柳 晶 綜述 季大璽 審校
?
慢性腎臟病治療的新靶點(diǎn)和新藥物
柳 晶 綜述 季大璽 審校
慢性腎臟病(CKD)是全球范圍內(nèi)重要的公共健康問(wèn)題。在探索CKD分子致病機(jī)制的基礎(chǔ)上發(fā)現(xiàn)新的治療靶點(diǎn)和藥物,對(duì)提高CKD診治水平,延緩疾病進(jìn)展,改善患者長(zhǎng)期預(yù)后,減輕政府衛(wèi)生經(jīng)濟(jì)負(fù)擔(dān)具有極其重要的意義。本文總結(jié)近年來(lái)CKD研究中發(fā)現(xiàn)的新的分子致病機(jī)制,及針對(duì)這些新機(jī)制的治療方法和藥物,重點(diǎn)關(guān)注了作用于轉(zhuǎn)化生長(zhǎng)因子β超家族的抗腎臟纖維化藥物,以及血管鈣化因子、煙酰胺腺嘌呤二苷酸磷酸(NADPH)過(guò)氧化物家族、核因子κB通路等在CKD發(fā)生發(fā)展中的分子致病機(jī)制。
慢性腎臟病 治療靶點(diǎn) 治療藥物
近年來(lái),隨著經(jīng)濟(jì)發(fā)展和生活方式的改變,慢性非傳染性疾病發(fā)生率不斷增加,慢性腎臟病(CKD)導(dǎo)致的死亡患者人數(shù)占我國(guó)總?cè)藬?shù)的比重,從上世紀(jì)90年代的27位,截止2010年已升至第22位。我國(guó)CKD的患病率為10.8%,據(jù)此估算CKD患者近1億,其中約100萬(wàn)患者可能進(jìn)入終末期腎病(ESRD),需要接受腎臟替代治療,故CKD已經(jīng)成為了我國(guó)乃至全球性的公共健康問(wèn)題之一,帶來(lái)沉重的經(jīng)濟(jì)和社會(huì)負(fù)擔(dān)。目前治療CKD的主要措施包括控制蛋白尿、高血脂和高血壓等,但均不能完全阻斷CKD的進(jìn)展,因此亟需尋找延緩CKD進(jìn)展的新療法。本文就近年來(lái)針對(duì)CKD患者腎臟纖維化的分子致病機(jī)制的研究,及其相關(guān)的治療藥物作一簡(jiǎn)述。
腎臟纖維化是CKD的共同表現(xiàn),以腎小球硬化及腎小管間質(zhì)纖維化為顯著特征。有證據(jù)表明TGF-β是導(dǎo)致腎纖維化過(guò)程中基質(zhì)合成增加、基質(zhì)降解抑制及肌成纖維細(xì)胞活化的主要介質(zhì)。在糖尿病、嘌呤霉素腎病、單側(cè)輸尿管梗阻性腎病及高血壓腎損害等動(dòng)物模型中的研究均證實(shí),抑制TGF-β可減少基質(zhì)生成[1,2]。因此,抑制TGF-β信號(hào)通路已成為治療CKD的新手段。動(dòng)物實(shí)驗(yàn)證實(shí),應(yīng)用抗體中和TGF-β[2,3]和水溶性TGF-β受體,或以TGF-β的Ⅱ類受體為目標(biāo)的小干擾RNA[4]等均可減輕腎臟損傷,延緩腎臟纖維化。但值得注意的是,抗TGF-β抗體雖然可減少腎小球及腎小管間質(zhì)基質(zhì)聚集,卻不能減少蛋白尿。
Trachtman等[5]應(yīng)用TGF-β抗體Fresolimumab治療特發(fā)性局灶節(jié)段性腎小球硬化(FSGS)的Ⅰ期臨床試驗(yàn)結(jié)果顯示,患者耐受性良好。16例患者接受最高劑量為4 mg/kg的Fresolimumab治療,隨訪觀察112d,唯一的不良反應(yīng)是2例患者發(fā)生了膿皰型皮疹,經(jīng)治療后均好轉(zhuǎn)。16例患者尿白蛋白/肌酐比值(ACR)平均下降1.2 mg/g。另一種抗TGF-β抗體LY2382770DE治療難治性FSGS和糖尿病腎病(DN)的 Ⅱ期臨床研究也正在進(jìn)行中[6]。
