張 銳, 朱術云, 孫 強, 武富強
(1.中國礦業(yè)大學 資源與地球科學學院,江蘇 徐州 221116; 2.河南省航空物探遙感中心,河南 鄭州 450053)
高溫后灰?guī)r單軸壓縮的分形特征研究①
張 銳1, 朱術云1, 孫 強1, 武富強2
(1.中國礦業(yè)大學 資源與地球科學學院,江蘇 徐州 221116; 2.河南省航空物探遙感中心,河南 鄭州 450053)
溫度是影響巖石物理力學性質的重要因素,對不同溫度作用后灰?guī)r單軸壓縮的碎塊進行統計分析,結果表明灰?guī)r的塊度分布是個分形,分形維數D是反映高溫后灰?guī)r破碎程度恰當的特征統計量,同時D表現出隨溫度的增大而減小的性質。在此基礎上,通過掃描電鏡分析,獲得溫度對巖石力學性質的影響主要與組成巖石礦物性質和內部微觀結構有關,而不同溫度的作用會影響巖石礦物組成成分和巖石的晶格結構,在灰?guī)r的掃描電鏡結果對比中已發(fā)現微觀形貌特征的差異,這可從內在機制方面解釋不同溫度下灰?guī)r分維值變化特征。
高溫; 單軸壓縮; 分形維數; 掃描電鏡
巖石是一種結構復雜的地質材料,無論在爆破還是在機械作用下其損傷破壞的碎塊塊度都看似雜亂無章。1986 年D.L.Turcotte 曾對許多種地質材料在不同破碎方式下的碎塊塊度分布進行了統計分析,得出塊度分布是個分形[1]。國內外不少學者對相關巖石破碎進行了研究[2-7],但對不同溫度作用后灰?guī)r的破碎分形特征研究相對較少。為此,本文在對高溫后灰?guī)r在單軸壓縮破壞方式下的塊度進行統計分析基礎上,結合微觀結構,采用分形方法對其進行破壞特征探討,以期得到一些有益的結果。
將灰?guī)r加工成直徑和高度分別為50 mm和100 mm的標準圓柱體試樣,選用中國輕工業(yè)陶瓷研究所窯爐開發(fā)中心研制的GWD-02A型高溫爐進行高溫加熱,溫度取值為25℃(常溫)、50 ℃、100 ℃、200 ℃、340 ℃、400 ℃、450 ℃、500 ℃、550 ℃和600 ℃。每個溫度下灰?guī)r試樣選取兩組在RMT-150B 型伺服試驗機上進行單軸壓縮試驗,為減小端部效應在每組灰?guī)r試樣兩端添加剛性墊片。軸向加載時采用位移控制進程,加載速率為0.002 mm/s。
灰?guī)r試樣的破壞是先從試樣內部開始,主要是在外部軸向荷載作用下試樣發(fā)生變形,其黏聚力逐步喪失,并逐漸在試樣內部產生新的微裂紋,同時也使試樣內部的原生裂紋再擴展,在不斷加荷載的過程中,這種狀況不斷發(fā)展,導致灰?guī)r試樣的最終破壞[8-9]。按照加熱的順序依次對灰?guī)r試樣進行單軸壓碎試驗,試驗中灰?guī)r試樣表現出差異現象。試樣受到軸向載荷發(fā)生破壞,溫度低時試樣多發(fā)生軸向劈裂,爆裂強度大。有時試樣呈現炸開狀態(tài)(圖1),但是高溫時壓裂爆開的強度明顯變小,出現劈理數量也變少。
試驗結束后完整地收集每一組灰?guī)r碎塊,將灰?guī)r碎塊按質量相近的原則分組,稱量每組碎塊的質量及計算每組碎塊的塊數(圖2),稱量儀器采用精度為0.1 g的電子秤。
圖1 不同溫度下灰?guī)r抗壓強度試驗破壞特征Fig.1 Failure characteristics of the limestone in compressive strength test at different temperatures
巖石破碎過程與巖塊形狀具有自相似性,碎塊尺度分布具有冪函數特征,是統計意義上的分形。因此由分形的基本定義:
圖2 灰?guī)r分組示意圖Fig.2 Groups of the limestone fragments
(1)
式中,Ri是巖塊的特征尺度;Ni是特征尺度Ri的巖塊數目;C是比例常數;D是分形維數。
令R為巖塊的特征尺度,N為特征尺度大于等于R的巖塊數目,分形定義被推廣到連續(xù)的情形:N=CR-D。假設塊度分布是分形分布,則按尺度-頻率關系有:
(2)
其中Rmax是碎塊的最大特征尺度;N0是具有最大特征尺度的碎塊數[10-12]。
單軸壓縮的碎塊具有很大的不規(guī)則性,為了方便在實驗統計分析時采用巖石碎塊的質量-頻率的分布的分形維數,即:
(3)
式中,M為碎塊質量;N為質量大于等于M的碎塊數;Mmax為最大碎塊質量;N0為具有最大質量Mmax的碎塊數;b為質量-頻率分布指數。近似化處理下碎塊的質量與尺寸存在一定的相關性:M∞R3,所以D=3b[11]。
由實驗統計數據繪制不同溫度下灰?guī)r分維值圖(圖3),可以發(fā)現灰?guī)r碎塊的分維數在1.2~2.5之間。同時還可以看出灰?guī)r碎塊的分維數和溫度分布大致呈線性反比關系,相關系數R2=0.921 3。實驗統計數據和單軸壓縮實驗灰?guī)r試樣表現出來的差異現象相符合。
表1 50 ℃灰?guī)r分維計算
圖3 不同溫度下灰?guī)r分維值分布Fig.3 Bistribution of limestone fractal dimension value at different temperatures
分析發(fā)現分形維數大的試樣,碎塊多,體積小,破碎程度高;分形維數小的試樣,碎塊少,體積大,破碎程度低。結合實驗試樣壓碎的現象可得到灰?guī)r分形維數和溫度存在較好的負相關性。
溫度對巖石力學性質的影響主要與組成巖石礦物性質和內部微觀結構有關,不同溫度的作用會影響巖石礦物組成成分和巖石的晶格。巖石受熱后,由于組成巖石的各種礦物熱膨脹不同,礦物顆粒邊界會出現裂紋,即巖石的熱開裂現象。研究結果發(fā)現,巖石發(fā)生熱開裂后,其內部形成新的裂隙網絡。熱開裂能改變巖石內部的微結構,既增加裂隙的長度,又增加裂隙的密度[14]。通過對巖石微結構的分析,可以觀測到巖石微裂隙的變化。在同一放大倍數的情況下,采用掃描電鏡技術(SEM)對石灰?guī)r在不同溫度下微觀形貌特征進行觀察研究(圖4)。
