包小華, 付艷斌, 葉 斌, 葉冠林, 張 鋒
(1.深圳大學(xué)土木工程學(xué)院,廣東 深圳 518060; 2.巖土及地下工程教育部重點(diǎn)實(shí)驗(yàn)室(同濟(jì)大學(xué)),上海 200092;3.上海交通大學(xué),上海 200240; 4.名古屋工業(yè)大學(xué),日本 名古屋 466-8555)
包括震后固結(jié)沉降在內(nèi)的多層結(jié)構(gòu)物基礎(chǔ)抗震性分析①
包小華1, 付艷斌1, 葉 斌2, 葉冠林3, 張 鋒4
(1.深圳大學(xué)土木工程學(xué)院,廣東 深圳 518060; 2.巖土及地下工程教育部重點(diǎn)實(shí)驗(yàn)室(同濟(jì)大學(xué)),上海 200092;3.上海交通大學(xué),上海 200240; 4.名古屋工業(yè)大學(xué),日本 名古屋 466-8555)
以一多層框架結(jié)構(gòu)停車(chē)場(chǎng)的地基基礎(chǔ)為研究對(duì)象,分析其在將來(lái)可能發(fā)生大地震中的動(dòng)力特性。除地基可能出現(xiàn)的液化,還包括地震中的瞬時(shí)沉降及地震后地基長(zhǎng)期固結(jié)沉降,尤其是不均勻沉降。采用水土耦合2維有限元分析法,對(duì)研究領(lǐng)域的地基基礎(chǔ)及上部結(jié)構(gòu)進(jìn)行整體建模。計(jì)算中采用的地震波為一三連動(dòng)人工地震波,最大加速度為182 gal,主震持續(xù)150 s。為比較不同的基礎(chǔ)形式對(duì)地基液化和沉降的影響,對(duì)采用長(zhǎng)樁和密集型短柱兩種基礎(chǔ)形式做分析比較。有限元計(jì)算中,采用能反映其地層土交變移動(dòng)特性的彈塑性本構(gòu)模型來(lái)描述土的動(dòng)力學(xué)特性,樁基礎(chǔ)和上部框架結(jié)構(gòu)采用梁?jiǎn)卧P停芗投讨A(chǔ)采用彈性單元模型。結(jié)果表明,除地震中地基的液化,震后隨著超孔隙水壓的消散,地基基礎(chǔ)長(zhǎng)期不均勻沉降也是不可忽略的重要問(wèn)題。
地震; 液化; 沉降; 數(shù)值分析; 本構(gòu)模型
在進(jìn)行地震造成的地基災(zāi)害的評(píng)估中,地基液化和沉降是兩個(gè)重要因素。因而關(guān)于單一砂土地基上地震造成液化現(xiàn)象的動(dòng)力分析方面的研究層出不斷,但是對(duì)于由砂土、黏性土或粉性土組成的復(fù)雜天然地基的液化分析仍然欠缺。根據(jù)近年觀察到的地震后地基的液化和破壞現(xiàn)象發(fā)現(xiàn)[1-5],地基將在震后很長(zhǎng)一段時(shí)間里持續(xù)沉降,其震后不均勻沉降是基礎(chǔ)和上部結(jié)構(gòu)物產(chǎn)生破壞的主要原因。因此,隨著超孔隙水壓的消散產(chǎn)生的地基不均勻沉降是一個(gè)不可忽略的問(wèn)題。而復(fù)雜地基沉降機(jī)理在地震中及震后比單一的砂土地基更加復(fù)雜。
對(duì)于地基的液化和長(zhǎng)期沉降的研究較集中于理論方面、實(shí)驗(yàn)方面和數(shù)值計(jì)算方面。黃雨等[1]對(duì)汶川地震中地基土的動(dòng)力液化和沉降現(xiàn)象進(jìn)行了現(xiàn)場(chǎng)觀測(cè)和分析。袁曉銘等[6]從理論上分析了軟弱地基上地震后導(dǎo)致結(jié)構(gòu)物產(chǎn)生不均勻沉降的原因主要為地震波類型、土層類型和結(jié)構(gòu)物類型;并指出目前常用的分析方法難以計(jì)算出結(jié)構(gòu)物的不均勻沉降,無(wú)法給出與實(shí)際震害現(xiàn)象和實(shí)驗(yàn)一致的結(jié)果。