大,因此被列為需優(yōu)先控制的重點(diǎn)源。2011年中國(guó)環(huán)境狀況公報(bào)顯示,截至2011年底,已投運(yùn)和基本建成的醫(yī)療廢物項(xiàng)目246個(gè),全國(guó)形成醫(yī)療廢物處置能力1454 t·d?1,與《全國(guó)危險(xiǎn)廢物和醫(yī)療廢物處置設(shè)施建設(shè)規(guī)劃》實(shí)施前相比,醫(yī)療廢物處置能力增加了10.5倍[6]。如此多的處置設(shè)施二英排放造成的環(huán)境影響不容忽視,針對(duì)醫(yī)療廢物焚燒爐二英排放特性研究刻不容緩。
國(guó)內(nèi)外學(xué)者[7-11]對(duì)醫(yī)療廢物焚燒正常工況下二英排放現(xiàn)狀的研究開展較多,結(jié)果顯示,通常在燃燒工況穩(wěn)定、煙氣凈化系統(tǒng)完備、活性炭噴射和合理運(yùn)行前提下,大多數(shù)醫(yī)療廢物焚燒爐二英排放均能滿足國(guó)家規(guī)定排放限值。但是醫(yī)療廢物焚燒爐具有處理量小、啟停頻繁的特征,而啟停爐過程會(huì)導(dǎo)致二英類污染物排放水平的急劇增加,這一點(diǎn)在危險(xiǎn)廢物和生活垃圾焚燒爐運(yùn)行中得到證實(shí)[12-14]。另外,啟停爐工況二英的異常排放具有“記憶效應(yīng)”,不僅影響后續(xù)工況達(dá)標(biāo)排放,且增加了二英的年排放總量[14]。目前國(guó)內(nèi)關(guān)于醫(yī)療廢物焚燒爐啟停爐過程二英排放的研究比較少,亟需開展相關(guān)研究為醫(yī)療廢物焚燒行業(yè)提供數(shù)據(jù)支撐。為此,本文對(duì)位于華東地區(qū)的典型醫(yī)療廢物焚燒處置設(shè)施(回轉(zhuǎn)窯爐型)開展了啟爐過程與正常工況的二英排放特性對(duì)比研究,重點(diǎn)研究啟爐過程中醫(yī)療廢物焚燒處置設(shè)施煙氣和飛灰樣品中二英的排放水平和指紋特征,分析啟爐過程二英排放特性及其對(duì)后續(xù)運(yùn)行的影響,并估算焚燒處置設(shè)施在考慮啟爐工況異常排放下二英的年排放速率和年排放總量。
本研究選取位于華東地區(qū)的一處典型醫(yī)療廢物處置中心作為研究對(duì)象。該焚燒爐屬于在原醫(yī)療廢物處置中心廠址上擴(kuò)建項(xiàng)目,采用的是回轉(zhuǎn)窯焚燒工藝,具備日處理醫(yī)療廢物15 t的能力。前期統(tǒng)計(jì)研究表明回轉(zhuǎn)窯爐型具有更大的處置容量,對(duì)物料的適用性更好,目前主要應(yīng)用于工業(yè)危險(xiǎn)廢物焚燒和處理量較大的醫(yī)療廢物焚燒處置設(shè)施[6]。該焚燒系統(tǒng)構(gòu)成有廢物儲(chǔ)存間,進(jìn)料機(jī),回轉(zhuǎn)窯一級(jí)燃燒室,流化床二級(jí)燃燒室,急冷塔,半干式吸收塔,活性炭噴射的布袋除塵器及煙囪。焚燒爐正常運(yùn)行下煙氣流量為19563 m3·h?1,目前已運(yùn)行2年時(shí)間。
焚燒爐煙氣采樣利用韓國(guó)KNJ Engineering公司的M5型煙氣采樣儀,煙氣和飛灰樣品經(jīng)預(yù)處理后,利用日本JEOL公司的高分辨氣相色譜/高分辨質(zhì)譜(HRGC/HRMS)進(jìn)行檢測(cè),型號(hào)為JMS800D。
焚燒爐煙氣采樣方法主要參考US EPA 23方法進(jìn)行煙氣等速采樣,具體操作見文獻(xiàn)[15]。采樣過程同時(shí)記錄煙道參數(shù),包括煙道直徑、靜壓力、溫度、O2和CO2的濃度。飛灰采集點(diǎn)位于布袋底部灰斗,采集常溫飛灰200 g用錫箔紙包好置于樣品袋中帶回實(shí)驗(yàn)室待測(cè)。
煙氣和飛灰樣品根據(jù)US EPA 23方法進(jìn)行預(yù)處理,樣品預(yù)處理和上機(jī)檢測(cè)的具體方法和步驟見文獻(xiàn)[15]。本文對(duì) PCDD/Fs中 2,3,7,8四到八氯代的17種有毒異構(gòu)體進(jìn)行檢測(cè)和分析,具體見表1。
表1 17種二英有毒異構(gòu)體Table 1 17 congeners of PCDD/Fs
表1 17種二英有毒異構(gòu)體Table 1 17 congeners of PCDD/Fs
2,3,7,8-TCDD 2,3,7,8-chlorinated TCDD 2,3,7,8位氯代二英1,2,3,7,8-PeCDD 1,2,3,7,8-chlorinated PeCDD 1,2,3,7,8位氯代二 英1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-chlorinated HxCDD 1,2,3,4,7,8位氯代二英1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-chlorinated HxCDD 1,2,3,6,7,8位氯代二英1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-chlorinated