圖4 不同溫度下灰?guī)r內部結構變化對比圖Fig.4 Internal structural change of lirnestone at different temperatures
從圖4中可以看出,在常溫下巖石礦物表面比較平整,礦物顆粒整齊、緊密且呈塊狀。200 ℃時巖石礦物表面已經發(fā)生變化,表面變得不平整,膠結物開始分解。570 ℃時出現了跨越顆粒的較長、較寬裂隙,礦物表面更加粗糙,碎屑物質增多。
試驗還發(fā)現常溫下石灰?guī)r呈灰黑色,高溫后石灰?guī)r試樣變?yōu)闇\灰地,分析認為隨著溫度的升高組成石灰?guī)r的碳酸鈣、碳酸鎂等礦物顆粒發(fā)生了氧化作用使得顏色變淺[15]。同時高溫對石灰?guī)r的強度有弱化作用,從而使灰?guī)r表現出由脆性向塑性的漸次演化。
(1) 高溫下單軸壓縮實驗灰?guī)r試樣表現出差異性,即溫度低時試樣破碎程度高,碎塊多且體積小,高溫時試樣破碎程度低,碎塊少且體積大;
(2) 灰?guī)r碎塊的分維數和溫度的分布呈反比關系,根據散點圖采用線性回歸方法擬合曲線為:y=-0.001 9x+2.506 2,相關系數很高。
(3) 結合灰?guī)r在不同溫度下掃描電鏡對比結果,高溫會影響巖石的礦物成分和內部微結構,使巖石的力學性質降低,顏色變淺,導致分維值變化。
References)
[1] 高峰,趙鵬.巖石破碎程度的分形度量[J].力學與實踐,1994,16(2):16-17.GAO Feng,ZHAO Peng.Rock Crushing Degree of Fractal Measurement[J].Mechanics in Engineering,1994,16(2):16-17.(in Chinese)
[2] 李德,李守巨,于申,等.壓頭作用下巖石破碎過程分形特性研究[J].巖土工程學報,2013,35(增2):314-319.LI De,LI Shou-ju,YU Shen,et al.Fractal Characteristics of Rock Fragmentation Process Induced by Indenters[J].Chinese Journal of Geotechnical Engineering,2013,35(Supp2):314-319.(in Chinese)
[3] 杜晶,李夕兵,宮鳳強,等.巖石沖擊實驗碎屑分類及其分形特征[J].礦業(yè)研究與開發(fā),2010,30(5):20-22,84.DU Jing,LI Xi-bing,GONG Feng-qiang,et al.Classification and Fractal Characteristics of the Fragments from Impacting Experiment of Rock[J].Mining Research and Development,2010,30(5):20-22,84.(in Chinese)
[4] 謝長進,王家來.結構性巖體的爆破破碎分形[J].工程爆破,1998,4(3):1-3.XIE Chang-jin,WANG Jia-lai.Fractal Fragmentation of Structural Rockmass[J].Engineering Blasting,1998,4(3):1-3.(in Chinese)
[5] 李博,孫強,王思源,等.單軸加載下砂巖聲發(fā)射特征的試驗分析[J].地震工程學報,2013,35(1):114-118.LI Bo,SUN Qiang,WANG Si-yuan,et al.Experimental Analysis of the Acoustic Emission Characteristics of Sandstone Specimens Under Uniaxial Loading Test[J].China Earthquake Engineering Journal,2013,35(1):114-118.(in Chinese)
[6] 柴肇云,康天合,陳維毅,等.泥巖壓剪破壞裂隙演化規(guī)律及其分形特征[J].巖石力學與工程學報,2011,30(增2):3844-3850.CHAI Zhao-yun,KANG Tian-he,CHEN Wei-yi,et al.Fracture Evolutionary Rules of Mudstone under Coupled Compression and Shear and Its Fractal Characteristics[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(Supp2):3844-3850.(in Chinese)
[7] 魏國安.閩南風化凝灰?guī)r強度特征的試驗研究[J].地震工程學報,2013,35(3):625-630.WEI Guo-an.Experimental Analysis on the Strength Properties of Weathering Tufflava in the South Fujian Province[J].China Earthquake Engineering Journal,2013,35(3):625-630.(in Chinese)
[8] 宋衛(wèi)東,明世祥,王欣,等.巖石壓縮損傷破壞全過程試驗研究[J].巖石力學與工程學報,2010,29(增2):4180-4187.SONG Wei-dong,MING Shi-xiang,WANG Xin,et al.Experimental Study of Rock Compression-damage-failure Process[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(Supp2):4180-4187.(in Chinese)