中國(guó)地震局工程力學(xué)研究所[7]進(jìn)行了5 m×5 m振動(dòng)臺(tái)試驗(yàn),研究表明土體和結(jié)構(gòu)產(chǎn)生不均勻沉降的原因是地震波本身的不對(duì)稱和不規(guī)則性。Shideh Dashti等[8]采用離心機(jī)實(shí)驗(yàn)分析了液化地層上淺基礎(chǔ)的沉降動(dòng)力特性,指出沉降量與液化層厚度無(wú)關(guān),取決于地層的透水性,并且大部分不均勻沉降發(fā)生在地震荷載作用。Mojtaba Mirjalili等[9]用數(shù)值模擬的方法分析了建立在軟土地基上的大型堤岸的長(zhǎng)期固結(jié)沉降,計(jì)算中土體采用了彈-黏塑性本構(gòu)模型,較好地評(píng)估了地基長(zhǎng)期的不均勻沉降。其他一些案例可參見(jiàn)文獻(xiàn)[10-12]。
總的來(lái)說(shuō),以上研究有各自的優(yōu)點(diǎn)和缺點(diǎn)。首先,這些研究大多集中于單一的砂土地層或者黏土地層,由砂性、粉性土或黏性土組成的復(fù)雜地層條件下地基液化和震后長(zhǎng)期固結(jié)沉降現(xiàn)象的研究還未被重視。其次,分析中所使用的土的本構(gòu)模型也不能很好地反應(yīng)地震荷載中土體的交變移動(dòng)性及固結(jié)排水過(guò)程中超孔隙水壓的消散過(guò)程與土體強(qiáng)度恢復(fù)的關(guān)系。再者,遇到樁基礎(chǔ)地基時(shí)沒(méi)有很好地考慮地基基礎(chǔ)及上部結(jié)構(gòu)的相互作用問(wèn)題。
因此,本研究采用水土耦合2維有限單元分析法對(duì)一6層停車(chē)場(chǎng)地基基礎(chǔ)進(jìn)行包括地震作用下的動(dòng)力和震后地基長(zhǎng)期固結(jié)沉降的靜力在內(nèi)的數(shù)值分析。研究所采用的有限元程序DBLEAVES[13]能有效地解決2維/3維水土耦合數(shù)值計(jì)算的各種動(dòng)力和靜力問(wèn)題。此程序的準(zhǔn)確性已經(jīng)被多次證實(shí)[14-16]。為探討不同的基礎(chǔ)形式對(duì)地基液化和沉降的影響,研究中對(duì)采用長(zhǎng)樁和密集型短柱兩種基礎(chǔ)形式做比較分析。土體采用移動(dòng)硬化彈塑性本構(gòu)模型Cyclic Mobility Model (CM Model)[17-21]來(lái)描述,樁基礎(chǔ)和上部框架結(jié)構(gòu)采用梁?jiǎn)卧P停芗投讨A(chǔ)采用彈性實(shí)體單元模型。
1.1 分析平面圖及土層分布狀況
根據(jù)地層和上部結(jié)構(gòu)的對(duì)稱性,包括地基、基礎(chǔ)和上部結(jié)構(gòu)在內(nèi)的整體系統(tǒng)的2維斷面圖如圖1所示, As1-8為砂土層,Asilt.1-5為粉土層。各層厚度分別為As1=2 m、As2=2 m、As3=2 m、As4=2 m、Asilt.1=5 m、Asilt.2=2 m、As5=1 m、Asilt..3=3 m、As6=6 m、As7=2 m、Asilt.4=2 m、As8=2 m及Asilt.5=2 m。地下水位于地表面以下2 m深處(GL-2.0 m)。 地層分布數(shù)據(jù)來(lái)源于現(xiàn)場(chǎng)鉆孔實(shí)驗(yàn)。選取結(jié)構(gòu)物基礎(chǔ)地表左側(cè)的A點(diǎn)和右側(cè)的B點(diǎn)為研究對(duì)象,分析不均勻沉降情況。以離結(jié)構(gòu)物16 m遠(yuǎn)處地下4 m深處砂土層的1號(hào)單元(GL-4.0 m)、 地下10 m深處粉土層的2號(hào)單元 (GL-10.0 m)、 地下22 m深處底層砂土層的3號(hào)單元(GL-22.0 m)和地下29 m深處底層黏土層的4號(hào)單元 (GL-29.0 m)為研究對(duì)象,分析地基的液化情況。
