李 景, 吳會軍*, 武雪萍*, 蔡典雄, 姚宇卿, 呂軍杰, 鄭 凱, 劉志平
(1 中國農業(yè)科學院農業(yè)資源與農業(yè)區(qū)劃研究所, 北京 100081; 2 洛陽市農業(yè)科學研究所, 河南洛陽 471022;3 中國農業(yè)大學資源與環(huán)境學院, 北京 100193)
長期保護性耕作提高土壤大團聚體含量及團聚體有機碳的作用
李 景1, 吳會軍1*, 武雪萍1*, 蔡典雄1, 姚宇卿2, 呂軍杰2, 鄭 凱1, 劉志平3
(1 中國農業(yè)科學院農業(yè)資源與農業(yè)區(qū)劃研究所, 北京 100081; 2 洛陽市農業(yè)科學研究所, 河南洛陽 471022;3 中國農業(yè)大學資源與環(huán)境學院, 北京 100193)
耕作; 土壤; 團聚體; 有機碳
保護性耕作是以減少土壤擾動和增加秸稈覆蓋為主要特點的一種耕作方式,近些年被廣泛推廣,保護性耕作產生的固碳效應也越來越引起關注。土壤有機碳(SOC)與土壤團聚程度關系密切[1-2],團聚體形成作用被認為是土壤固碳的最重要機制。因此,研究不同耕作措施下土壤團聚體及其有機碳分布特征,對認識土壤碳固定機制和選擇合理的耕作措施有重要的理論和實踐意義。
土壤團聚體是土壤結構的基本單元,其數量和質量直接決定土壤質量和肥力[3],不同粒級團聚體在養(yǎng)分的保持、供應及轉化能力等方面發(fā)揮著不同的作用[4-5]。耕作帶來的機械擾動破壞了大團聚體,暴露出原先被團聚體保護的土壤有機碳,增加土壤有機碳的分解速率[6-9]。前人在不同耕作措施對團聚體和SOC的影響方面做了很多研究,Dolan等[10]研究表明,長期免耕(23年)與翻耕相比,土壤表層有機碳含量提高了30%。同時,耕作措施可以影響土壤團聚體結構,良好的土壤團聚體結構可以貯存更多SOC[11]。Rouven等[12]的研究結果表明,保護性耕作可顯著提高0—5 cm土層的大團聚體數量,同時減少微團聚體數量;Castro等[6]研究表明,免耕能夠提高團聚體中有機碳含量,尤其是大團聚體有機碳含量。有關耕作對土壤團聚體有機碳的影響等方面的研究較多,但多為試驗當年的土樣,缺乏階段性對比,尤其在對長期試驗研究中,缺乏試驗當年與試驗初期比較。
本文以河南豫西地區(qū)13年耕作試驗為研究對象,觀測和分析了免耕(NT)、深松覆蓋(SM)和翻耕(CT)長期試驗第3年和第13年的土壤水穩(wěn)性團聚體特征及團聚體有機碳含量,以明確長期耕作措施對土壤團聚體及其有機碳的影響,為探討土壤固碳機理,優(yōu)化黃土高原坡耕地區(qū)農田耕作管理措施,實現土壤固碳減排、培肥土壤提供理論依據。
1.1 研究區(qū)概況
1.2 試驗設計
1.3 樣品采集與分析
土壤樣品分別在2002年和2011年采集,在0—10 cm和10—20 cm兩個土層采集樣品,取3次重復,每個重復隨機取10個點混合成混合土樣。土壤樣品采集后在室內風干,將風干土過8 mm篩,除去小石塊及大于8 mm根系、凋落物等。
團聚體分級參考Cambardella和Elliott的濕篩法[7],用土壤團聚體篩分儀(套篩: 2000 μm,250 μm,53 μm)進行團聚體分級。向土壤團聚體篩分儀的水桶內裝入約2/3桶蒸餾水,將2000 μm篩子放在最上面,下面依次套上250 μm和53 μm篩子,并使篩子處于上下震動的最下端,再向水桶中加入適量蒸餾水,使水面淹沒約篩子高的2/3處。稱取80 g風干土平鋪于2000 μm篩子上,浸沒5 min。開啟測定儀,篩子上下移動幅度為3 cm,頻率為30次/min,共上下震蕩2 min之后,關閉測定儀。將每一級篩子上的土用蒸餾水沖洗到鐵盒內。<53 μm的部分留在水桶內,靜置過夜后將上清液倒出,<53 μm的部分轉至鐵盒。將分離出的各級團聚體放入55℃烘箱內烘干、稱重。
土壤及團聚體有機碳的測定采用重鉻酸鉀-容量法進行測定。
1.4 數據處理
利用各級別團聚體數據,計算土壤團聚體平均質量直徑(Mean weight diameter, MWD)[13]。
采用Excel2003進行數據、圖表處理,利用SAS9.1軟件進行方差分析(ANOVA),用最小顯著差數法(LSD)進行顯著性檢驗。