[9] 徐濤,唐春安,張哲,等.單軸壓縮條件下脆性巖石變形破壞的理論、試驗與數值模擬[J].東北大學學報:自然科學版,2003,24(1):87-90.XU Tao,TANG Chun-an,ZHANG Zhe,et al.Under the Conditions of Uniaxial Compression of Brittle Rock Deformation and Failure Theory Experiment and Numerical Simulation[J].Journal of Northeastern University:Natural Science,2003,24(1):87-90.(in Chinese)
[10] 高峰,謝和平,巫靜波.巖石損傷和破碎相關性的分形分析[J].巖石力學與工程學報,1999,18(5):503-506.GAO Feng,XIE He-ping,WU Jing-bo.Fractal Analysis of Rock Damage and Breakage Correlation[J].Chinese Journal of Rock Mechanics and Engineering,1999,18(5):503-506.(in Chinese)
[11] 馬新,郭忠印,楊群.基于分形方法的瀝青混合料抗剪性能研究[J].重慶交通大學學報:自然科學版,2009,28(5):873-876.MA Xin,GUO Zhong-yin,YANG Qun.Shear Performance of Asphalt Mixtures Baded on Fractal Method[J].Journal of Chongqing Jiaotong University:Natural Science,2009,28(5):873-876.(in Chinese)
[12] 謝和平.高峰,周宏偉,等.巖石斷裂和破碎的分形研究[J].防震減災工程學報,2003,23(4):1-9.XIE He-ping,GAO Feng,ZHOU Hong-wei,et al.Fractal Study of Rock Fracture and Broken[J].Journal of Disaster Prevention and Mitigation Engineering,2003,23(4):1-9.(in Chinese)
[13] 高峰,謝和平,趙鵬.巖石塊度分布的分形性質及細觀結構效應[J].巖石力學與工程學報,1994,13(3):240-246.GAO Feng,XIE He-ping,ZHAO Peng.Fractal Nature and Microscopic Structure Effect of Rock Fragmentation Distribution[J].Chinese Journal of Rock Mechanics and Engineering,1994,13(3):240-246.(in Chinese)
[14] 秦本東,羅運軍,門玉明,等.高溫下石灰?guī)r和砂巖膨脹特性的試驗研究[J].巖土力學,2011,32(2):417-422,473.QIN Ben-dong,LUO Yun-jun,MEN Yu-ming,et al.Experimental Research on Swelling Properties of Limestone and Sandstone at High Temperature[J].Rock and Soil Mechanics,2011,32(2):417-422,473.(in Chinese)
[15] 謝衛(wèi)紅,李順才,肖永紅.溫度對巖石損傷和變形破壞的影響[C]//第十三屆全國結構工程學術會議論文集.2004:412-415.XIE Wei-hong,LI Shun-cai,XIAO Yong-hong.Effects of Temperature on Damage and Fracture of Rock[C]//The Thirteenth National Conference on Structural Engineering.2004:412-415.(in Chinese)
Fractal Characteristics of Limestone after High Temperature under Uniaxial Compression
ZHANG Rui1, ZHU Shu-yun1, SUN Qiang1, WU Fu-qiang2
(1.SchoolofResourcesandEarthScience,ChinaUniversityofMiningandTechnology,Xuzhou,Jiangsu221116,China;2.HenanAeroGeophysicalSurveyandRemoteSensingCenter,Zhengzhou,Henan450053,China)
Temperature is an important factor that influences the physical and mechanical properties of rocks.Many scholars have studied various types of rock crushing, but few have examined the characteristics of crushed limestone previously exposed to different temperatures.This study involved a heating limestone specimen, 50 mm in diameter and 100 mm in height, in a high temperature furnace heating