1.2 兩種類型基礎(chǔ)
計(jì)算分析兩種不同類型的基礎(chǔ):
(1) 類型-1:長(zhǎng)樁基礎(chǔ)
眾所周知,樁基礎(chǔ)可以有效控制總沉降和不均勻沉降(圖1)。該類樁樁長(zhǎng)31 m,直徑1.2 m。從左到右樁間距分別為12.65 m、10.85 m、10.5 m、10.5 m、10.5 m和 12.65 m。 樁筏寬為75.65 m ,厚2 m。筏板和樁頭的連接設(shè)為固結(jié),計(jì)算時(shí)樁模型化為彈性梁?jiǎn)卧?。采用長(zhǎng)樁基礎(chǔ)為結(jié)構(gòu)物基礎(chǔ)初始設(shè)計(jì)方案。
(2) 類型-2:密集型短柱基礎(chǔ)
更改之后的設(shè)計(jì)方案為大量長(zhǎng)5 m的短柱基礎(chǔ),這也是現(xiàn)實(shí)結(jié)構(gòu)物的基礎(chǔ)狀況。由于短柱非常密集,為減少計(jì)算量,分析時(shí)將整個(gè)基礎(chǔ)區(qū)模型化為改良的彈性地基,寬75.65 m、深5 m。其彈性模量由短柱和柱間土體根據(jù)其體積比得到的加權(quán)平均值為計(jì)算依據(jù)。
圖1 分析領(lǐng)域及地層分布Fig.1 Analyzed ground and layer distribution
1.3 本構(gòu)模型及計(jì)算用各參數(shù)
對(duì)于地層的有限單元法動(dòng)力分析,砂土和粉土用CM 模型(移動(dòng)硬化彈塑性本構(gòu)模型)來(lái)描述土體的動(dòng)態(tài)和靜態(tài)特性,用統(tǒng)一的方法考慮土體的應(yīng)力誘導(dǎo)各向異性、密度和結(jié)構(gòu)。模型中共有8個(gè)參數(shù),其中M、N、λ、κ與υ這5個(gè)參數(shù)與劍橋模型相同。 另外三個(gè)參數(shù),即a:結(jié)構(gòu)破壞速度控制參數(shù);m:超固結(jié)消失速度控制參數(shù)或者土體密度改變參數(shù);br:應(yīng)力誘導(dǎo)各向異性發(fā)展參數(shù),有明確的物理意義,且由不排水三軸交變荷載試驗(yàn)和排水三軸壓縮試驗(yàn)得出。關(guān)于本模型的詳細(xì)描述可見(jiàn)文獻(xiàn)[17-21]。計(jì)算中所用各層土的材料參數(shù)列于表1 。模型中所用狀態(tài)變量的初始值列于表2。As2層松砂的液化強(qiáng)度曲線如圖2所示(As2層為典型的松砂,非常容易液化)。
1.4 地震波和有限單元法模擬
計(jì)算所用地震波為假設(shè)斷層位于日本東海、東南海和南海的人造3連動(dòng)地震波。圖3顯示了地震波的時(shí)間加速度變化規(guī)律。 整個(gè)震動(dòng)持續(xù)200 s,主震持續(xù)時(shí)間為150 s,最大加速度為182 gal。根據(jù)日本的抗震劃分標(biāo)準(zhǔn),此人造波的地震強(qiáng)度小于5。
表1 各土層材料參數(shù)
表2 各土層物理狀態(tài)變量
圖2 砂土層As2液化強(qiáng)度曲線Fig.2 Liquefaction strength curve of sand layer As2
圖3 三連動(dòng)地震波加速度時(shí)程Fig.3 Acceleration time-history of the seismic wave