HxCDD 1,2,3,7,8,9位氯代二英1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-chlorinated HpCDD 1,2,3,4,6,7,8位氯代二英OCDD octa-chlorinated dibenzo-p-dioxins 八氯代二英2,3,7,8-TCDF 2,3,7,8- chlorinated TCDF 2,3,7,8位氯代呋喃1,2,3,7,8-PeCDF 1,2,3,7,8-chlorinated PeCDF 1,2,3,7,8位氯代呋喃2,3,4,7,8-PeCDF 2,3,4,7,8-chlorinated PeCDF 2,3,4,7,8位氯代呋喃1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-chlorinated HxCDF 1,2,3,4,7,8位氯代呋喃1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-chlorinated HxCDF 1,2,3,6,7,8位氯代呋喃1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-chlorinated HxCDF 1,2,3,7,8,9位氯代呋喃2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-chlorinated HxCDF 2,3,4,6,7,8位氯代呋喃1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-chlorinated HpCDF 1,2,3,4,6,7,8位氯代呋喃1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-chlorinated HpCDF 1,2,3,4,7,8,9位氯代呋喃OCDF octa-chlorinated dibenzofurans 八氯代呋喃
樣品采集和分析過程中的質(zhì)量保證和質(zhì)量控制嚴(yán)格按照實(shí)驗(yàn)室規(guī)章,包括標(biāo)樣的添加,以及避免現(xiàn)場(chǎng)采樣器皿受污染,保持采樣設(shè)備的連續(xù)穩(wěn)定運(yùn)行。實(shí)驗(yàn)室分析過程中要減少樣品儲(chǔ)存時(shí)間,每批次樣品進(jìn)行一次空白實(shí)驗(yàn),提高回收率。最終樣品的回收率在63%~118%之間,數(shù)據(jù)滿足US EPA 23方法要求。所有煙氣樣品二英的濃度均折算為標(biāo)準(zhǔn)狀況,即干空氣、273.15 K、1013 hPa和11%含氧量。
圖1給出了焚燒爐啟爐過程中不同位置的溫度變化,主要包括回轉(zhuǎn)窯窯頭、二燃室、二燃室出口、換熱器出口、半干塔進(jìn)口和布袋進(jìn)口,其中二燃室溫度是反映焚燒爐工況的主要指標(biāo)。根據(jù)啟爐過程焚燒系統(tǒng)各個(gè)位置溫度的變化將整個(gè)采樣分為start-up和after-start兩個(gè)階段,start-up階段系統(tǒng)處在升溫程序中,該過程醫(yī)療廢物焚燒爐不同部位的溫度變化情況見圖1。而afetr-start階段系統(tǒng)各部分溫度達(dá)到正常運(yùn)行時(shí)的水平,二燃室室內(nèi)溫度穩(wěn)定在1000~1200℃,出現(xiàn)短暫性溫度下降會(huì)暫停投料并開啟輔助燃燒器升溫。二燃室溫度預(yù)熱到 450℃開始采集第一個(gè)煙氣樣品,即start-up 1工況。經(jīng)過2 h 后二燃室溫度達(dá)到600℃,此時(shí)開始投料,投料開始后煙氣凈化設(shè)施投入使用,同時(shí)開始采集start-up 2工況下的煙氣。投料以后二燃室溫度趨于平穩(wěn),在燃燒器的幫助下溫度逐步上升,最終穩(wěn)定在750~980℃溫度區(qū)間。從投料開始以后到系統(tǒng)溫度達(dá)到平衡的過程中采集了start-up 3和 start-up 4工況下的煙氣,整個(gè)start-up過程中共采集4個(gè)煙氣樣品。 在焚燒爐啟爐完成以后,經(jīng)過12 h的正常運(yùn)行,繼續(xù)采集了after-start 1,after-start 2和24 h后的after-start 3,after-start 4工況下的煙氣樣品,用來表征啟爐工況穩(wěn)定后煙氣中二英的排放特性變化。
圖1 醫(yī)療廢物焚燒爐啟爐過程不同位置溫度變化曲線Fig.1 Temperature changes at different regions during start-up processes for MWI
表2 醫(yī)療廢物焚燒爐啟爐和啟爐后工況下PCDFs/PCDDs比值與二英排放水平變化Table 2 PCDF/PCDDs ratio and PCDD/Fs concentrations in start-up and after-start processes for MWI
