陳軍童 茍 蓉 邢玉榮 王劉偉 王瑞強(qiáng) 唐 琳
?
腎損傷分子1對(duì)高糖誘導(dǎo)人腎小管上皮細(xì)胞自噬作用的影響
陳軍童1茍 蓉1邢玉榮2王劉偉1王瑞強(qiáng)1唐 琳1
目的:研究腎損傷分子1(KIM-1)與高糖環(huán)境下人近端腎小管上皮細(xì)胞(HK-2)自噬的關(guān)系,探討KIM-1參與糖尿病腎病進(jìn)展的可能機(jī)制。 方法:體外培養(yǎng)HK-2分五組:(1)對(duì)照組(D-葡萄糖5.6 mmol/L);(2)高滲組(D-葡萄糖5.6 mmol/L+D-甘露醇24.4 mmol/L);(3)高糖組(D-葡萄糖30 mmol/L);(4)高糖+KIM-1 siRNA組;(5)高糖+siRNA對(duì)照組。分別于培養(yǎng)8h、16h、24h進(jìn)行測(cè)定。Western印跡法檢測(cè)細(xì)胞KIM-1、自噬標(biāo)志蛋白微管相關(guān)蛋白l輕鏈3II型(LC3II)蛋白的表達(dá);實(shí)時(shí)定量PCR法(real-time PCR)法檢測(cè)細(xì)胞KIM-1、LC3II mRNA的表達(dá)。透射電鏡下觀察細(xì)胞內(nèi)自噬體的形成。 結(jié)果:與對(duì)照組相比,高糖組細(xì)胞KIM-1、LC3II蛋白及mRNA表達(dá)呈時(shí)間依賴性增加(P<0.05),細(xì)胞內(nèi)自噬體形成數(shù)量呈時(shí)間依賴性增多(P<0.05)。與高糖組相比,KIM-1 siRNA轉(zhuǎn)染組細(xì)胞KIM-1、LC3II蛋白及mRNA表達(dá)顯著減少(P<0.05),自噬體形成數(shù)量減少(P<0.05)。 結(jié)論:下調(diào)KIM-1的表達(dá)能顯著抑制高糖條件下腎小管上皮細(xì)胞LC3II的表達(dá)和自噬體的形成,提示KIM-1可能通過(guò)調(diào)控高糖環(huán)境下腎小管上皮細(xì)胞自噬參與糖尿病腎病的進(jìn)展。
糖尿病腎病 腎小管上皮細(xì)胞 腎損傷分子1 自噬
糖尿病腎病(DN)是糖尿病最嚴(yán)重的并發(fā)癥之一,以進(jìn)行性腎間質(zhì)纖維化(RIF)為特征,為導(dǎo)致終末期腎病(ESRD)的重要原因之一。自噬是細(xì)胞維持蛋白代謝平衡及細(xì)胞內(nèi)環(huán)境穩(wěn)定的一種方式,研究表明,細(xì)胞自噬增加可促進(jìn)RIF的進(jìn)展[1-3]。腎損傷分子1(KIM-1)是由受損近端腎小管上皮細(xì)胞表達(dá)的一種跨膜糖蛋白,在急性腎損傷(AKI)時(shí)可促使腎小管上皮細(xì)胞向“半專業(yè)”吞噬細(xì)胞轉(zhuǎn)化,增強(qiáng)細(xì)胞的自噬功能[4-6];在包括DN在內(nèi)的多種慢性腎臟病(CKD)中,KIM-1與RIF程度呈正相關(guān)[7]。目前尚不明確,KIM-1是否對(duì)糖尿病腎病(DN)的細(xì)胞自噬作用具有調(diào)控,并參與疾病進(jìn)展。本研究采用體外高糖培養(yǎng)人腎小管上皮細(xì)胞(HK-2),觀察KIM-1、自噬標(biāo)志蛋白微管相關(guān)蛋白1輕鏈3Ⅱ型(LC3Ⅱ)的蛋白質(zhì)及mRNA表達(dá)情況,并在透射電鏡下觀察細(xì)胞自噬體的形成,以及經(jīng)KIM-1 siRNA轉(zhuǎn)染后對(duì)上述指標(biāo)的影響,旨在探討KIM-1參與DN進(jìn)展的可能機(jī)制。
材料 HK-2(中國(guó)典型培養(yǎng)物保藏中心),小鼠抗人KIM-1單克隆抗體(美國(guó)Abcam),兔抗人LC3Ⅱ多克隆抗體(美國(guó)Abcam),辣根過(guò)氧化物酶(HRP)標(biāo)記抗兔二抗、抗鼠二抗(北京中杉金橋),KIM-1 siRNA(上海吉瑪),Lipofectamine 2000(美國(guó)Invitrogen),胎牛血清(BI 以色列),DMEM培養(yǎng)基(美國(guó)Hyclone)。