圖4顯示了地基和上部結(jié)構(gòu)的有限單元網(wǎng)格化分情況。動(dòng)力計(jì)算中左右兩邊的邊界使用等位移邊界條件來(lái)考慮能量逸散問(wèn)題,底部邊界設(shè)為水平方向和豎直方向固定,排水邊界按照實(shí)際水位情況設(shè)在地下2 m深的界面上。積分中用了 Newmark-β法,積分時(shí)間間隔為0.002 s。 根據(jù)材料初始剛度比的雷氏衰減法,在整個(gè)系統(tǒng)的動(dòng)力分析中,土體、基礎(chǔ)和上部結(jié)構(gòu)的第一和第二振型衰減率分別為2% 和10%。
在動(dòng)力分析前, 進(jìn)行地基基礎(chǔ)和上部結(jié)構(gòu)在內(nèi)的靜力計(jì)算獲取地層的初始應(yīng)力狀態(tài)??紤]結(jié)構(gòu)自重的地層初始平均有效應(yīng)力分布見(jiàn)圖4。由于從第二層到第六層停車(chē)活荷載的分布不均勻,所以分析中按照最不利情況即停車(chē)滿載集中在二層到六層的左半部分來(lái)考慮。地震荷載的動(dòng)力分析后繼續(xù)了時(shí)間為3.5年的靜力分析來(lái)考慮震后隨著超孔隙水壓的消散地基的固結(jié)沉降情況。
圖4 考慮結(jié)構(gòu)自重的地層初始平均有效應(yīng)力Fig.4 Initial average effective stress distribution on the ground considering self-weight
2.1 超孔隙水壓與有效應(yīng)力
圖5為地震結(jié)束時(shí)地層的超孔隙水壓比(EPWPR)分布。由結(jié)果可知,不管是長(zhǎng)樁基礎(chǔ)還是短柱基礎(chǔ),基礎(chǔ)范圍以外兩邊的地層,在地下4.0~6.0 m 和19.0~25.0 m 深處發(fā)生了液化(EPWPR≈1.0)。 對(duì)于基礎(chǔ)下面的地層,在地下2.0~6.0 m 深處,長(zhǎng)樁基礎(chǔ)的地層發(fā)生了嚴(yán)重的液化,而短樁基礎(chǔ)的地層沒(méi)有液化。換而言之,采用短樁基礎(chǔ)的地層可以更好地抵抗液化。圖6為地震結(jié)束時(shí)地層的超孔隙水壓(EPWP)分布情況。圖7為所選各層土層單元(離基礎(chǔ)16 m遠(yuǎn)處的自由場(chǎng)地)的超孔隙水壓比和平均有效應(yīng)力在地震中的時(shí)間變化規(guī)律。由于地層中部(GL-8.0~-19.0 m)粉性土的低透水性,地層底部的砂土層(GL-19.0~-25.0 m)超孔隙水壓發(fā)展非常迅速。地震結(jié)束時(shí)最大超孔隙水壓達(dá)到165 kPa,對(duì)于兩種基礎(chǔ)類型的地基,震后超孔隙水壓的消散大概都需要3.5年的時(shí)間。并且兩種基礎(chǔ)類型的地層除在基礎(chǔ)下面的地層外,都顯示出相似的超孔隙水壓分布情況。
圖5 地震結(jié)束時(shí)地層超孔隙水壓比分布Fig.5 Distribution of EPWPR immediately after earthquake
圖6 地震結(jié)束時(shí)地層超孔隙水壓分布Fig.6 Distribution of EPWP immediately after earthquake
2.2 位移