值得注意的是,抑制TGF-β可能會(huì)在抑制纖維化同時(shí)促進(jìn)炎癥反應(yīng)和上皮細(xì)胞增殖,因此,研究正在試圖尋找更具有靶向性的抗纖維化治療靶點(diǎn)。結(jié)締組織生長(zhǎng)因子(CTGF)位于TGF-β信號(hào)通路下游,被認(rèn)為與腎纖維化進(jìn)展緊密關(guān)聯(lián)[7,8]??笴TGF抗體FG-3019治療DN的Ⅰ期臨床試驗(yàn)表明,24例患者ACR平均下降28 mg/g[9]。目前,聯(lián)合應(yīng)用FG-3019和血管緊張素轉(zhuǎn)換酶抑制劑或血管緊張素Ⅱ受體拮抗劑治療DN的臨床試驗(yàn)[10,11]和單用FG-3019治療激素抵抗FSGS的臨床試驗(yàn)[12]均在進(jìn)行中。
此外,抑制TGF-β通路的多種藥物也被證實(shí)可延緩CKD模型腎臟纖維化進(jìn)展。吡非尼酮不僅能抑制TGF-β,還能抑制血小板源性生長(zhǎng)因子和腫瘤壞死因子(TNF),可減少CKD動(dòng)物模型中腎臟細(xì)胞外基質(zhì)聚集及炎癥細(xì)胞浸潤(rùn)[13,14]。Sharma等[15]開展了吡非尼酮治療DN的多中心、隨機(jī)、雙盲和安慰劑對(duì)照的臨床試驗(yàn),吡非尼酮治療組(1.2 g/d)平均估計(jì)腎小球?yàn)V過(guò)率(eGFR)較基線升高3.3 ±8.5 ml/(min·1.73 m2),但蛋白尿水平無(wú)明顯改變。動(dòng)物實(shí)驗(yàn)證實(shí),另一種口服抗纖維化藥物曲尼司特可減少腎小球硬化,減輕腎小管間質(zhì)纖維化。兩項(xiàng)小樣本臨床試驗(yàn)[16,17]證實(shí)曲尼司特可降低DN患者尿液Ⅳ型膠原和蛋白尿水平,隨訪觀察1年發(fā)現(xiàn)所有患者的腎功能無(wú)明顯下降。FT011是一種口服的曲尼司特衍生物,在5/6腎切除大鼠和鏈脲霉素誘導(dǎo)的Ren-2轉(zhuǎn)基因高血壓糖尿病大鼠模型中,F(xiàn)T011治療后尿蛋白平均下降186 mg/d,并且具有減輕炎癥反應(yīng),減少腎小球硬化的作用[18]。已經(jīng)完成的FT011的Ⅰ期臨床試驗(yàn)表明患者的耐受性良好[19]。
骨形態(tài)發(fā)生蛋白7(BMP-7)是TGF-β超家族成員,介導(dǎo)了Smad1、Smad5和Smad8磷酸化。BMP-7敲除的小鼠會(huì)出現(xiàn)腎功能衰竭,CKD患者腎組織中BMP-7水平下降[20,21]。BMP-7可能通過(guò)Smad7抑制TGF-β信號(hào),從而減少腎纖維化[20,21]。因此,BMP-7被認(rèn)為是潛在的治療靶點(diǎn)。補(bǔ)充BMP-7可導(dǎo)致軟組織鈣化,因而臨床應(yīng)用受到限制,但BMP-7受體激動(dòng)劑等藥物仍極具臨床應(yīng)用前景。