表2 醫(yī)療廢物焚燒爐啟爐和啟爐后工況下PCDFs/PCDDs比值與二英排放水平變化Table 2 PCDF/PCDDs ratio and PCDD/Fs concentrations in start-up and after-start processes for MWI
Operating conditions PCDFs/PCDDs ratio I-TEQ value/ng I-TEQ·m?3 start-up 1 0.58 0.08 start-up 2 0.14 0.05 start-up 3 3.95 1.68 start-up 4 3.71 1.29 after-start 1 5.46 2.77 after-start 2 5.64 1.92 after-start 3 5.67 0.53 after-start 4 6.29 0.7
圖2 不同運(yùn)行工況PCDD/Fs同系物質(zhì)量分?jǐn)?shù)分布Fig.2 PCDD/Fs homelogue patterns in flue gas samples during different operating conditions (concentration)
圖3 不同運(yùn)行工況PCDD/Fs毒性當(dāng)量分布Fig.3 PCDD/Fs congener patterns in flue gas samples during different operating conditions (I-TEQ)
圖4 不同運(yùn)行工況醫(yī)療廢物焚燒煙氣中二英毒性當(dāng)量和氣固相分配Fig.4 PCDD/Fs I-TEQ value and gas/particle ratio during different operating conditions for MWI
圖5 不同運(yùn)行工況飛灰中二英分布Fig.5 PCDD/Fs congener patterns in fly ash samples during different operating conditions
分析各工況的質(zhì)量分?jǐn)?shù)和毒性當(dāng)量指紋特征可知,各工況質(zhì)量分?jǐn)?shù)和毒性當(dāng)量分布相似性很高,質(zhì)量分?jǐn)?shù)指紋特征表明 OCDD和 Cl7-、Cl8-PCDD/Fs占的比重較大,毒性當(dāng)量分布則顯示2,3,4,7,8-PeCDF的貢獻(xiàn)率最大,均超過30%。啟停爐過程的指紋特征與其他醫(yī)療廢物正常工況飛灰的指紋特征差異較大[7]。對(duì)比煙氣和飛灰的二英指紋特征,質(zhì)量分?jǐn)?shù)指紋特征存在差異,而毒性當(dāng)量指紋特征有較大的相似性。
調(diào)查顯示該焚燒爐一年停爐檢修 1~2個(gè)月,全年運(yùn)行時(shí)間為320 d,啟停爐3次左右,一個(gè)啟爐周期持續(xù)40 h。表3為各工況煙氣中二英排放速率數(shù)據(jù),對(duì)比該焚燒爐二英達(dá)標(biāo)排放數(shù)據(jù)可知,整個(gè)啟爐過程中絕大多數(shù)階段煙氣二英排放速率高于其正常達(dá)標(biāo)時(shí)的排放水平,最高超過40倍。進(jìn)一步計(jì)算一個(gè)啟爐階段(start-up和after-start的各個(gè)階段合在一起定義為一個(gè)啟爐階段)二英的排放總量,達(dá)到0.785 mg I-TEQ(各個(gè)采樣時(shí)間點(diǎn)中間缺失的排放速率數(shù)據(jù)采用線性插值處理)。而按照每天20 h,全年300 d達(dá)標(biāo)排放計(jì)算(達(dá)標(biāo)排放按照0.14 ng I-TEQ·m?3水平計(jì)算,數(shù)據(jù)來源于焚燒爐穩(wěn)定運(yùn)行15 d后監(jiān)測(cè)結(jié)果),達(dá)標(biāo)正常工況下二英的年排放總量為8.4 mg I-TEQ。一次啟爐二英的排放量占到全年正常排放的9.3%,按照平均每年3次啟爐來計(jì)算,啟爐過程二英的總排放量占到全年正常排放的28%。而有研究者指出啟爐工況二英的異常排放甚至超過正常工況二英排放量的60%[14],這還沒有考慮受“記憶效應(yīng)”影響的啟爐后2 d或是更長(zhǎng)時(shí)間的二英排放異常。
表3 醫(yī)療廢物焚燒爐不同運(yùn)行工況下煙氣中PCDD/Fs排放速率Table 3 PCDD/Fs emission rate from stack flue gases during different operating conditions for MWI
(2)啟爐和正常運(yùn)行12 h后兩種工況TEQ分布吻合度較好,均為2,3,4,7,8-PeCDF所占比例最大。醫(yī)療廢物焚燒爐啟爐初始固相所占比例較大,平均占到50%,隨著啟爐的進(jìn)行,煙氣中的二英從固相向氣相轉(zhuǎn)移,氣相毒性當(dāng)量比值逐漸超過90%。
[1]Singh S, Prakash V. Toxic environmental releases from medical waste incineration: a review [J].Environmental Monitoring and Assessment,2007, 132(1-3): 67-81