圖8為地震結(jié)束時(shí)地基和上部結(jié)構(gòu)的位移矢量分布情況。 很明顯,對(duì)于上部結(jié)構(gòu)和基礎(chǔ),采用短柱型基礎(chǔ)比采用長(zhǎng)樁基礎(chǔ)能產(chǎn)生更大的水平位移。但對(duì)于基礎(chǔ)兩邊自由場(chǎng)地基,兩種基礎(chǔ)形式都產(chǎn)生很大的水平位移,且地震中產(chǎn)生的位移主要為水平方向。圖9為地震結(jié)束后3.5年時(shí)地基和上部結(jié)構(gòu)的位移矢量分布情況。隨著地基固結(jié)和強(qiáng)度回復(fù),地震中產(chǎn)生的部分水平位移會(huì)減小甚至消失,豎向位移由于地基的固結(jié)沉降增加很多。兩種基礎(chǔ)情況下兩邊自由場(chǎng)的位移基本相同,但是對(duì)于基礎(chǔ)下地層和上部結(jié)構(gòu),采用短柱基礎(chǔ)的地基和上部結(jié)構(gòu)的位移明顯大于采用長(zhǎng)樁基礎(chǔ)的情況。
圖7 震中土層單元的超孔隙水壓比和平均有效應(yīng)力變化曲線Fig.7 Time-history curvers of EPWPR and mean effective stress of the selected soil layers during earthquake
圖8 地震結(jié)束時(shí)地基基礎(chǔ)及結(jié)構(gòu)位移矢量Fig.8 Displacement vector of the foundation and structure immediately after earthquake
基礎(chǔ)地表面兩端A點(diǎn)和B點(diǎn)在地震中的瞬時(shí)沉降情況如圖10所示。很明顯,地震中結(jié)構(gòu)物兩端基礎(chǔ)產(chǎn)生了不均勻沉降,并且采用短柱基礎(chǔ)的不均勻沉降量明顯大于長(zhǎng)樁基礎(chǔ)。震后72小時(shí)內(nèi)的不均勻沉降時(shí)間關(guān)系如圖11所示。很明顯,地基基礎(chǔ)的總沉降量包括地震中的瞬時(shí)沉降和震后的長(zhǎng)期固結(jié)沉降。盡管震后長(zhǎng)期固結(jié)沉降總量相當(dāng)大,但是大部分的不均勻沉降發(fā)生在地震中,即為瞬時(shí)沉降。
圖10 地震中基礎(chǔ)兩端地表的沉降變化曲線Fig.10 Load-displacement curves for static loading tests
圖11 地震后72小時(shí)內(nèi)基礎(chǔ)兩端地表的沉降變化曲線Fig.11 Settlement curves of two sides of the surface in 72 hours after earthquake
圖12為兩種基礎(chǔ)類型的震后瞬時(shí)沉降和長(zhǎng)期固結(jié)沉降的比較。對(duì)于采用長(zhǎng)樁基礎(chǔ)的地基,結(jié)構(gòu)物基礎(chǔ)兩端的不均勻沉降量在地震結(jié)束時(shí)為0.16 cm,震后3.5年為0.24 cm。對(duì)于采用短柱基礎(chǔ)的地基,結(jié)構(gòu)物基礎(chǔ)兩端的不均勻沉降量在地震結(jié)束時(shí)為6.70 cm,震后3.5年為12.10 cm。這意味著大概60%的不均勻沉降發(fā)生在地震中。根據(jù)長(zhǎng)期不均勻沉降量計(jì)算出采用短樁基礎(chǔ)的結(jié)構(gòu)物的傾斜度為1.8‰。顯示出現(xiàn)有的設(shè)計(jì)規(guī)范低估了采用短柱型基礎(chǔ)結(jié)構(gòu)物在地震作用下產(chǎn)生的不均勻沉降。
圖12 地震結(jié)束時(shí)瞬時(shí)沉降與震后長(zhǎng)期固結(jié)沉降Fig.12 Instant settlement immediately after earthquake and long-term consolidation settlement after earthquake
