寧東峰, 宋阿琳, 梁永超,3*
(1 中國農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所, 農(nóng)業(yè)部作物需水與調(diào)控重點(diǎn)實(shí)驗(yàn)室, 河南新鄉(xiāng) 453002;2 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 北京 100081; 3 浙江大學(xué)環(huán)境與資源學(xué)院, 浙江杭州 310058)
鋼渣硅肥硅素釋放規(guī)律及其影響因素研究
寧東峰1, 2, 宋阿琳2, 梁永超2,3*
(1 中國農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所, 農(nóng)業(yè)部作物需水與調(diào)控重點(diǎn)實(shí)驗(yàn)室, 河南新鄉(xiāng) 453002;2 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所, 北京 100081; 3 浙江大學(xué)環(huán)境與資源學(xué)院, 浙江杭州 310058)
【目的】鋼渣是緩釋硅鈣肥原料,鋼渣中硅素釋放受鋼渣自身性能和外界環(huán)境條件等因素影響,本文設(shè)置了鋼渣冷卻方式、鋼渣粒徑、培養(yǎng)介質(zhì)和培養(yǎng)溫度四種因子,研究鋼渣中硅素釋放規(guī)律及其影響因素,為鋼渣硅鈣肥合理施用提供理論依據(jù)?!痉椒ā窟x用粉末狀水淬渣(S1)、粒狀水淬渣(S2)和空氣冷卻粒狀鋼渣(S3)為研究對象,分別設(shè)置在土壤水溶液以及純蒸餾水中培養(yǎng)97天,并設(shè)置 35℃和25℃兩個(gè)培養(yǎng)溫度。定期離心取上清液,取樣后補(bǔ)充水分繼續(xù)培養(yǎng),直至培養(yǎng)結(jié)束?!窘Y(jié)果】鋼渣在土壤溶液中培養(yǎng),第一天的硅素釋放主要由鋼渣冷卻方式?jīng)Q定,而在以后的培養(yǎng)過程中主要受溫度的影響,其次為鋼渣粒徑;硅素累積釋放量與時(shí)間的關(guān)系可以用冪函數(shù)方程y=kxm來擬合;35℃培養(yǎng)97天后,S1、S2與S3鋼渣硅的溶出率(累積硅釋放量與有效硅的比例)分別為37.3%、 30.3%與27.3%;在25℃培養(yǎng)下,S1、S2與S3鋼渣硅的溶出率分別為14.3%、7.9%與10.2%。鋼渣在純蒸餾水的培養(yǎng)中,第一天鋼渣硅釋放主要受溫度的影響,而在以后的培養(yǎng)過程中主要受鋼渣粒徑的影響,溫度和鋼渣冷卻方式對其影響甚微;硅素累積釋放量與時(shí)間的關(guān)系可以用線性方程y=ax+b來擬合;在35℃,S1、S2與S3鋼渣硅的溶出率分別為0.22%、0.16%與0.16%。在25℃培養(yǎng)下,S1、S2與S3鋼渣硅的溶出率分別為0.17%、 0.13%與0.14%。鋼渣在土壤溶液培養(yǎng),25℃培養(yǎng)67天,加入鋼渣提高了土壤浸提液的pH值,但之后與CK基本相同;在35℃培養(yǎng)下,加入鋼渣的土壤浸提液pH值總體都要顯著高于CK處理。純水培養(yǎng)介質(zhì)中,兩種溫度培養(yǎng)下,在同一階段S1浸提液的pH和EC值都要顯著高于S2和S3,溫度對pH和EC的影響不顯著。【結(jié)論】鋼渣硅素釋放規(guī)律主要受培養(yǎng)介質(zhì)和溫度的影響,粒徑有一定的影響。在土壤溶液中鋼渣硅素釋放顯著高于在蒸餾水中,35℃比25℃更有利于硅素的釋放,粉末狀比粒狀更有利于硅素的釋放。由此認(rèn)為,鋼渣作為硅鈣肥在大田施用時(shí),將鋼渣磨細(xì)做成粉末狀產(chǎn)品,施用時(shí)隨翻耕埋入土壤,初春采用保溫措施等都有利于提高鋼渣中硅的利用效率。