細(xì)胞培養(yǎng)及分組 HK-2于含10%FBS的低糖DMEM培養(yǎng)基中(D-葡萄糖5.6 mmol/L)37℃,5%C02貼壁培養(yǎng),以0.25%胰酶消化,1∶3傳代,細(xì)胞生長(zhǎng)至70%~80%融合時(shí)用無(wú)血清培養(yǎng)基同步化12 h后隨機(jī)分為5組:(1)對(duì)照組(D-葡萄糖5.6 mmol/L);(2)高滲組(D-葡萄糖5.6 mm01/L +D-甘露醇24.4 mmol/L);(3)高糖組(D-葡萄糖30 mmol/L);(4)高糖+KIM-1 siRNA組;(5)高糖+siRNA對(duì)照組。分別于8h、16h、24h各時(shí)間點(diǎn)收集細(xì)胞進(jìn)行相關(guān)檢測(cè)。
siRNA轉(zhuǎn)染細(xì)胞 細(xì)胞接種于12孔板中,2×105個(gè)/孔,用含10%FBS的DMEM培養(yǎng)基培養(yǎng)24h,選擇生長(zhǎng)狀態(tài)良好、貼壁率達(dá)70%~80%的細(xì)胞用于轉(zhuǎn)染。采用脂質(zhì)體介導(dǎo)轉(zhuǎn)染KIM-1 siRNA(KIM-1 siRNA由上海吉瑪公司合成,陰性對(duì)照由該公司提供),按照Lipofectamine 2000說(shuō)明書進(jìn)行操作,同時(shí)設(shè)siRNA對(duì)照組。將細(xì)胞置于培養(yǎng)箱,6 h后改為葡萄糖濃度為30 mmol/L的培養(yǎng)基繼續(xù)培養(yǎng)24h。
Western印跡法檢測(cè)KIM-1、LC3Ⅱ蛋白表達(dá) 常規(guī)收集各組細(xì)胞,按照全細(xì)胞裂解液說(shuō)明書提取總蛋白,BCA法測(cè)定蛋白濃度。20~40 μg總蛋白進(jìn)行SDS-PAGE凝膠電泳,電轉(zhuǎn)移至PVDF膜上,5%脫脂牛奶室溫封閉1h。孵育一抗,加入KIM-1抗體(1∶500),LC3II抗體(1∶500),及β-actin抗體(1∶1 000)4℃過(guò)夜。次日TBST漂洗3次,10 min,再用辣根過(guò)氧化物酶標(biāo)記的山羊抗兔及馬抗小鼠二抗(1∶500)室溫孵育2h,TBST漂洗3次,10 min。DAB顯色、成像。按相同實(shí)驗(yàn)條件重復(fù)實(shí)驗(yàn)3次。ImageJ軟件分析目的條帶灰度值。
Real Time-PCR法檢測(cè)KIM-1、LC3IImRNA表達(dá) TRIzol法提取細(xì)胞總RNA,經(jīng)紫外線分光光度計(jì)測(cè)定RNA濃度,每個(gè)樣本取總RNA 2 μg,按試劑盒操作說(shuō)明,反轉(zhuǎn)錄獲得cDNA。用熒光定量PCR儀分別擴(kuò)增目的基因和內(nèi)參基因,制定標(biāo)準(zhǔn)曲線和溶解曲線,用Ct值表示樣品中模板的相對(duì)含量。反應(yīng)體系:20 μl反應(yīng)體系中加入正、負(fù)引物(10 μmol/L)各1 μl,PCRMaster mix 10 μl,模板1 μl,加DEPC水補(bǔ)足。循環(huán)條件:95℃ 30s,95℃ 5s和60℃ 32s,循環(huán)40次,實(shí)驗(yàn)重復(fù)3次。引物序列:GeneCopoeia公司提供GAPDH (Mm-QRP-20008)KIM-1(Hs-QRP-21461)LC3II(Hs-QRP-48951)。
電鏡觀察自噬體 預(yù)冷PBS清洗各組細(xì)胞,收集細(xì)胞并用2%戊二醛溶液4℃固定2h,1%鋨酸固定1h,70%~100%丙酮梯度脫水,環(huán)氧樹脂包埋,切片、染色,透射電子顯微鏡下進(jìn)行觀察。每份標(biāo)本相同放大倍數(shù)下隨機(jī)選取10個(gè)細(xì)胞,每個(gè)細(xì)胞隨機(jī)選取3個(gè)視野進(jìn)行自噬體計(jì)數(shù)。以每視野平均自噬體數(shù)進(jìn)行半定量分析。
統(tǒng)計(jì)學(xué)處理 采用SPSS 17.0軟件進(jìn)行統(tǒng)計(jì)分析,計(jì)量數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差表示,各組間比較采用單因素方差分析,各組間兩兩比較采用LSD檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