2.1 不同耕作下土壤有機碳含量
表1表明,SOC含量在不同土壤層次年際間表現不同演變趨勢,在土壤表層(0—10cm),試驗初期(2002年)各處理的SOC含量沒有顯著差異,耕作進行13年后(2011年),NT和SM處理顯著提高了SOC含量,較CT處理分別提高33.47%和44.48%。不同處理的SOC含量隨耕作年限變化不同。NT和SM處理2011年SOC含量較2002年上升了1.92%和8.59%;CT處理SOC含量隨耕作年限呈明顯下降趨勢,2011年與2002年相比下降了18.97%,下降量為1.37g/kg,年平均下降量為0.15g/kg。耕作處理對在10—20cm土層SOC含量無顯著影響。
2.2 不同耕作下土壤團聚體分布狀況
表1 不同耕作處理下土壤有機碳含量
注(Note): NT—免耕 No-tillage;SM—深松覆蓋 Sub-soiling with mulch;CT—翻耕 conventional tillage. 同列不同字母表示處理間差異達5%顯著水平 Values followed by different letters in a column are significant different among the treatments at the 5% level.
圖1 不同耕作措施下土壤大團聚體的質量分數Fig.1 Mass percentage of soil macroaggregates under different tillage systems[注(Note): NT—免耕覆蓋 No-tillage;SM—深松覆蓋 Sub-soiling with mulch;CT—翻耕 conventional tillage. 柱上不同字母表示處理間差異達5%顯著水平 Different letters above the bars are significant among the treatments at the 5% level.]
圖2 不同耕作措施下土壤微團聚體的質量分數Fig.2 Mass percentage of soil microaggregates under different tillage systems[注(Note): NT—免耕覆蓋 No-tillage;SM—深松覆蓋 Sub-soiling with mulch;CT—翻耕 Conventional tillage. 柱上不同字母表示處理間差異達5%顯著水平 Different letters above the bars are significant among the treatments at the 5% level.]
2.2.4 耕作措施對土壤團聚體穩(wěn)定性的影響 MWD是反映土壤團聚體穩(wěn)定性的常用指標[6,13]。長期耕作能夠顯著影響土壤0—10 cm層土壤團聚體穩(wěn)定性,對10—20 cm土層無顯著影響(表2)。與CT處理相比,長期NT及SM顯著提高了表層0—10 cm土壤MWD,分別提高了20.55%和39.68%。同時,MWD隨耕作年限變化明顯,CT處理下MWD隨耕作年限明顯下降,2011年較2002年下降了7.10%。
2.3 土壤團聚體有機碳含量
2.3.1 13年不同耕作處理的影響 長期耕作能夠顯著影響土壤0—10 cm層土壤團聚體有機碳含量,對10—20 cm土層無顯著影響(圖3、圖4)。在0—10 cm層,NT和SM處理提高了各個級別團聚體有機碳含量,尤其以>2000 μm團聚體有機碳含量提高最多,較CT處理分別提高了40.00%和27.60%。
表2 不同耕作措施下土壤微團聚體的穩(wěn)定性指數
注(Note): NT—免耕覆蓋 No-tillage;SM—深松覆蓋 Sub-soiling with mulch;CT—傳統(tǒng)耕作 Conventional tillage. 不同字母表示處理間差異達5%顯著水平 Different letters above the bars are significant among the treatments at the 5% level.