鋼渣; 培養(yǎng); 溫度; 粒徑; 冷卻方式; 硅釋放
1.1 供試材料
試驗(yàn)選用三種鋼渣, 粉末狀水淬渣(鞍鋼, 編號S1),過2 mm篩的顆粒狀水淬渣(首鋼,編號S2)和氣緩慢冷卻顆粒狀鋼渣(過2 mm篩,武鋼,編號S3)。三種鋼渣詳細(xì)化學(xué)性質(zhì)見表1。
表1 鋼渣基礎(chǔ)化學(xué)特性
1.2 試驗(yàn)設(shè)計(jì)
1.2.1 水浸泡法 (水培法) 準(zhǔn)確稱取鋼渣2.00 g置于50 mL塑料離心管中,加25 mL蒸餾水,加蓋搖勻,每份鋼渣重復(fù)8次,分為兩批,分別于25℃與35℃恒溫培養(yǎng)箱培養(yǎng)。在培養(yǎng)的第1、4、7、12、17、27、37、47、57、67、82和97 d取樣。取樣法為3000 r/min離心15 min,傾倒出全部上清液,離心管中新加入25 mL蒸餾水,加蓋搖勻后繼續(xù)培養(yǎng),直至培養(yǎng)結(jié)束。浸提液保存于-20℃冰箱中,培養(yǎng)結(jié)束后統(tǒng)一測定浸提液中硅含量與pH、EC值。
1.2.2 土壤溶液培養(yǎng)法(土培法) 試驗(yàn)選用的土壤為紅壤性水稻土,土壤有效SiO2含量為94.2 mg/kg,pH值為5.76,EC值為75 μs/cm。準(zhǔn)確稱取過l mm篩的5.00 g風(fēng)干土樣和0.100 g鋼渣于100 mL的塑料離心管中,充分混勻后加入50 mL的蒸餾水,另設(shè)不加鋼渣土樣為空白,每個(gè)處理重復(fù)8次。分為兩批分別在25℃、35℃下恒溫培養(yǎng)。在培養(yǎng)的第1、4、7、12、17、27、37、47、57、67、82和97 d取樣。取樣方法為3000 r/min離心20 min,傾倒出全部上清液,離心管中新加入50 mL蒸餾水,加蓋搖勻繼續(xù)培養(yǎng),直至培養(yǎng)結(jié)束。浸提液統(tǒng)一保存于-20℃冰箱中,培養(yǎng)結(jié)束后統(tǒng)一測定浸提液中硅含量與pH、EC值。
1.3 測定項(xiàng)目與方法
1.3.1 測定方法 pH采用Sartorins PB-10 pH計(jì)測定,電導(dǎo)率采用雷磁DDS-307電導(dǎo)率儀測定。浸提液硅測定: 取5 mL 浸提液,采用硅鉬藍(lán)比色法測定[13]。水培鋼渣硅素釋放速率[mg/(kg·d)]= n天鋼渣硅素累計(jì)釋放量(mg/kg)/n(n為培養(yǎng)天數(shù))。土培鋼渣硅素釋放速率[mg/(kg·d)]= [ n天(鋼渣+土壤) 硅素累積釋放量-n天土壤硅素累積釋放量](mg/kg)/n(n為培養(yǎng)天數(shù))。水培鋼渣有效硅素溶出率(%)=鋼渣總硅素累積釋放量/鋼渣中有效硅含量×100。土培鋼渣有效硅溶出率(%)=[(鋼渣+土壤)總硅素累積釋放量-土壤硅素總累積釋放量]/鋼渣中有效硅含量*100。
1.3.2 數(shù)據(jù)分析
試驗(yàn)數(shù)據(jù)用Microsoft Excel和SPSS 18.0軟件進(jìn)行分析,采用LSD法進(jìn)行差異顯著性比較,用Origin 8.0 軟件作圖。
2.1 鋼渣硅素釋放速率及影響因素分析
圖1 土壤溶液培養(yǎng)鋼渣硅素釋放規(guī)律Fig.1 Si releasing dynamics of different slags under soil suspension incubation