睪丸特異性Y型編碼樣蛋白(TSPYl 2),又稱細(xì)胞分裂自身抗原1(CDA1),也可能是阻止腎臟TGF-β信號(hào)通路傳導(dǎo)的分子靶點(diǎn)[22],在TGF-β信號(hào)轉(zhuǎn)導(dǎo)中起關(guān)鍵作用。CDA1在DN的足細(xì)胞和腎小管上皮細(xì)胞中表達(dá)均上調(diào),敲除培養(yǎng)細(xì)胞中的CDA1,可減少細(xì)胞外基質(zhì)蛋白產(chǎn)生,并降低由TGF-β所刺激的Ⅰ型和Ⅲ型膠原基因表達(dá)。敲除糖尿病小鼠的Tspyl 2基因,可減少腎臟細(xì)胞外基質(zhì)蛋白聚集,降低腎小管及腎小管間質(zhì)損傷程度,并且可減少TGF-β及其Ⅰ類受體基因表達(dá),降低Smad3的磷酸化程度[22],提示Tspyl 2可直接調(diào)節(jié)TGF-β信號(hào)通路傳導(dǎo)。值得關(guān)注的是,靶向性敲除Tspyl 2并不影響糖尿病小鼠其他的表型,如高三酯甘油血癥,腎臟肥大和腎臟高灌注等。因此,仍需要更多的研究來(lái)評(píng)估CDA1在持續(xù)性蛋白尿和腎臟纖維化進(jìn)展中的作用。
血管鈣化和高血磷是CKD的常見(jiàn)并發(fā)癥。對(duì)成纖維細(xì)胞生長(zhǎng)因子23(FGF-23)和Klotho的功能研究揭示了血管鈣化相關(guān)的機(jī)制和效應(yīng)。FGF-23由骨組織產(chǎn)生,腎臟是其重要的靶器官。FGF23單獨(dú)或協(xié)同Klotho,可增加尿磷排泄、抑制1,25-羥維生素D3產(chǎn)生。FGF-23還可抑制甲狀旁腺激素的分泌,是導(dǎo)致CKD患者心肌肥厚的獨(dú)立危險(xiǎn)因素。FGF-23通過(guò)FGF受體和Klotho發(fā)揮作用[23]。Klotho由腎小管上皮細(xì)胞生成,存在膜結(jié)合型和分泌型兩種類型[24]。膜結(jié)合型的Klotho可作為腎小管上皮細(xì)胞FGF-23的共受體之一,同時(shí)可增強(qiáng)FGF-23功能,促進(jìn)尿磷排泄[24]。隨著腎功能降低,循環(huán)中FGF-23水平不斷增加,并在ESRD階段達(dá)到高峰,以代償性保持磷平衡。隨著腎功能減退和腎單位的喪失,腎臟Klotho表達(dá)下降,F(xiàn)GF-23促進(jìn)尿磷排泄的功能逐漸受限。抗FGF-23抗體是以FGF-23分子為治療靶點(diǎn),極具潛力的療法,但可能抑制尿磷酸鹽排泄,并不適用于CKD早期。
研究證實(shí)在腎臟纖維化過(guò)程中,腎臟活性氧增加,線粒體超氧化物產(chǎn)生水平升高,但其通路激活的始作俑者尚未證實(shí)。NADPH氧化酶在腎臟中廣泛表達(dá),是腎臟活性氧的主要來(lái)源。NADPH氧化酶的主要異構(gòu)體包括NADPH氧化酶1(NOX-1)、NOX-2(也被稱為cytochrome b-245重鏈)、NOX-4和NOX-5,在大鼠和人的腎臟中均可表達(dá)[25,26],具有損傷血管、促進(jìn)炎癥反應(yīng)和纖維化的作用[27]。DN患者腎臟NOX-5表達(dá)增加[28]。在動(dòng)物模型中是細(xì)胞特異性表達(dá)人NOX-5(NOX-5 pod+)的轉(zhuǎn)基因小鼠,可出現(xiàn)蛋白尿、足細(xì)胞足突融合,并伴血壓升高[28]。
研究發(fā)現(xiàn),db/db小鼠給予NOX-1和NOX-4的共同抑制劑GKT136901后,高糖誘導(dǎo)的近端腎小管的氧化應(yīng)激和促纖維化信號(hào)標(biāo)志物明顯降低,且小鼠蛋白尿和氧化應(yīng)激水平下降[29,30]。研究還證實(shí),NOX-1和NOX-4抑制劑GKT137831,可改善肝臟纖維化,減少主動(dòng)脈內(nèi)皮細(xì)胞氧化應(yīng)激[31,32]。Ⅰ期臨床試驗(yàn)證實(shí)單倍劑量GKT137831治療安全性良好[33],并且Ⅱ期臨床試驗(yàn)也正在進(jìn)行中[33]。