高糖對(duì)HK2表達(dá)KIM-1及LC3Ⅱ的影響 Western印跡結(jié)果示,正常對(duì)照組及高滲組幾乎無(wú)KIM-1蛋白表達(dá),與正常對(duì)照組相比,高糖組培養(yǎng)8h、16h、24h后,KIM-1蛋白表達(dá)呈時(shí)間依賴性增加,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);正常對(duì)照組及高滲組LC3II蛋白正常表達(dá),兩組表達(dá)量無(wú)明顯差異(P>0.05),與正常對(duì)照組相比,高糖組培養(yǎng)8h、16h、24h后LC3II蛋白表達(dá)呈時(shí)間依賴性增加,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。RT-PCR結(jié)果示,KIM-1 mRNA及LC3Ⅱ mRNA變化趨勢(shì)與蛋白變化趨勢(shì)一致(圖1)。
圖1 不同組細(xì)胞KIM-1和LC3Ⅱ的表達(dá)量變化(A:Western印跡,B:Real-Time PCR)KIM-1:腎損傷分子1;LC3Ⅱ:噬標(biāo)志蛋白微管相關(guān)蛋白1輕鏈3Ⅱ型;1:正常對(duì)照組 2:高滲對(duì)照組;3:高糖8h組;4:高糖16h組;5:高糖24h組;a:與正常對(duì)照組相比,P<0.05
高糖對(duì)HK-2細(xì)胞自噬體形成的影響 透射電鏡觀察結(jié)果示,對(duì)照組與高滲組細(xì)胞有少量自噬體形成,高糖引起HK-2細(xì)胞自噬體數(shù)量明顯增多,并呈時(shí)間依賴性(P<0.05)(圖2)。
圖2 各組細(xì)胞自噬體(↑)形成情況(EM,×50 000)1:正常對(duì)照組;2:高滲對(duì)照組;3:高糖8h組;4:高糖16h組;5:高糖24h組;與正常對(duì)照組相比,aP<0.05
高糖環(huán)境KIM-1 siRNA的干擾效率 KIM-1 SiRNA轉(zhuǎn)染組和siRNA對(duì)照組經(jīng)高糖處理24h后,Western印跡和Real-Time PCR結(jié)果示,80 nmol/L siRNA轉(zhuǎn)染效率最高,與siRNA對(duì)照組相比,KIM-1 siRNA轉(zhuǎn)染組KIM-1蛋白表達(dá)量下降86.8%,KIM-1mRNA表達(dá)量下降80.6%,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖3)。
圖3 高糖環(huán)境下KIM-1 siRNA的干擾效率(Western印跡和Real-Time PCR)KIM-1:腎損傷分子1;1:siRNA對(duì)照組;2:80 nmol/L KIM-1 siRNA轉(zhuǎn)染組;a:與陰性對(duì)照組相比,P<0.05
KIM-1 siRNA轉(zhuǎn)染對(duì)高糖環(huán)境下腎小管上皮細(xì)胞表達(dá)KIM-1、LC3Ⅱ蛋白和mRNA含量及細(xì)胞內(nèi)自噬體形成數(shù)量影響 Western Blot結(jié)果顯示,與對(duì)照組和高滲組相比,高糖組細(xì)胞KIM-1、LC3Ⅱ表達(dá)均明顯增加(P<0.05);與高糖組相比,KIM-1 siRNA轉(zhuǎn)染組細(xì)胞KIM-1、LC3Ⅱ表達(dá)量均明顯下降(P<0.05)。RT-PCR結(jié)果與Western印跡結(jié)果趨勢(shì)一致(圖4)。透射電鏡觀察結(jié)果示,與對(duì)照組和高滲組相比,高糖組細(xì)胞自噬體形成數(shù)量明顯增加。與高糖組相比,KIM-1 siRNA轉(zhuǎn)染組細(xì)胞自噬體形成數(shù)量明顯減少(圖5)。
圖4 各組細(xì)胞KIM-1和LC3Ⅱ的表達(dá)量變化(A:Western印跡,B:Real-Time PCR)KIM-1:腎損傷分子1;LC3Ⅱ:自噬標(biāo)志蛋白微管相關(guān)蛋白1輕鏈3II型; 1:正常對(duì)照組;2:高滲組;3:高糖組;4:KIM-1siRNA轉(zhuǎn)染組;5:siRNA對(duì)照組;a:與正常對(duì)照組相比,P<0.05;b:與高糖組相比,P<0.05
圖5 各組細(xì)胞自噬體(↑)形成(EM,×50 000)1:正常對(duì)照組;2:高滲組;3:高糖組;4:KIM-1 siRNA轉(zhuǎn)染組;5:siRNA對(duì)照組;a:與正常對(duì)照組相比,P<0.05;b:與高糖組相比,P<0.05