圖3 不同耕作下土壤大團聚體有機碳含量狀況Fig.3 Organic carbon contents of macroaggregates under different tillage systems[注(Note): NT—免耕覆蓋 No-tillage; SM—深松覆蓋 Sub-soiling with mulch;CT—翻耕 Conventional tillage. 柱上不同字母表示處理間差異達5%顯著水平 Different letters above the bars are significant among the treatments at the 5% level.]
圖4 不同耕作下土壤微團聚體SOC含量Fig.4 Organic contents of microaggregates under different tillage systems[注(Note): NT—免耕覆蓋 No-tillage; SM—深松覆蓋 Sub-soiling with mulch; CT—翻耕 Conventional tillage. 柱上不同字母表示處理間差異達5%顯著水平 Different letters above the bars are significant among the treatments at the 5% level.]
3.1 耕作對土壤有機碳含量的影響
國內外許多研究也表明,免耕條件下SOC的積累僅限于土壤表層(<10 cm),秸稈還田對表層的貢獻率要大于其對亞表層的貢獻[14-18]。本研究同時表明,長期免耕覆蓋和深松覆蓋均可提高0—10 cm層SOC含量,對10—20 cm層無提升作用,與前人研究結果一致,相反,翻耕條件下10—20 cm土層SOC含量較高,較NT處理提高1.33%,較SM處理提高4.74%,這可能是由于經過翻動,土壤表層的植物殘體被翻到地下,從而促進了土壤10—20 cm層SOC的積累[19]。本研究結果同時表明深松覆蓋對0—10 cm層SOC含量提升效果好于免耕覆蓋,這可能是由于深松作用打破了犁底層,促進了作物生長,提高了秸稈還田量,從而增加了還碳量。
土壤固碳具有明顯的滯后效應,梁愛珍等[20]表明,5年免耕覆蓋處理下土壤0—30 cm土層SOC含量隨耕作年限先降低后增加,說明免耕覆蓋有利于SOC的積累,但是這一作用存在滯后效應,5年左右才能發(fā)揮作用。王成己等[21]研究結果表明結合秸稈還田的保護性耕作有效固碳期限在旱地可持續(xù)23年。本研究表明,在耕作初期(2002年)免耕覆蓋和深松覆蓋下0—10 cm土層SOC差異并不明顯,經過13年的試驗后,覆蓋在地表的秸稈在SOC增加的過程中已經發(fā)揮作用,免耕覆蓋和深松覆蓋處理對SOC含量的累積效應也逐漸體現出來。
3.2 耕作對團聚體的影響
本研究結果表明,長期免耕覆蓋和深松覆蓋處理可顯著提高0—10 cm土層大團聚體含量與團聚體穩(wěn)定性,與前人的研究結果一致[22-24]。這可能是由于免耕覆蓋和深松覆蓋都進行了秸稈還田,植物殘體的輸入有效的改善了作為團聚體膠結劑的土壤有機質狀況,促進了團聚體的形成和穩(wěn)定。相關研究結果表明,SOC與土壤團聚體關系密切,土壤團聚體的形成和穩(wěn)定性取決于有機質含量[11,25]。本研究中,土壤大團聚體含量和穩(wěn)定性指數MWD與SOC的變化趨勢一致,驗證了前人研究結果。
本研究結果同時表明,免耕覆蓋和深松覆蓋顯著提高了土壤0—10 cm層大團聚體含量,與翻耕相比,2002年提高了14.72%和18.76%,這說明免耕覆蓋和深松覆蓋在試驗初期就可促進大團聚體的形成。翻耕處理下大團聚體含量隨耕作年限明顯下降,2011年大團聚體含量較2002年下降了8.04%,這可能是由于每年收獲后和播種前土壤進行翻動,破壞了原有的大團聚體,同時翻耕條件下秸稈還田量較小,新的大團聚體形成較少。耕作處理對微團聚體含量的影響,表現出與大團聚體含量相反的趨勢。Six等[9]認為,大團聚體在新鮮植物殘體周圍形成,大團聚體破碎后釋放出原先被大團聚體包裹的新及老的微團聚體后,微團聚體數量就會相應增加,免耕覆蓋后土壤有機物質輸入增多,土壤有機碳含量增加,更多的新大團聚體就會增加,而微團聚體相應減少。
3.3 耕作對團聚體有機碳的影響
本研究同時表明,免耕覆蓋和深松覆蓋處理下0—10 cm土層>2000 μm級水穩(wěn)性團聚體有機碳隨耕作年限明顯增加,這可能是由于隨著耕作時間的增加,免耕覆蓋和深松覆蓋下植物殘體在表層富集程度加深,從而使更多的有機碳進入>2000 μm團聚體。
通過13年的保護性耕作試驗,免耕覆蓋和深松覆蓋顯著提高了0—10 cm層土壤有機碳含量,與耕作初期相比,這種促進作用隨耕作年限有增加的趨勢。免耕覆蓋和深松覆蓋可顯著提高0—10 cm層大團聚體含量和水穩(wěn)定性,改善了土壤結構。同時,免耕覆蓋和深松覆蓋提高了0—10 cm層土壤各級別團聚體有機碳的含量,尤其以>2000 μm團聚體有機碳含量的提升最多。與耕作初期相比,免耕覆蓋和深松覆蓋處理下>2000 μm團聚體有機碳隨耕作年限明顯增加。綜上所述,保護性耕作(包括免耕覆蓋和深松覆蓋)提高了土壤大團聚體含量和團聚體有機碳含量,具有改善土壤結構、提高土壤肥力的作用,在河南豫西丘陵地區(qū)是一種較為合理的耕作方式。