NF-κB可激活大量促炎基因,吡咯烷二硫代氨基甲酸鹽(PDTC)是NF-κB通路抑制劑,體內(nèi)研究證實(shí), PDTC可減輕慶大霉素誘導(dǎo)的CKD大鼠的腎臟炎癥反應(yīng)[34]。在醛固酮和高鹽飲食誘導(dǎo)的CKD動(dòng)物模型,PDTC可減輕腎臟損傷,抑制TGF-β、細(xì)胞間黏附因子1(ICAM-1)、Ⅳ型膠原和 CTGF等基因表達(dá)[34]。
雷公藤甲素是中國(guó)傳統(tǒng)中藥雷公藤的提取物,也具有抑制NF-κB通路的作用。研究證實(shí)雷公藤甲素可減輕db/db小鼠的腎小球系膜基質(zhì)擴(kuò)展、Ⅳ型膠原沉積和TGF-β基因的表達(dá),改善小鼠胰島素抵抗,發(fā)揮腎臟保護(hù)作用[35]。雷公藤甲素可降低小鼠尿液中多種促炎癥細(xì)胞因子水平。在缺血再灌注介導(dǎo)的急性腎臟損傷模型中,雷公藤甲素可抑制腎臟炎癥,對(duì)腎小管損傷具保護(hù)作用[34]。
雖然大量的動(dòng)物實(shí)驗(yàn)研究證實(shí)NF-κB抑制劑具有減輕腎臟炎癥反應(yīng),延緩腎臟纖維化,改善腎臟功能,但是,迄今為止,尚無(wú)有關(guān)NF-κB通路抑制劑治療CKD的臨床研究數(shù)據(jù)。
小結(jié):近年來(lái),針對(duì)TGF-β及其下游信號(hào)傳導(dǎo)通路、血管鈣化因子、氧化應(yīng)激和NADPH氧化酶及NF-κB等分子和通路在腎臟慢性炎癥反應(yīng)和腎臟纖維化中的作用研究,揭示了一批具有發(fā)展前景的CKD分子治療靶點(diǎn),在此基礎(chǔ)上研發(fā)的CKD干預(yù)藥物大多已在動(dòng)物模型中獲得了良好的治療效果(表1),隨著進(jìn)一步臨床試驗(yàn)的開展(表2),相信在不久的將來(lái),會(huì)為CKD的治療帶來(lái)新的途徑。伴隨著生命科學(xué)新技術(shù)在CKD研究中的不斷應(yīng)用,腎臟病醫(yī)師、藥物研發(fā)公司和政府部門的不斷密切合作,必將迎來(lái)CKD治療藥物研發(fā)的新時(shí)代。
表1 治療CKD的動(dòng)物模型
α-SMA:α平滑肌肌動(dòng)蛋白; ApoE:載脂蛋白E;BMP:骨形態(tài)發(fā)生蛋白; CDA1:細(xì)胞分裂自身抗原1;CKD:慢性腎臟?。籆TGF:結(jié)締組織生長(zhǎng)因子;NF-κB:核因子κB;NOX:煙酰胺腺嘌呤二核苷酸磷酸氧化酶;PDTC:吡咯烷二硫代氨基甲酸;ROS:活性氧;siRNA:小干擾RNA;STZ:鏈脲佐菌素;TGF-β:轉(zhuǎn)化生長(zhǎng)因子β; UUO:?jiǎn)蝹?cè)輸尿管梗阻;*:NOX-1和NOX-4的雙重抑制劑
表2 慢性腎臟病治療方法的臨床研究
ACEI:血管緊張素轉(zhuǎn)換酶抑制劑; ACR:白蛋白肌酐比值; ARB:血管緊張素Ⅱ受體拮抗劑; CTGF:結(jié)締組織生長(zhǎng)因子;DN:糖尿病腎病;FSGS:局灶節(jié)段性腎小球硬化; TGF-β:轉(zhuǎn)化生長(zhǎng)因子β
1 Ma LJ,Jha S,Ling H,et al.Divergent effects of low versus high dose anti-TGF-beta antibody in puromycin aminonucleoside nephropathy in rats.Kidney Int,2004,65(1):106-115.