本研究利用水土耦合彈塑性有限單元分析法(DBLEAVES),計(jì)算分析復(fù)雜砂性和粉性土地層中地基基礎(chǔ)及上部結(jié)構(gòu)物在內(nèi)的地震荷載作用下,地基基礎(chǔ)的液化和震后長(zhǎng)期固結(jié)沉降。分析計(jì)算了采用長(zhǎng)樁基礎(chǔ)和密集型短柱的兩種基礎(chǔ)形式以便進(jìn)行對(duì)比分析。本研究可得到以下結(jié)論:
(1) 液化主要發(fā)生在地層中的松砂層和中密度砂土層。對(duì)于基礎(chǔ)下面地基,采用長(zhǎng)樁基礎(chǔ)比采用短柱型基礎(chǔ)地基液化嚴(yán)重。而對(duì)于基礎(chǔ)范圍以外兩邊自由場(chǎng)地基,不管采用哪種基礎(chǔ)類型,地基液化情況相似。
(2) 采用短柱型基礎(chǔ)時(shí),地震中液化和震后固結(jié)沉降造成的地基基礎(chǔ)最大不均勻沉降量為12.10 cm,而采用長(zhǎng)樁基礎(chǔ)時(shí)不均勻沉降量很小。 換而言之,長(zhǎng)樁基礎(chǔ)比短柱基礎(chǔ)具有更強(qiáng)的抵抗地基沉降的能力,短柱型基礎(chǔ)則比長(zhǎng)樁基礎(chǔ)具有更強(qiáng)的抵抗地基液化的能力。不管采用哪種基礎(chǔ)類型,雖然震后地基的長(zhǎng)期固結(jié)總沉降量不容忽視,但不均勻沉降主要發(fā)生在地震中。
(3) 本研究所用的有限元法盡管沒(méi)有評(píng)估結(jié)構(gòu)物的破壞,但是可以很好地評(píng)估結(jié)構(gòu)物基礎(chǔ)的抗震穩(wěn)定性。地震中除了地基基礎(chǔ)的液化,值得注意的是震后地基的長(zhǎng)期固結(jié)沉降。在某些情況下,根據(jù)建筑設(shè)計(jì)規(guī)范結(jié)構(gòu)物的抗震性能符合要求,但是從震中不均勻沉降和長(zhǎng)期固結(jié)沉降角度來(lái)看,結(jié)構(gòu)物仍可能存在很大的風(fēng)險(xiǎn)。
References)
[1] Huang Y,Jiang X.Field-observed Phenomena of Seismic Liquefaction and Subsidence During the 2008 Wenchuan Earthquake in China [J].Nat Hazards,2010,54(3):839-850.
[2] Boulanger R W.Liquefaction in the 2011 Great East Japan Earthquake:lessons for U S Practice [C]//Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake.Tokyo,Japan:[s.n.],2012:655-664.
[3] Ishihara K.Liquefaction in Tokyo Bay and Kanto Regions in the 2011 Great East Japan Earthquake [C]//Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake.Tokyo,Japan :[s.n.],2012:63-81.
[4] Sekiguchi T,Nakai S.Effects of Local Site Conditions on Liquefaction Damage in Mihama Ward of Chiba City [C]//Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake,Tokyo,Japan,2012:865-870.
