曾曉云
(海軍航空工程學(xué)院系統(tǒng)科學(xué)與數(shù)學(xué)研究所,山東 煙臺(tái) 264001)
一類離散Lotka-Volterra系統(tǒng)持久性態(tài)的研究
曾曉云
(海軍航空工程學(xué)院系統(tǒng)科學(xué)與數(shù)學(xué)研究所,山東 煙臺(tái) 264001)
單時(shí)滯的Lotka-Volterra競(jìng)爭(zhēng)系統(tǒng)的持久性,Saito等已經(jīng)做了比較詳盡的討論,也得到了比較好的結(jié)論.但是Saito等只討論了單時(shí)滯系統(tǒng)的情形,對(duì)于多時(shí)滯的較為復(fù)雜的系統(tǒng)并沒(méi)有進(jìn)一步討論.本文將討論多時(shí)滯的Lotka-Volterra競(jìng)爭(zhēng)系統(tǒng)的持久性.持久性對(duì)于一個(gè)生態(tài)系統(tǒng)而言是一個(gè)非常重要的性質(zhì).在對(duì)系統(tǒng)做了一些合理的限定后,得到了關(guān)于該系統(tǒng)持久的一些充分性的結(jié)論.
周期性;離散的Lotka-Volterra系統(tǒng);持久性
Saito等[1]考慮下列帶有時(shí)滯的離散的Lotka-Volterra競(jìng)爭(zhēng)系統(tǒng)
(1)
其中:
(2)
r1,r2,μ1,μ2是常數(shù),滿足r1>0,r2>0,μ1≥0,μ2≥0,k1,k2,l1,l2是非負(fù)整數(shù).
最近,Zeng等[2]討論了下列系統(tǒng)
(3)
其中:b(n),r(n),ai(n),cj(n),di(n),ej(n)都是正的周期為T的序列.
(4)
持久性對(duì)于一個(gè)生態(tài)系統(tǒng)而言是一個(gè)非常重要的性質(zhì).很多學(xué)者在這方面做了大量的研究,見(jiàn)文獻(xiàn)[3-14].本文將討論下列系統(tǒng)
(5)
其中:i=1,2,…,n;j=1,2,…,m.且
(6)
這里,x(k)表示被捕食種族在第k代的密度,y(k)表示捕食種族在第k代的密度,ai(k),ej(k)分別測(cè)度的是捕食與被捕食種族競(jìng)爭(zhēng)行為的強(qiáng)度,b(k)表示的是被捕食種族內(nèi)在生長(zhǎng)率,r(k)表示的是捕食種族的死亡率.進(jìn)一步假定:b(k),r(k)是有界正序列,ai(k),cj(k),di(k),ej(k)是有界非負(fù)序列,用{f(k)}表示任意有界序列,且
為了證明本文的主要結(jié)果,引入以下引理.
(7)
其中:
分2種情況討論.
(8)
并且
(9)
(10)
成立.進(jìn)一步,由式(5)和(10)可以得到:
這與式(9)矛盾.因而,有
(11)
因此,由式(5)和(11),得到
(12)
下面將證明
也分2種情況討論:
(13)
且
(14)
另一方面,由式(13)和(14),可以證得,當(dāng)0≤k≤m時(shí),有
(15)
進(jìn)而,由式(5)和(15)可得
這與式(14)相矛盾.由此可以得到:
(16)
進(jìn)而,由式(5)和(16)可以得到:
因而,有
其中:
(17)
證明 由定理1知,對(duì)于充分大的K可以得到
(18)
由式(5)和(18)可以得到
即
或
(19)
由式(19)與(5)可以得到,當(dāng)k充分大時(shí),有
由引理1及上述不等式可以得到:
類似于上述證明過(guò)程,可以得到:
定理3 假定(H1),(H2)成立,則滿足條件(6)的系統(tǒng)(5)是持久的.
[1] Saito Y, Ma W, Hara T. A necessary and sufficient condition for permanence of a Lotka-Volterra discrete system with delays[J].Math Anal Appl, 2001,256:162-174.
[2] Zeng Xiaoyun, Shi Bao, Gai Mingjiu. A discrete periodic Lotka-Volterra system with delays[J].Computers & Mathematics with Applications, 2004,47:491-500.
[3] Mackey M C, Glass L.Oscillation and chaos in physiological control system [J]. Science,1997, 197: 287-289.
[4] Kocic V L, Ladas G.Global Behavior of Nonlinear Difference Equations of Higher Order with Applications[M]. Dordrecht: Kluwer Academic Publishers,1993:35-125.
[5] Lakshmikantham V, Trigiante D.Theory of Difference Equations, Numerical Methods and Applications, Mathematics in Science and Engineering [M].Boston: Academic Press, 1988:57-225.
[6] Hutson V, Schmitt K. Permanence and the dynamics of biological systems[J]. Mathematical Biosciences,1992,111(1): 1-71.
[7] Freedman H I, Ruan S G.Uniform persistence in functional-differential equations[J].Journal of Differential Equations,1995,115(1):173-192.
[8] Muroya Y. Global attractivity for discrete models of nonautonomous logistic equations[J]. Computers & Mathematics with Applications,2007, 53(7):1059-1073.
[9] Takeuchi Y, Cui J, Miyazaki R, et al. Permanence of delayed population model with dispersal loss[J].Mathematical Biosciences,2006,201(1-2):143-156.
[10] Saito Y.Permanence and global stability for general Lotka-Volterra predator-prey systems with distributed delays[J].Nonlinear Anal,2001,47:6157-6168.
[11] Xu Rui.Persistence and global stability for a delayed nonautonomous predator-prey system without dominating instantaneous negative feedback, distributed delays[J].Math Anal Appl,2001,262:50-61.
[12] Cushing J M. Periodic time-dependent predator-prey system [J]. SIAM J Appl Math,1997,32:82-95.
[13] Saker S H, Agarwal S. Oscillation and global attractivity in a nonlinear delay periodic model of respiratory dynamics [J]. Comput Math Appl,2002, 44(5-6):623-632.
[14] Bainov D, Simeonov P.Impulsive Differential Equations: Periodic Solutions and Applications [M]. Harlow:Longman Scientific & Technical,1993:95-255.
[15] Yang Xitao.Uniform persistence and periodic solution for a discrete predator-prey system with delays[J].Math Anal Appl,2006, 316:161-177.
(責(zé)任編輯 李春梅)
Permanence for a Discrete Periodic Lotka-Volterra System with Delays
ZENG Xiao-yun
(Institute of Applied Mathematics, Naval Aeronautical Engineering Academy, Yantai 264001, China)
Saito et al investigate the permanence of a discrete periodic Lotka-Volterra competition predator-prey system with delay and get some good results, by focusing on the case of single delay. In this paper, we investigate a discrete periodic Lotka-Volterra competition predator-prey system with delays. The sufficient and realistic results are obtained for the permanence for the above system.
periodicity; discrete Lotka-Volterra system; permanence
1004-8820(2015)04-0239-07
10.13951/j.cnki.37-1213/n.2015.04.002
2015-02-10
曾曉云(1969- ),女,陜西禮泉人,副教授,碩士,研究方向:時(shí)滯微分與差分方程的穩(wěn)定性理論.
O175
A