2 Ziyadeh FN,Hoffman BB,Han DC,et al.Long-term prevention of renal insufficiency,excess matrix gene expression,and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice.Proc Natl Acad Sci U S A,2000,97(14):8015-8020.
3 Guan Q,Li S,Gao S,et al.Reduction of chronic rejection of renal allografts by anti-transforming growth factor-beta antibody therapy in a rat model.Am J Physiol Renal Physiol,2013,305(2):F199-F207.
4 Kushibiki T,Nagata-Nakajima N,Sugai M,et al.Delivery of plasmid DNA expressing small interference RNA for TGF-beta type II receptor by cationized gelatin to prevent interstitial renal fibrosis.J Control Release,2005,105(3):318-331.
5 Trachtman H,Fervenza FC,Gipson DS,et al.A phase 1,single-dose study of fresolimumab,an anti-TGF-beta antibody,in treatment-resistant primary focal segmental glomerulosclerosis.Kidney Int,2011,79(11):1236-1243.
6 US National Library of Medicine.ClinicalTrials.gov [online],http://clinicaltrials.gov/ct2/show/NCT01113801 (2013).
7 Boor P,Floege J.Chronic kidney disease growth factors in renal fibrosis.Clin Exp Pharmacol Physiol,2011,38(7):441-450.
8 Guha M,Xu ZG,Tung D,et al.Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes.FASEB J,2007,21(12):3355-3368.
9 Adler SG,Schwartz S,Williams ME,et al.Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria.Clin J Am Soc Nephrol,2010,5(8):1420-1428.
10 US National Library of Medicine.ClinicalTrials.gov [online],http://clinicaltrials.gov/ct2/show/NCT00754143 (2011).
11 US National Library of Medicine.ClinicalTrials.gov [online],http://clinicaltrials.gov/ct2/show/NCT00913393 (2012).
12 US National Library of Medicine.ClinicalTrials.gov [online],http://clinicaltrials.gov/ct2/show/NCT00782561 (2009).
13 RamachandraRao SP,Zhu Y,Ravasi T,et al.Pirfenidone is renoprotective in diabetic kidney disease.J Am Soc Nephrol,2009,20(8):1765-1775.
14 Chen JF,Ni HF,Pan MM,et al.Pirfenidone inhibits macrophage infiltration in 5/6 nephrectomized rats.Am J Physiol Renal Physiol,2013,304(6):F676-F685.
15 Sharma K,Ix JH,Mathew AV,et al.Pirfenidone for diabetic nephropathy.J Am Soc Nephrol,2011,22(6):1144-1151.
16 Soma J,Sugawara T,Huang YD,et al.Tranilast slows the progression of advanced diabetic nephropathy.Nephron,2002,92(3):693-698.
17 Soma J,Sato K,Saito H,et al.Effect of tranilast in early-stage diabetic nephropathy.Nephrol Dial Transplant,2006,21(10):2795-2799.
18 Gilbert RE,Zhang Y,Williams SJ,et al.A purpose-synthesised anti-fibrotic agent attenuates experimental kidney diseases in the rat.PLoS One,2012,7(10):e47160.
19 Australian New Zealand Clinical Trials Registry.Anzctr.org [online],https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12613000386730 (2013).
20 Spanjol J,Djordjevic G,MarkiD,et al.Bone morphogenetic protein-7 expression in human pyelonephritis.Coll Antropol,2010,34 (Suppl 2):61-64.