[5] Yasuda S,Ishikawa K.Several Features of Liquefaction-induced Damage to Houses and Buried Lifelines During the 2011 Great East Japan Earthquake [C]//Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake.Tokyo,Japan:[s.n.],2012:825-836.
[6] 袁曉銘,孫銳,孟上九.軟弱地基土上建筑物不均勻震陷機(jī)理研究 [J].土木工程學(xué)報(bào),2004,37(2):67-72.YUAN Xiao-ming,SUN Rui,MENG Shang-jiu.Research on Mechanism for Earthquake-induced Differential Settlement of Buildings on Soft Subsoil[J].China Civil Engineering Journal,2004,37(2):67-72.(in Chinese)
[7] 孟上九.不規(guī)則荷載下土的殘余變形和建筑物不均勻震陷研究 [D].哈爾濱:中國(guó)地震局工程力學(xué)研究所,2002.MENG Shang-jiu.Research on Mechanism for Irregular Load-induced Residual Stain of Soil and Differential Settlement of Buildings[D].Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2002.(in Chinese)
[8] Shideh Dashti,Jonathan D Bray,Juan M Pestana,et al.Mechanisms of Seismically Induced Settlement of Buildings with Shallow Foundations on Liquefiable Soil [J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2010,136:151-164.
[9] Mojtaba Mirjalili,Sayuri Kimoto,F(xiàn)usan Oka,et al.Long-term Consolidation Analysis of a Large-scale Embankment Construction on Soft Clay Deposits Using an Elasto-viscoplastic Model[J].Soils and Foundations,2012,52 (1):18-37.(in Chinese)
[10] Zhou Y G,Chen Y M,Shamoto Y,et al.Centrifuge Model Test on Earthquake-induced Differential Settlement of Foundation on Cohesive Ground [J].Science in China:Series E,2009,52(7):2138-2146.
[11] D K Karamitros,G D Bouckovalas,Y K Chaloulos.Insight into the Seismic Liquefaction Performance of Shallow Foundations [J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2013,139:599-607.
[12] Noda T.Co-seismic and Post-seismic Behavior of an Alternately Layered Sand-clay Ground and Embankment System Accompanied by Soil Disturbance [J].Soils and Foundations,2009,49(5):739-756.
[13] Ye G L.Dbleaves:User’s Manual [Z].Version 1.6,Shanghai:Shanghai Jiaotong University,China,2011.(in Japanese and Chinese).
[14] Bao X,Ye G L,Ye B,Explanation of Liquefaction in the 2011 Great East Japan Earthquake Using Numerical Analysis [J].Natural Hazard,2014.(Accepted)
[15] Bao X,Ye B,Ye G,et al.Seismic Performance of SSPQ Retaining Wall-centrifuge Model Tests and Numerical Evaluation [J].Soil Dynamics and Earthquake Engineering,2014,61-62:63-68.
[16] Bao X,Morikawa Y,Kondo Y,et al.Shaking TableTest on Reinforcement Effect of Partial Ground Improvement for Group-pile Foundation and Its Numerical Simulation [J].Soils and Foundations,2012,52(6):1043-1061.
[17] 張鋒,葉冠林.計(jì)算土力學(xué) [M].北京:人民交通出版社,2007.ZHANG Feng,YE Guan-lin.Computational Soil Mechanics [M].Beijing:China Communications Press,2007.(in Chinese)
[18] Zhang F,Ye B,Noda T,et al .Explanation of Cyclic Mobility of Soils:Approach by Stress-Induced Anisotropy [J].Soils and Foundations,2007,47(4):635-648.
[19] Zhang F,Jin Y, Ye B.A Try to Give a Unified Eescription of Toyoura Sand [J].Soils and Foundations,2010,50(3):679-693.
[20] Zhang F,Ye B,Ye G L.Unified Description of Sand Behavior [J].Frontiers of Architecture and Civil Engineering in China,2011,5(2):121-150.