圖2 水浸提培養(yǎng)鋼渣硅素釋放規(guī)律Fig.2 Si releasing dynamics of different kinds of slag in water incubation
2.2 鋼渣培養(yǎng)中浸提液pH 和EC的變化
2.3 鋼渣累積釋放量變化以及釋放動(dòng)力學(xué)方程
圖5為鋼渣在土壤水溶液培養(yǎng)中硅素累積釋放量隨時(shí)間的變化。硅素累積釋放量與時(shí)間的關(guān)系可以用冪函數(shù)方程y=kxm來擬合[14](表2)。式中,y為土壤或鋼渣硅素累積釋放量(SiO2mg/kg);x為時(shí)間(d);k為常數(shù),相當(dāng)于x = 1時(shí)硅素累積釋放量[SiO2mg/(kg·d)],其表征硅素釋放速率的大??;m 為土壤硅素釋放速率變化系數(shù),決定著土壤硅素釋放動(dòng)力學(xué)曲線的形狀。由表2知,土壤(CK)以及3種鋼渣硅素累計(jì)釋放量與時(shí)間的冪函數(shù)擬合方程,相關(guān)系數(shù)都達(dá)到了0.95以上的極顯著水平。對冪函數(shù)求微分,則dy/dx=km·xm-1。當(dāng)x=1時(shí),dy/dx=km,即km相當(dāng)于鋼渣或土壤的硅素初始釋放速率。由表2知,土壤本身硅素釋放擬合方程,參數(shù)k、m以及km值都要低于3種鋼渣硅素釋放擬合方程參數(shù)值。3種鋼渣在同一溫度下比較,k值的大小順序?yàn)镾3>S1>S2;m值的大小順序?yàn)镾1≈S2>S3,km的值得大小順序?yàn)镾3>S1>S2。溫度對鋼渣及土壤(CK)硅素釋放量都有顯著的影響,同一處理其k、m以及km值,在35℃培養(yǎng)下都要顯著高于25℃培養(yǎng)結(jié)果。25℃培養(yǎng)條件下,CK、S1、S2與S3的硅素最終累積釋放量,分別為其在35℃培養(yǎng)下的45.2%、 38.8%、 26.0%與37.4%。
表2 土壤懸浮液中不同鋼渣硅素的釋放動(dòng)力學(xué)方程及參數(shù)
注(Note): **—P<0.01
圖3 土壤培養(yǎng)浸提液pH和EC變化Fig.3 The pH and EC values in soil leaching solutions in soil suspension incubation method
圖4 浸提液pH和EC變化(水培養(yǎng)法)Fig.4 The pH and EC values in leaching solution of slags using water incubation method
圖5 鋼渣硅素累積釋放量(土壤培養(yǎng)法)Fig.5 Accumulation of silicon released from different slags by soil suspension incubation method
圖6為水浸提鋼渣中硅素累積釋放量隨時(shí)間的變化。水浸提鋼渣硅素累積釋放量與時(shí)間的關(guān)系可以用線性方程y=ax+b來擬合(表3)。式中y為鋼渣硅素累積釋放量(SiO2mg/kg);x為時(shí)間(d);a與b為常數(shù),a+b的值為x = 1時(shí)硅素累積釋放量[SiO2, mg/(kg·d)],其表征硅素初始釋放速率的大小。由表3知,三種鋼渣硅素累計(jì)釋放量與時(shí)間的線性擬合方程,相關(guān)系數(shù)都達(dá)到了0.99以上的極顯著水平。在同一溫度下比較,a值以及a+b值的大小順序均為S1>S3>S2。同一處理,在35℃培養(yǎng)下a值以及a+b值均高于25℃。在25℃培養(yǎng)條件下,S1、S2與S3的鋼渣硅素最終累積釋放量,分別為其在35℃培養(yǎng)下的81.0%、82.4%和83.6%。