[1] Mrabet R. Stratification of soil aggregation and organic matter under conservation tillage systems in Africa[J]. Soil and Tillage Research, 2002, 66(2): 119-128.
[2] Liu M Y, Chang Q R, Qi Y Betal. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China[J]. CATENA, 2014, 115: 19-28.
[3] 鄭子成, 劉敏英, 李廷軒. 不同植茶年限土壤團聚體有機碳的分布特征[J]. 中國農業(yè)科學, 2013, 46(9): 1827-1836. Zheng Z C, Liu M Y, Li T X. Distribution characteristics of organic carbon fractions in soil aggregates under tea plantation of different ages[J]. Scientia Agricultura Sinica, 2013, 46(9): 1827-1836.
[4] Paul B K, Vanlauwe B, Ayuke Fetal. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity[J]. Agriculture, Ecosystems and Environment, 2013, 164: 4-22.
[5] 陳恩鳳, 周禮愷, 武冠云. 微團聚體的保肥供肥性能及其組成比例在評斷土壤肥力水平中的意義[J]. 土壤學報, 1994, 31(1): 18-25. Chen E F, Zhou L K, Wu G Y. Performances of soil microaggregates in storing and supplying moisture and nutrients and role of their compositional proportion an judging fertility level[J]. Acta Pedologica Sinaca, 1994, 31(1): 18-25.
[6] Castro Filho C, Louren?o A, Guimar?es M Fetal. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil[J]. Soil and Tillage Research, 2002, 65(1): 45-51.
[7] Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1993, 57(4): 1071-1076.
[8] Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982. 33(2): 141-163.
[9] Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000. 32(14): 2099-2103.
[10] Dolan M S, Clapp C E, Allmaras R Retal. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management[J]. Soil and Tillage Research, 2006, 89(2): 221-231.
[11] Gupta C, Sonal S, Ranbir Setal. Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice-wheat cropping system under reclaimed sodic soil[J]. Soil and Tillage Research, 2014, 136: 76-83.
[12] Rouven A, Koch H J, Ludwig B. Effect of long-term tillage treatments on the temporal dynamics of water-stable aggregates and on macro-aggregate turnover at three German sites[J]. Geoderma, 2014, 217: 57-64.