自噬是細(xì)胞的一種保護(hù)性機(jī)制,通過(guò)對(duì)自身受損細(xì)胞器和老化蛋白等大分子物質(zhì)進(jìn)行降解并再利用,以維持蛋白代謝平衡及細(xì)胞內(nèi)環(huán)境穩(wěn)定[8,9]。研究表明自噬也是細(xì)胞的一種死亡方式,一旦啟動(dòng)必須在度過(guò)危機(jī)后適時(shí)停止,否則其特異性捕獲胞質(zhì)成分的特性將導(dǎo)致細(xì)胞發(fā)生不可逆的損傷[10]。LC3II蛋白是自噬體膜上的標(biāo)記蛋白,其始終穩(wěn)定地保留在自噬體膜上直到與溶酶體融合,因此LC3Ⅱ的水平與自噬體的數(shù)量成正比[11]。透射電鏡下觀察到自噬體是自噬形成的金標(biāo)準(zhǔn)[12]。本研究以HK-2為實(shí)驗(yàn)對(duì)象,在體外培養(yǎng)的情況下予以高糖刺激,觀察到在高糖環(huán)境下,LC3II表達(dá)增加,細(xì)胞自噬體產(chǎn)生增多,表明高糖可促進(jìn)腎小管上皮細(xì)胞自噬功能增強(qiáng)。
KIM-1是由受損近曲腎小管上皮細(xì)胞分泌的一種跨膜糖蛋白,在正常腎組織中未被檢測(cè)到,但在AKI和CKD中均顯著增加[13-15]。其不僅可作為腎臟損傷的敏感及特異性指標(biāo),更參與了包括腎小管上皮細(xì)胞的損傷與修復(fù)、細(xì)胞黏附、信號(hào)轉(zhuǎn)導(dǎo)、免疫反應(yīng)等多種病理生理過(guò)程[16]。作為一種磷脂酰絲氨酸受體,其能夠促使腎小管上皮細(xì)胞向“半專業(yè)”吞噬細(xì)胞轉(zhuǎn)化,增強(qiáng)細(xì)胞自噬功能,發(fā)揮清除凋亡細(xì)胞和壞死細(xì)胞碎片的作用[4-6];在慢性損傷導(dǎo)致的CKD中,KIM-1表達(dá)于去分化的近端小管上皮細(xì)胞,與一些腎小管間質(zhì)損傷的標(biāo)志物如骨橋蛋白、α平滑肌激動(dòng)蛋白(α-SMA)同向表達(dá)[17];在DN大鼠模型中KIM-1表達(dá)增多,在人的腎組織穿刺活檢標(biāo)本中,也發(fā)現(xiàn)除微小病變外,KIM-1在所有腎臟疾病纖維化區(qū)域的小管中表達(dá)均升高,且與小球病變程度成正比[7]。另外,在Ren2大鼠模型中,KIM-1被發(fā)現(xiàn)與腎素-血管緊張素系統(tǒng)活化導(dǎo)致的腎損傷有關(guān),阻斷RAS可以降低腎間質(zhì)纖維化,同時(shí)降低KIM-1的表達(dá)[18-19]。因此,在急性損傷的情況下,KIM-1可通過(guò)介導(dǎo)自噬抑制炎癥,幫助組織修復(fù);而在慢性損傷的情況下,KIM-1很有可能通過(guò)介導(dǎo)細(xì)胞自噬長(zhǎng)期過(guò)度激活,加重慢性腎損傷。本實(shí)驗(yàn)結(jié)果顯示,對(duì)照組及高滲組中幾乎無(wú)KIM-1的表達(dá),高糖培養(yǎng)條件下,腎小管上皮細(xì)胞KIM-1表達(dá)增多,且呈時(shí)間依賴性,說(shuō)明高糖可促進(jìn)KIM-1的表達(dá)。應(yīng)用KIM-1siRNA轉(zhuǎn)染腎小管上皮細(xì)胞后,KIM-1蛋白和基因水平均顯著下降,同時(shí)LC3II蛋白和RNA表達(dá)量明顯降低,透射電鏡下細(xì)胞自噬體形成數(shù)量較少,說(shuō)明KIM-1對(duì)細(xì)胞自噬表達(dá)有一定的調(diào)控作用,從而推測(cè)KIM-1可能通過(guò)介導(dǎo)腎小管上皮細(xì)胞自噬參與DN腎間質(zhì)纖維化的進(jìn)展。但由于體外細(xì)胞實(shí)驗(yàn)有刺激因素單一等局限性,不能完全反映糖尿病腎病狀態(tài)下機(jī)體內(nèi)復(fù)雜的變化反應(yīng)過(guò)程,故有待動(dòng)物實(shí)驗(yàn)進(jìn)行進(jìn)一步的研究論證。
本實(shí)驗(yàn)觀察了高糖可刺激腎小管上皮細(xì)胞KIM-1表達(dá)增加及自噬功能增強(qiáng),這與既往的相關(guān)研究報(bào)道相符。同時(shí)本文證實(shí)高糖環(huán)境下KIM-1可對(duì)腎小管上皮細(xì)胞自噬進(jìn)行調(diào)控,進(jìn)而有可能通過(guò)該作用參與DN的進(jìn)展。本研究為進(jìn)一步探討DN的發(fā)展機(jī)制提供了新思路。