表4為兩種培養(yǎng)方式下,鋼渣在第97天的培養(yǎng)中硅素總釋放量與鋼渣中有效硅含量(0.5 mol/L HCl) 的百分比。結(jié)果表明,在土壤溶液培養(yǎng)中, 35℃培養(yǎng)下,S1、 S2與S3鋼渣硅的溶出率分別為37.3%、30.3%與27.3%,3種鋼渣溶出率差異顯著;在25℃培養(yǎng)下,S1、S2與S3鋼渣硅的溶出率分別為14.3%、7.9%與10.2%,相互間差異顯著。在水介質(zhì)培養(yǎng)中,35℃培養(yǎng)下,S1、S2與S3鋼渣硅的溶出率分別為0.22%、0.16%與0.16%,S1與其他兩種處理差異顯著,S2與S3無顯著差異;在25℃培養(yǎng)下,S1、S2與S3鋼渣硅的溶出率分別為0.17%、0.13% 與0.14%,S1與其他兩種處理差異顯著,S2與S3無顯著差異。同一溫度下,同一種鋼渣在水介質(zhì)中硅溶出率顯著低于在土壤溶液介質(zhì)中,說明土壤溶液介質(zhì)可促進(jìn)鋼渣中硅的釋放。在土壤培養(yǎng)條件下,提高溫度可顯著促進(jìn)鋼渣中硅的釋放,S2受溫度影響最明顯,而在水培條件下,溫度對鋼渣硅素釋放影響較弱。
圖6 水浸提培養(yǎng)鋼渣硅素累積釋放量Fig.6 Cumulative silicon from different kinds of slag in water incubation
編號SampleNo.動(dòng)力學(xué)方程KineticequationSiO2初始釋放速率[mg/(kg·d)]Theinitialspeedofreleasing相關(guān)系數(shù)Correlationcoefficient35℃S1Y=10.567X+85.41796.00.9901??S2Y=6.8809X+47.20654.10.9883??S3Y=7.3041X+64.71972.00.9912??25℃S1Y=8.3757X+51.47759.90.9924??S2Y=5.9211X+9.340915.30.9935??S3Y=6.0684X+3945.10.9972??
注(Note): **—P<0.01.
表4 不同培養(yǎng)液鋼渣硅素溶出率(%)
注(Note): 數(shù)據(jù)值為每個(gè)處理3個(gè)重復(fù)的平均值 Data are means of three replicates; 不同字母表示同一季水稻不同處理間差異達(dá)5%顯著水平 Mean values followed by different letters in the same season are significantly different at the 5% level.
鋼渣是一種緩釋硅肥,在我國及日本等國家,鋼渣中有效硅的含量通常以0.5 mol/L HCl浸提結(jié)果作為評價(jià)標(biāo)準(zhǔn)[15-17],但是這種測定方法并不能精確地表明鋼渣中植物有效硅含量[16-18]。鋼渣中硅的植物有效性受其本身因素(如組成成分、冷卻方式、粒徑大小等)和環(huán)境因素(如外界介質(zhì)、溫度等)影響。本文選用3種有效硅含量(0.5 mol/L HCl測定)相近,其他性質(zhì)不同的鋼渣為研究對象,包括粉末狀水淬渣(S1)、粒狀水淬渣(S2)和空氣緩慢冷卻粒狀鋼渣(S3),分別設(shè)置在土壤水溶液以及蒸餾水中培養(yǎng),并且設(shè)置 35℃和25℃兩個(gè)培養(yǎng)溫度,以期研究鋼渣中硅的釋放規(guī)律及影響因素。