[13] 周虎, 呂貽忠, 楊志臣, 李保國. 保護性耕作對華北平原土壤團聚體特征的影響[J]. 中國農業(yè)科學, 2007, 40(9): 1973-1979. Zhou H, Lü Y Z, Yang Z Cetal. Effects of conservation tillage on soil aggregates in Huabei plain, China[J]. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979.
[14] 姜學兵, 李運生, 歐陽竹, 等. 免耕覆蓋對土壤團聚體特征以及有機碳儲量的影響[J]. 中國生態(tài)農業(yè)學報, 2012, 20(3): 270-278. Jiang X B, Li Y S, Ouyang Zetal. Effect of no-tillage on soil aggregate and organic carbon storage[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 270-278.
[15] Six J, Elliott E T, Paustian K, Doran J W. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998. 62(5): 1367-1377.
[16] Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31.
[17] Balesdent J, Chenu C, Balabane M. Relationship of soil organic matter dynamics to physical protection and tillage[J]. Soil and Tillage Research, 2000, 53(3): 215-230.
[18] Franzluebbers A. Soil organic matter stratification ratio as an indicator of soil quality[J]. Soil and Tillage Research, 2002. 66(2): 95-106.
[19] Allmaras R R, Linden D R, Clapp C E. Corn-residue transformations into root and soil carbon as related to nitrogen, tillage, and stover management[J]. Soil Science Society of America Journal, 2004, 68(4): 1366-1375.
[20] 梁愛珍, 楊學明, 張曉平, 等. 免耕覆蓋對東北黑土水穩(wěn)性團聚體中有機碳分配的短期效應[J]. 中國農業(yè)科學, 2009, 42(8): 2801-2808. Liang A Z, Yang X M, Zhang X Petal. Short-term impacts of no tillage on soil organic carbon associated with water-stable aggregates in black soil of northeast China[J]. Scientia Agricultura Sinica, 2009, 42(8): 2801-2808.
[21] 王成己, 潘根興, 田有國. 保護性耕作下農田表土有機碳含量變化特征分析—基于中國農業(yè)生態(tài)系統(tǒng)長期試驗資料[J]. 農業(yè)環(huán)境科學學報, 2009, 28(12): 2464-2475. Wang C J, Pan G X, Tian Y G. Characteristics of cropland topsoil organic carbon dynamics under different conservation tillage treatments based on long-term agro-ecosystem experiments across mainland China[J]. Journal of Agro-Environment Science, 2009, 28(12): 2464-2475.
[22] 蔡立群, 齊鵬, 張仁陟, 等. 不同保護性耕作措施對麥-豆輪作土壤有機碳庫的影響[J]. 中國生態(tài)農業(yè)學報, 2009, 17(1): 1-6. Cai L Q, Qi P, Zhang R Zetal. Effects of different conservation tillage measures on soil organic carbon pool in two sequence rotation systems of spring wheat and pease[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 1-6.
[23] Elliott E T and Cambardella C A. Physical separation of soil organic matter[J]. Agriculture, Ecosystems & Environment, 1991, 34(1/4): 407-419.
[24] 梁愛珍, 張曉平, 楊學明, 等. 耕作對東北黑土團聚體粒級分布及其穩(wěn)定性的短期影響[J]. 土壤學報, 2009, 46(1): 154-158. Liang A Z, Zhang X P, Yang X Metal. Short-term effects of tillage on soil aggregate size distribution and stability in black soil in northeast China[J]. Acta Pedologica Sinica, 2009, 46(1): 154-158.
[25] Yang X M, Drury C F, Reynolds W D, Tan C S. Impacts of long-term and recently imposed tillage practices on the vertical distribution of soil organic carbon[J]. Soil and Tillage Research, 2008, 100(1): 120-124.
[26] Puget P, Chenu C, Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregate[J]. European Journal of Soil Science, 2000, 51(4): 595-605.