1 Xu Y,Yang S,Huang J,et al.TGF-β1 induces autophagy and promotes apoptosis in renal tubular epithelial cells.Int J Mol,2012,29(5):781-790.
2 Li L,Zepeda-Orozco D,Black R,et al.Autophagy is a component of epithelial cell fate in obstructive uropathy.Am J Patho,2010,176(4):1767-1778.
3 Koesters R,Kaissling B,Lehir M,et al.Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells.Am J Pathol,2010,177(2):632-643.
4 Huo W,Zhang K,Nie Z,et al.Kidney injury molecule-1:a novel kidney-specific injury molecule playing potential double-edged functions in kidney injury.Transplant Rev,2010,24(3):143-146
5 Isaka Y,Kimura T,Takabatake Y.The protective role of autophagy against aging and acute ischemic injury in kidney proximal tubular cells.Autophagy,2011,7(9):1085-1087.
6 Gardiner L,Akintola A,Chen G,et al.Structural equation modeling highlights the potential of KIM-1 as a Biomarker for Chronic kidney Disease.Am J Nephrol,2012,35(2):152-163.
7 van Timmeren MM,van den Heuvel MC,Bailly V,et a1.Tubular kidney injury Molecule-1(KIM-1)in human renal disease.J Pathol,2007,212(2):209-217.
8 Mizushima N,Levine B,Cuervo AM,et al.Autophagy fights disease through cellular self-digestion.Nature,2008,451(7182):1069-1075.
9 Kroemer G,Mario G,Levine B.Autophagy and the integrated stress response.Mol Cell,2010,40(2):280-293.
10 Xu Y,Yang S,Huang J,et al.TGF-β1 induces autophagy and promotes apoptosis in renal tubular epithelial cells.Int J Mol,2012,29(5):781-790.
11 Ravikumar B,Sarkar S,Davies JE,et al.Regulation of mammalian autophagy in physiology and pathophysiology.Physiol Rev,2010,90(4):1383-1435.
12 Yl?-Anttila P,Vihinen H,Jokitalo E,et al.Monitoring autophagy by electron microscopy in Mammalian cells.Methods Enzymol,2009,452:143-164.
13 Peters HP,Waanders F,Meijer E,et al.High urinary excretion of kidney injury molecule-1 is an independent predictor of end-stage renal disease in patients with IgA nephropathy.Nephrol Dial Transplant,2011,26(11):3581-3588.