[2]Jang Y C, Lee C, Yoon O S, Kim H. Medical waste management in Korea [J].Journal of Environmental Management,2006, 80(2):107-115
[3]Kulkarni P S, Crespo J G, Afonso C A. Dioxins sources and current remediation technologies—a review [J].Environment International,2008, 34(1): 139-153
[4]Zheng G J, Leung A O, Jiao L P, Wong M H. Polychlorinated dibenzo-p-dioxins and dibenzofurans pollution in China: sources,environmental levels and potential human health impacts [J].Environment International,2008, 34(7): 1050-1061
[5]Zhu J, Hirai Y, Sakai S, Zheng M. Potential source and emission analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in China [J].Chemosphere,2008, 73(Suppl 1): S72-77
[6]Chen Jia(陳佳), Chen Tong(陳彤), Wang Qi(王奇), Wang Chao(王超), Guo Ying(郭穎), Lu Shengyong(陸勝勇), Li Xiaodong(李曉東).PCDD/Fs emission levels of hazardous waste and medical waste incineration in China [J].Acta Science Circumstantiae(環(huán)境科學(xué)學(xué)報(bào)),2014, 34(4): 973-979
[7]Chen T, Yan J H, Lu S Y, Li X, Gu Y L, Dai H F, Ni M J, Cen K F.Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in china [J].Journal of Hazardous Materials,2008, 150(3): 510-514
[8]Lee W S, Chang-Chien G P, Wang L C, Lee W J, Tsai P J, Chen C K.Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from the incinerations of both medical and municipal solid wastes [J].Aerosol Air Qual. Res.,2003, 3(1): 1-6
[9]Gao H C, Ni Y W, Zhang H J, Zhao L, Zhang N, Zhang X P, Zhang Q,Chen J P. Stack gas emissions of PCDD/Fs from hospital waste incinerators in China [J].Chemosphere,2009, 77(5): 634-639
[10]Hoyos A, Cobo M, Aristizábal B, Córdoba F, Montes de Correa C.Total suspended particulate (TSP), polychlorinated dibenzodioxin(PCDD)and polychlorinated dibenzofuran (PCDF)emissions from medical waste incinerators in Antioquia, Colombia [J].Chemosphere,2008, 73(1): S137-S142
[11]Yan M, Li X D, Lu S Y, Chen T, Chi Y, Yan J H. Persistent organic pollutant emissions from medical waste incinerators in China [J].J.Mater. Cycles Waste Manag.,2011, 13(3): 213-218
[12]Chen C K, Lin C, Lin Y C, Wang L C, Chang-Chien G P.Polychlorinated dibenzo-p-dioxins/dibenzofuran mass distribution in both start-up and normal condition in the whole municipal solid waste incinerator [J].Journal of Hazardous Materials,2008, 160(1): 37-44