Impact of long-term conservation tillage on soil aggregate formation and aggregate organic carbon contents
LI Jing1, WU Hui-jun1*, WU Xue-ping1*, CAI Dian-xiong1, YAO Yu-qing2, LU Jun-jie2, ZHENG Kai1, LIU Zhi-ping
(1InstituteofAgriculturalResourceandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing100081,China; 2LuoyangInstituteofAgriculturalSciences,Luoyang,Henan471022,China; 3CollegeofResourceandEnvironmentalScience,ChinaAgriculturalUniversity,Beijing100193,China)
【Objectives】 Conservation tillage is widely applied as its function in improving soil organic carbon (SOC) contents and the stabilization of soil aggregation. The objectives of this study were to reveal changes of SOC and soil aggregate organic carbon under long-term tillage systems, the influences of different tillage treatments on the formation of different sizes of aggregates, and the sustainable tillage system for the loess hilly region of China.【Methods】 A long-term tillage experiment, started in 1999, was used for the study. The tillage treatments included: no-tillage (NT), sub-soiling and mulch tillage (SM), and conventional tillage (CT). Soil samples were collected at depths of 0-10 cm and 10-20 cm in 2002 and 2011, soil aggregates were separated into>2000 μm, 250-2000 μm, 53-250 μm and<53 μm using wet sieving method. The SOC concentrations were measured by potassium bichromate titrimetric method. 【Results】 The tillage treatments affect SOC contents more significantly in surface soil (0-10 cm) than in sub-surface (10-20 cm). Compared with CT, SOC contents in the 0-10 cm soil layer are significantly increased by 33.47% and 44.48% in the NT and SM treatments after 13 years, respectively. Compared with 2002, the SOC contents in NT and SM in 2011 are increased by 1.92% and 8.59% respectively, while that in CT decreased by 18.97%. The NT and SM play a role in improving soil structure which could improve the contents of soil macroaggregates and water stability of aggregate in surface soil. Compared with CT, the contents of water-stable macroaggregates (>2000 μm) in NT and SM are significantly increased by 40.71% and 106.75% respectively, and the soil aggregate mean weight diameters (MWD) by 20.55% and 39.68% respectively, while the contents of microaggregates (53-250 μm) are significantly decreased by 19.72% and 22.53% respectively. NT and SM significantly improve soil aggregate organic carbon contents in surface soil, especially those in macroaggregates of >2000 μm in size. Compared with CT, the organic carbon contents in macroaggregates of >2000 μm in NT and SM are significantly increased by 40.00% and 27.60%. Macroaggregates organic carbon contents in NT and SM are increased with time, and microaggregates organic carbon contents are decreased reversely. Macroaggregates (>2000 μm) organic carbon contents in the year of 2011 in NT and SM are increased by 23.93% and 7.12% respectively compared with the year of 2002, and microaggregates (53-250 μm) organic carbon contents in NT and SM are decreased inversely by 19.58% and 13.27%. 【Conclusions】 The long-term no-tillage and sub-soiling and mulch tillage, significantly improve surface soil structures through increasing water-stable macroaggregates contents, and improve aggregate organic carbon contents in all sizes aggregates. The macroaggregates organic carbon contents in the conservation tillage are increased with the elongation of experiment, these might explain the higher SOC content in the conservation tillage. In conclusion, the long-term conservation tillage improves soil structure along with SOC content and is a more sustainable tillage system for the loess hilly region of China.
tillage; soil aggregate; organic carbon
2014-01-24 接受日期: 2014-07-09 網絡出版日期: 2015-01-28
國家科技支撐計劃課題(2015BAD22B03);國家“863”計劃項目(2013AA102901);公益性行業(yè)(農業(yè))科研專項經費項目(201203030、201203077);中央級公益性科研院所基本科研業(yè)務費專項資金(2011-7)資助
李景(1988—), 女, 河北石家莊人, 博士研究生,主要從事保護性耕作研究。E-mail: lijing315666@163.com * 通信作者 E-mail: hjwu@caas.ac.cn;xpwu@caas.ac.cn
S341.1
A
1008-505X(2015)02-0378-09