[21] Ye B,Ye G L,Zhang F.Numerical Modeling of Changes in Anisotropy During Liquefaction Using a Generalized Constitutive Model[J].Computers and Geotechnics,2012,42:62-72.
Seismic Performance of Foundations of Multi-story Buildings Considering Post-earthquake Consolidation Settlement
BAO Xiao-hua1, FU Yan-bin1, YE Bin2, YE Guan-lin3, ZHANG Feng4
(1.CollegeofCivilEngineering,ShenzhenUniversity,Shenzhen,Guangdong518060,China;2.KeyLaboratoryofGeotechnicalandUndergroundEngineeringofMinistryofEducation,TongjiUniversity,Shanghai200092,China;3.ShanghaiJiaotongUniversity,Shanghai200240,China; 4.NagoyaInstituteofTechnology,Nagoya466-8555,Japan)
In evaluating the damage caused by earthquakes,attention has been paid in the past to ground liquefaction and displacement during or immediately after the earthquakes.For this reason,only the analysis of liquefaction in sandy ground during earthquakes is performed in most dynamic analyses.However,the damage to complex ground that contains sand,silt,or clay layers and long-term settlement over several weeks or years after the earthquake cannot be ignored mainly because of the long time required for the dissipation of excess pore water pressure (EPWP) and the recovery of the ground rigidity.In this study,a multi-story car park with a steel frame is designed and constructed according to Japanese Architectural Building Standards.This study will investigate the seismic performance of the building during and after a great earthquake that is predicted to hit the central part of Japan in the near future.Special attention is paid to the differential settlement caused by liquefaction and long-term settlement after the earthquake.The analysis is performed using a 2D soil-water coupled dynamic/static finite element analysis program DBLEAVES,considering ground-foundation-superstructure as one whole system.The program can analyze not only the static and dynamic behavior of natural complex ground but also solve soil-structure interaction problems.The applicability and accuracy of the program have been verified by many investigations.A rotational kinematic hardening elasto-plastic model called the cyclic mobility (CM) model is adopted in this analysis to describe the nonlinear behavior of cohesionless soils under both dynamic and static loadings,particularly the cyclic mobility of sand during liquefaction.With the CM model and an effective-stress-based FEM code,the mechanical behavior of soil,change of EPWP,and consolidation can be defined.The input earthquake wave is an approximation of three synchronized seismic waves whose main shock lasts about 150 s with a maximum acceleration of 182 gal.Before the dynamic analysis,a static analysis considering the ground-structure as one whole system is performed to determine the initial effective stress of the ground.In the dynamic analysis,an equal displacement boundary condition,sometimes called a periodic boundary condition,is used for two side boundaries to manage the energy-loss problem.In this study,a comparison of long-pile and short-pile foundations is presented.As mentioned above,the ground behavior is described by the CM model;in addition,the long piles and super structure are modeled as beam elements,and the short piles are modeled as elastic solid elements.The analysis shows that liquefaction occurred mainly in loose and medium dense sand layers.The long-pile foundation has a better capacity for resisting differential settlement,whereas the short-pile foundation (improved ground) has a better capacity for resisting ground liquefaction.In all cases,most of the differential settlement occurs during earthquake motion,while the post-liquefaction settlement is relatively uniform despite its large amplitude.Therefore,serious consideration should be given not only to the liquefaction behavior of the ground during earthquake motion but also to the long-term settlement after the earthquake.
earthquake; liquefaction; settlement; numerical analysis; constitutive model
2014-08-20
國(guó)家自然科學(xué)基金(51308346,51108270);廣東省自然科學(xué)基金(S2013040012443,2014A030313551);深圳大學(xué)青年教師科研啟動(dòng)項(xiàng)目(201420)
包小華(1983-),女,講師,碩士生導(dǎo)師,主要從事巖土工程方面的教學(xué)和科研.E-mail:bxh@szu.edu.cn
TU43
A
1000-0844(2015)02-0439-07
10.3969/j.issn.1000-0844.2015.02.0439