研究結(jié)果表明,在土壤水溶液浸提培養(yǎng)中,空氣緩慢冷卻鋼渣(S3)的初始釋放速率顯著高于水淬渣(S1和S2),而溫度和粒徑對第一天的釋放速率沒有顯著影響。Takahashi[19]研究結(jié)果同樣表明慢速冷卻的鋼渣中植物有效性硅的含量要大于在水中快速冷卻的鋼渣。在以后的培養(yǎng)過程中溫度對鋼渣硅素的釋放影響最大,其次為鋼渣粒徑,而鋼渣冷卻方式影響甚微。鋼渣累積釋放量隨時(shí)間的變化可以用冪函數(shù)方程很好的擬合,通過方程參數(shù)k、m,室以及km值的比較,得到與上述相同的結(jié)論。3種鋼渣在土壤溶液介質(zhì)中培養(yǎng)97天后,S1、S2與S3的鋼渣硅的溶出率,35℃下分別為37.3%、30.3%與27.3%, 25℃下分別為14.3%、7.9%與10.2%。S2在35℃時(shí)的釋放量大于S3,而在低溫時(shí)結(jié)果相反。表明,高溫更有利于水淬渣的硅素釋放。97天的培養(yǎng)時(shí)間可以代表水稻移栽至收獲期的天數(shù),在這一過程中,鋼渣中硅素釋放量在35℃僅占有效硅含量的30%左右。所以,鋼渣中硅在下一季水稻中仍可發(fā)揮余效。
在蒸餾水培養(yǎng)介質(zhì)中與土壤水溶液培養(yǎng)的結(jié)果表現(xiàn)并不完全一致,鋼渣硅素累積釋放量要顯著低于在土壤溶液介質(zhì)中釋放量。結(jié)果說明,高溫更有利于水淬渣硅的釋放,在同一溫度下,粒徑對鋼渣硅的釋放大于冷卻方式。在培養(yǎng)7天以后,釋放速率只存在小幅的波動(dòng),而且35℃和25℃的釋放速率基本相近。結(jié)果表明,在水培條件下,溫度對鋼渣硅的釋放影響甚微,這與土壤溶液培養(yǎng)結(jié)果不一。分析認(rèn)為在土壤介質(zhì)中,35℃的條件下促進(jìn)了土壤中硅酸鹽細(xì)菌等微生物的活性,從而間接的提高了鋼渣中硅的釋放。
土壤溶液培養(yǎng)介質(zhì)中,25℃培養(yǎng)下,前67天加入鋼渣提高了土壤浸提液中的pH值,但后期與CK基本相同。但在35℃培養(yǎng)下,加入鋼渣的土壤浸提液pH值一直都要顯著高于CK處理。兩種溫度培養(yǎng)下,加入鋼渣都顯著提高了土壤浸提液的EC值,而且粉末狀鋼渣(S1)土壤浸提液的EC要高于其他兩種鋼渣,而且高溫對其提高也更顯著。純水培養(yǎng)介質(zhì)中,兩種溫度培養(yǎng)下,在同一階段S1浸提液的pH和EC值都要顯著高于S2和S3,而溫度對pH和EC的影響不顯著。
在土壤溶液培養(yǎng)介質(zhì)中,鋼渣的硅素釋放主要由溫度因子決定,35℃比25℃更有利于硅素的釋放; 次要影響因子為鋼渣粒徑,粉末狀比粒狀更有利于硅素的釋放。在純水的培養(yǎng)介質(zhì)中,鋼渣硅的釋放主要影響因子為鋼渣粒徑,溫度和鋼渣冷卻方式對其影響甚微。由此認(rèn)為,鋼渣作為硅鈣肥在大田施用時(shí),將鋼渣磨細(xì)做成粉末狀產(chǎn)品,在施用時(shí)隨翻耕埋入土壤,以及在初春采用保溫措施等都有利于提高鋼渣中硅的利用效率。
[1] http://www.worldsteel.org/media-centre/press-releases/2012/12-2012-crude-steel html.
[2] 李燦華, 吳江紅, 汪暉, 等. 從資源屬性看我國鋼渣資源化利用[J]. 重鋼技術(shù),2011,54(1): 12-15. Li C H, Wu J H, W Hetal. Study on the technology of recycling steel slag with the theory for the attributes of the natural resources in China[J]. Cisc Technology, 2011, 54 (1): 12-15.