[13]Tejima H, Nishigaki M, Fujita Y, Matsumoto A, Takeda N, Takaoka M. Characteristics of dioxin emissions at startup and shutdown of MSW incinerators [J].Chemosphere,2007, 66(6): 1123-1130
[14]Wang L C, Hsi H C, Chang J E, Yang X Y, Chang-Chien G P, Lee W S. Influence of start-up on PCDD/F emission of incinerators [J].Chemosphere,2007, 67(7): 1346-1353
[15]Wu H L, Lu S Y, Yan J H, Li X D, Chen T. Thermal removal of PCDD/Fs from medical waste incineration fly ash–effect of temperature and nitrogen flow rate [J].Chemosphere,2011, 84(3):361-367
[16]Tejima H, Nishigaki M, Fujita Y, Matsumoto A, Takeda N, Takaoka M. Characteristics of dioxin emissions at startup and shutdown of MSW incinerators [J].Chemosphere,2007, 66(6): 1123-1130
[17]Aurell J, Fick J, Haglund P, Marklund S. Effects of sulfur on PCDD/F formation under stable and transient combustion conditions during MSW incineration [J].Chemosphere,2009, 76(6): 767-773
[18]Yan Mi (嚴(yán)密), Li Xiaodong (李曉東), Zhang Xiaoxiang (張曉翔),Lu Shengyong (陸勝勇), Yan Jianhua (嚴(yán)建華). Effect of water on catalyzed formation of polychlorinated dibenzo-p-dioxins and dibenzofurans form precusor [J].CIESC Journal(化工學(xué)報(bào)), 2010,61(1): 86-90
[19]Nakahata D T, Mulholland J A. Effect of dichlorophenol substitution pattern on furan and dioxin formation [J].Proceedings of the Combustion Institute,2000, 28(2): 2701-2707
[20]Neuer-Etscheidt K, Nordsieck H O, Liu Y, Kettrup A, Zimmermann R.PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut-down processes [J].Environmental Science & Technology,2006, 40(1): 342-349
[21]Li H W, Wang L C, Chen C C, Yang X Y, Chang-Chien G P, Wu E M Y. Influence of memory effect caused by aged bag filters on the stack PCDD/F emissions [J].Journal of Hazardous Materials,2011,185(2/3): 1148-1155
[22]Zimmermann R, Blumenstock M, Heger H J, Schramm K W, Kettrup A. Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: delayed emission effects [J].Environmental Science & Technology,2001, 35(6): 1019-1030
[23]Chi K H, Chang M B. Evaluation of PCDD/F congener partition in vapor/solid phases of waste incinerator flue gases [J].Environmental Science & Technology,2005, 39(20): 8023-8031