21 Bramlage CP,Tampe B,Koziolek M,et al.Bone morphogenetic protein (BMP)-7 expression is decreased in human hypertensive nephrosclerosis.BMC Nephrol,2010,11:31.
22 Chai Z,Dai A,Tu Y,et al.Genetic deletion of cell division autoantigen 1 retards diabetes-associated renal injury.J Am Soc Nephrol,2013,24(11):1782-1792.
23 Komaba H,Fukagawa M.The role of FGF23 in CKD——with or without Klotho.Nat Rev Nephrol,2012,8(8):484-490.
24 Hu MC,Kuro-o M,Moe OW.Klotho and kidney disease.J Nephrol,2010,23(Suppl 16):S136-S144.
25 Babelova A,Avaniadi D,Jung O,et al.Role of Nox4 in murine models of kidney disease.Free Radic Biol Med,2012,53(4):842-853.
26 Gorin Y,Block K.Nox as a target for diabetic complications.Clin Sci (Lond),2013,125(8):361-382.
27 You YH,Okada S,Ly S,et al.Role of Nox2 in diabetic kidney disease.Am J Physiol Renal Physiol,2013,304(7):F840-F848.
28 Sedeek M,Nasrallah R,Touyz RM,et al.NADPH oxidases,reactive oxygen species,and the kidney:friend and foe.J Am Soc Nephrol,2013,24(10):1512-1518.
29 Sedeek M,Callera G,Montezano A,et al.Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney:implications in type 2 diabetic nephropathy.Am J Physiol Renal Physiol,2010,299(6):F1348-F1358.
30 Sedeek M,Gutsol A,Montezano AC,et al.Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of Type 2 diabetes.Clin Sci (Lond),2013,124(3):191-202.
31 Aoyama T,Paik YH,Watanabe S,et al.Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis:GKT137831 as a novel potential therapeutic agent.Hepatology,2012,56(6):2316-2327.
32 Gray SP,Di Marco E,Okabe J,et al.NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis.Circulation,2013,127(18):1888-1902.
33 US National Library of Medicine.ClinicalTrials.gov [online],http://clinicaltrials.gov/ct2/show/NCT02010242 (2014).
34 Li Y,He D,Zhang X,et al.Protective effect of celastrol in rat cerebral ischemia model:down-regulating p-JNK,p-c-Jun and NF-kappaB.Brain Res,2012,1464:8-13.
35 Kim JE,Lee MH,Nam DH,et al.Celastrol,an NF-κB inhibitor,improves insulin resistance and attenuates renal injury in db/db mice.PLoS One,2013,8(4):e62068.
(本文編輯 律 舟 凡 心)
The novel therapeutic targets and treatments for chronic kidney diseases
LIUJing,JIDaxi
DaxiNationalClinicalResearchCenterofKidneyDiseases,JinlingHospital,NanjingUniversitySchoolofMedicine,Nanjing210016,China
Chronic kidney disease (CKD) is becoming a worldwide epidemic. Novel targets and treatments for CKD are, therefore, desperately needed to both mitigate the burden of this disease in the general population and reduce the necessity for renal replacement therapy in individual patients. This review highlights new insights into the mechanisms that contribute to CKD, and approaches that might facilitate the development of disease arresting therapies for CKD. Particular focus is given to therapeutic approaches using antifibrotic agents that target the transforming growth factor β superfamily. In addition, we discuss new insights regarding the roles of vascular calcification, the NADPH oxidase family, and NF-κB pathway in the pathogenesis of CKD. Prospective therapeutics based on these findings will hopefully renew hope for clinicians and patients in the near future.
chronic kidney diseases therapeutic target drugs
國(guó)家科技支撐計(jì)劃課題(2013BAI09B04)(2015BAI12B05);江蘇省臨床醫(yī)學(xué)中心項(xiàng)目(BL2012007)
南京軍區(qū)南京總醫(yī)院腎臟科 國(guó)家腎臟疾病臨床醫(yī)學(xué)研究中心 全軍腎臟病研究所(南京,210016)
2014-08-07