[3] 程緒想,楊全兵.鋼渣的綜合利用[J]. 粉煤灰綜合利用,2010, 5: 45-49. Chen X X, Yang Q B. The comprehensive utilization of steel slag[J]. Fly Ash Comprehensive Utilization, 2010, 5: 45-49.
[4] Shen H T, Forssberg E. An overview of recovery of metals from slags[J]. Waste Management, 2003(10), 23: 933-949.
[5] Geiseler J. Use of steelworks slag in Europe[J]. Waste Management, 1996, 16(3): 59-63.
[6] 吳志宏,鄒宗樹,王承智.轉(zhuǎn)爐鋼渣在農(nóng)業(yè)生產(chǎn)中的再利用[J]. 礦產(chǎn)綜合利用, 2005, (6): 25-28. Wu Z H, Zou Z S, Wang C Z. Application of converter slags in agriculture[J]. Multipurpose Utilization of Mineral Resource, 2005, (6): 25-28.
[7] Tsakiridis P E, Papadimitriou G D, Tsivilis Setal. Utilization of steel slag for Portland cement clinker production[J]. Journal of Hazardous Materials, 2008, 152: 805-811.
[8] Wang H, Li C, Liang Y C. Agricultural utilization of silicon in China[A]. Datnoff L E, Snyder G H, Kornd?rfer G H. Silicon in agriculture [C]. Amsterdam: Elsevier, 2001. 343-358.
[9] Ma J F, Takahashi E. Soil, fertilizer, and plant silicon research in Japan[M]. Amsterdam: Elsevier, 2002, 52-59.
[10] Datnoff L E, Deren C W, Snyder G H. Silicon fertilization for disease management of rice in Florida[J]. Crop Protection, 1997, 16: 525-531.
[11] Seebold K W, Kucharek T A, Datnoff L Eetal. The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice[J]. Phytopathology, 2001, 91: 63-69.
[12] Cha W, Kim J, Choi H.Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment[J]. Water Research, 2006, 40: 1034-1042.
[13] 劉鳴達(dá), 張玉龍, 李軍, 等. 施用鋼渣對水稻土硅素肥力的影響[J]. 土壤與環(huán)境,2001,10(3): 220-223. Liu M D, Zhang Y L, Li Jetal. Effects of slag application on silicon fertility in paddy soil[J]. Soil Environmental Science, 2001, 10 (3): 220-223.
[14] 劉鳴達(dá), 張玉龍, 孟祥富, 等. 應(yīng)用硅素釋放動(dòng)力學(xué)方程評價(jià)水稻土供硅能力[J]. 土壤通報(bào), 2006, 37(1): 107-110. Liu M D, Zhang Y L, Meng X Fetal. Evaluation of silicon supplying capacity of paddy soil by silicon liberation dynamics equation[J]. Chinese Journal of Soil Science, 2006, 37 (1): 107-110.
[15] 李春花, 周衛(wèi), 榮向農(nóng). 硅肥中有效SiO2分析方法的標(biāo)準(zhǔn)化研究[J]. 磷肥與復(fù)肥, 2004, 19(4): 60-61. Li C H, Zhou W, Rong X N. Standardization of analytical method for available SiO2in silicon containing fertilizer[J]. Phosphate & Compound Fertilizer, 2004, 19 (4): 60-61.
[16] Kato N, Owa N. Dissolution of slag fertilizers in a paddy soil and Si uptake by rice plant[J]. Soil Science and Plant Nutrition, 1997a, 43: 329-341.
[17] Kato N, Owa N. Evaluation of Si availability in slag fertilizers by an extraction method using a cation exchange resin[J]. Soil Science and Plant Nutrition, 1997b, 43: 351-359.
[18] Buck G B, Korndorfer G H, Datnoff L E. Extractors for estimating plant available silicon from potential silicon fertilizer sources[J]. Journal of Plant Nutrition, 2011, 34: 272-282.