14 Vaidya VS,Ozer JS,Dieterle F,et al.Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies.Nat Biotechnol,2010,28(5):478-485.
15 霍文謙,靳風(fēng)爍,李黔生,等.腎小管缺氧損傷中腎損傷分子-1表達(dá)信號(hào)通路的調(diào)節(jié).腎臟病與透析腎移植雜志,2011,20(1):35-39.
16 Lim AI,Tang SC,Lai KN,et a1.Kidney injury molecule-1:more than just an injury marker of tubular epithelial cells.J Cell Physiol,2013,228(5):917-924.
17 Zhao X,Zhang Y,Li L,et al.Glomerular expression of kidney injury molecule-1 and podocytopenia in diabetic glomerulopathy.Am J Nephrol,2011,34(3):268-280.
18 Kramer AB,van Timmeren MM,Schuurs TA,et al.Reduction of proteinuria in adriamyciin-induced nephropathy is associated with reduction of renal kidney injury molecule-1 over time.Am J Physiol Renal Physiol,2009,296(5):F1136-1145.
19 de Borst MH,van Timmeren MM,Vaidya VS,et al.Induction of kidney injury molecule-1 in homozygous Ren2 rats is attenuated by blockade of the renin-angiotensin system or p38 MAP kinase.Am J Physiol Renal Physiol,2007,292 (1):F313-320.
(本文編輯 律 舟)
Effects of KIM-1 on high glucose induced the autophagy in human tubular epithelial cells
CHENJuntong1,GOURong1,XINGYurong2,WANGLiuwei1,WANGRuiqiang1,TANGLin1
1DepartmentofNephrology,NephrologyResearchInstituteofZhengzhouUniversityInstituteofClinicalMedicine,TheFirstAffiliatedHospitalofZhengzhouUniversity,Zhengzhou450052,China2Physicalcentre,ThefirstAffiliatedHospitalofZhengzhouUniversity,Zhengzhou450052,China
TANGLin(E-mail:tanglin@zzu.edu.cn)
Objective:To research the effects of Kidney Injury Molecule 1(KIM-1)on high glucose induced the autophagy in human tubular epithelial cells (HK2) and to explore the possible mechanisms of KIM-1 involved in the progress of diabetic nephropathy (DN). Methodology:HK2 were cultured in vitro and divided into different groups. They were (1) Normal control Group (D-glucose 5.6 mmol/L); (2) Hypertonic group (D-glucose 5.6 mmol/L+D-mannitol 24.4 mmol/L); (3) High glucose group (D-glucose 30 mmol/L); (4) KIM-1 siRNA group; and (5) Control siRNA group. The corresponding indexes were measured at 8th, 16th and 24th hours. Western blotting was used to detect the protein expression of KIM-1 and autophagy protein microtubule-associated protein 1 light chain 3II(LC3II). Real Time-PCR was used to detect mRNA expression of KIM-1 and LC3II. The autophagosomes formed in human tubular epithelial cells were observed by transmission electron microscope (TEM). Results:Compared with the control group, the protein and mRNA expression of KIM-1 and LC3II in the high glucose group were increased (P<0.05), and the number of autophagosomes were also added in a time-dependent manner (P<0.05). Compared with the high glucose group, the protein and mRNA expressions of KIM-1 and LC3II were decreased (P<0.05), and the number of autophagosomes were reduced in KIM-1 siRNA group (P<0.05). Conclusion:Down-regulating the expression of KIM-1 can inhibit the expression of LC3II and the formation of autophagosomes, which suggests that KIM-1 may be involved in the progress of DN by regulating the autophagy in human tubular epithelial cells.
Diabetic nephropathy renal tubular epithelial cell Kidney injury factor-1 Autophagy
國(guó)家自然科學(xué)基金(81300605)
1鄭州大學(xué)第一附屬醫(yī)院腎臟內(nèi)科 鄭州大學(xué)腎臟病研究所 河南省高等學(xué)校臨床醫(yī)學(xué)重點(diǎn)學(xué)科開放實(shí)驗(yàn)室(鄭州,450052);2鄭州大學(xué)第一附屬醫(yī)院體檢中心
唐 琳(E-mail:tanglin@zzu.edu.cn)
2014-11-22
? 2015年版權(quán)歸《腎臟病與透析腎移植雜志》編輯部所有