cylinder before performing a uniaxial crushing experiment.Various phenomena were observed including axial splitting and bursting strength at low temperature.However, the strength of fracturing and splitting at high temperature decreased significantly as cleavage was simultaneously reduced.Sample pieces were completely reassembled and similarly sized fragments grouped together.Fractal mathematical theory applied to the analysis of rock fragments indicated that limestone block distribution is a fractal.Therefore, the fractal dimensionDwas considered an appropriate statistic to represent the characteristics of limestone crushed after exposure to high temperatures.The fractal dimensionDhas a negative correlation with temperature where it decreases with increasing temperature.The experimental data was represented in the rectangular coordinate system by plotting temperature on theXaxis and fractal dimension on theYaxis in a scatter plot.Linear regression used for curve fitting the data resulted iny=0.001 9+2.506 2xand a very large correlation coefficient.The observed influence of temperature on limestone mechanical properties mainly involved mineral physical properties and changes in microstructure.Mineral composition and crystal lattice structure may change when a rock is exposed to different temperatures.Fragment comparison with scanning electron microscope (SEM) revealed that limestone subjected to high temperature had different microstructural characteristics than untreated limestone.Room temperature limestone had a smooth surface.Limestone subjected to high temperatures had an uneven surface and partially broken cement.The rock surface appeared to contain long, wide fissures across grains, rough mineral grain surfaces, and increased detrital material.These characteristics reduced the mechanical properties and caused the change in fractal dimension.This internal mechanism in the limestone explains why fractal dimension decreases with increased temperature.In addition, limestone samples were gray-black at room temperature and light gray when heated to high temperatures.High-temperature exposure caused calcium carbonate formation and magnesium carbonate oxidation that led to the observed color change.
high temperature; uniaxial compression; fractal dimension; scanning electron microscopy (SEM)
2014-12-27
國家重點基礎研究發(fā)展計劃(973)項目(2013CB036003);中國博士后科學基金(2014T70669)
張 銳(1990-),男,山東滕州人,碩士研究生,主要從事煤礦工程地質和巖土工程方面的學習工作.E-mail:541530487@qq.com
TU452; TD315
A
1000-0844(2015)02-0541-05
10.3969/j.issn.1000-0844.2015.02.0541