[19] Takahashi K. Effects of slags on the growth and the silicon uptake by rice plants and the available silicates in paddy soils[J]. Bulletin Shikoku Agricultural Experiment Station, 1981, 38: 75-114.
Si-releasing character of slag-based silicon fertilizer and impact factors
NING Dong-feng1,2, SONG A-lin2, LIANG Yong-chao2,3*
(1InstituteofFarmlandIrrigationResearch,ChineseAcademyofAgriculturalSciences/MinistryofAgricultureKeyLaboratoryofCropWaterUseandRegulation,Xinxiang,Henan453002,China;2AgriculturalResourcesandRegionalPlanningInstitute,ChineseAcademyofAgriculturalScience,Beijing100081,China;3CollegeofEnvironmental&ResourceSciences,ZhejiangUniversity,Hangzhou, 310058,China)
【Objectives】 The release character of Si form the slag-based Si fertilizer affects the efficiency of Si fertilizer, which might be governed by the cooling process and granular size of slag. So the study on the Si-release characters of slag-based Si-fertilizers will provide basis for their field application. 【Methods】 Three different types of steel slag, including S1 (in powder form, water-cooling), S2 (in granular form, water-cooling), and S3 (in granular form, air-cooling) with identically available Si content, were used for incubation trial in both soil suspension and distilled water media at 35℃ and 25℃. Leaching solutions were collected through centrifugation at regular intervals. After centrifugation, samples were added with quantitative amount of water and incubated sequentially till the trial end.【Results】 In the soil suspension-incubation experiment, the rate of Si released from slag in the first day was mainly influenced by slag cooling process, but was impacted principally by temperature and granular size of slag as the experiment later on. The relationship between the cumulative Si release and time could be expressed with the exponential equation: y=kxm. After 97 days of soil incubation, the Si-releasing percentage (the ratio of cumulative Si release to total available Si content) of S1, S2 and S3 were 37.3%, 30.3% and 27.3%, respectively, at 35℃, and 14.3%, 7.9% and 10.2% at 25℃. In distilled water-incubation experiment, the first day release of Si was mainly influenced by temperature, afterwards principally by granular size of slag, never by slag cooling process. The relationship between the cumulative Si release and incubation time could be expressed with linear equation (y=ax+b). After 97 days incubation in water, the Si-releasing percentages of S1, S2 and S3 were 0.22%, 0.16% and 0.16%, respectively, at 35℃, and 0.17%, 0.13% and 0.14% at 25℃. In the soil suspension-incubation experiment, the pH values of leaching solutions from the soils added with steel slag were increased in the first 67 days incubation period, then their pH values were kept similar with CK at 25℃, but the pH values of treatments were always higher than that of CK throughout the whole incubation period at 35℃.In the distilled water-incubation experiment, pH and EC of S1 were significantly higher than those of S2 and S3 within the same incubation period, temperature did not show much impact on pH and EC.【Conclusions】 Si-releasing characteristic of slag was principally influenced by incubation medium and temperature, followed by particle size of slag. Si-releasing rate was significantly higher in the soil-incubation condition than in the distilled water-incubation condition. High temperature and fine particles are good for the release of Si. Therefore, steel slag is recommended to be completely pulverized before application into soil.
steel slag fertilizer; incubation; temperature; particle size; cooling process; silicon-release
2014-01-20 接受日期: 2014-09-12
國家“十二·五”科技支撐計(jì)劃 “鋼渣農(nóng)業(yè)資源化利用技術(shù)研究與示范”(2013BAB03B02); 國家自然基金“秸稈還田對我國南方典型水稻土壤硅素釋放過程影響的定量研究”(41301310)資助。
寧東峰(1985—),女,山東泰安人,博士研究生,主要從事植物營養(yǎng)生理學(xué)與廢棄物資源利用研究。 E-mail: smile_0808@163.com * 通信作者 E-mail: liangyongchao@caas.cn
S143.7+1
A
1008-505X(2015)02-0500-09