亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        硫丹的環(huán)境行為及水生態(tài)毒理效應研究進展

        2015-06-05 09:51:46武煥陽丁詩華
        生態(tài)毒理學報 2015年2期
        關鍵詞:水生魚類毒性

        武煥陽,丁詩華

        1. 華南理工大學環(huán)境與能源學院,廣州 510006 2. 西南大學動物科技學院 水產科學重慶市市級重點實驗室,重慶 400715

        硫丹的環(huán)境行為及水生態(tài)毒理效應研究進展

        武煥陽1,2,丁詩華2,*

        1. 華南理工大學環(huán)境與能源學院,廣州 510006 2. 西南大學動物科技學院 水產科學重慶市市級重點實驗室,重慶 400715

        有機氯農藥硫丹作為一種典型的持久性有機污染物(POPs)曾廣泛應用于農業(yè)生產,我國曾大量使用。硫丹作為一種重要的污染物通過地表徑流、淋、溶、干/濕沉降等方式進入水體,在直接影響大型水生植物和浮游藻類的同時,給魚類等水生動物也帶來了一定的毒性效應。由于其半衰期較長、遷移能力強、富集性高,在水體環(huán)境中已普遍檢測出硫丹的存在,因此,對硫丹的水生生態(tài)安全性評價顯得十分重要。硫丹對水生生物具有高毒性,它可影響生物正常受體配體作用、損傷生物膜、影響活性氧代謝并具有潛在的內分泌干擾作用。本文介紹了硫丹的環(huán)境行為效應,并綜述了硫丹對水生生物的毒性及幾種致毒機制,展望了該領域今后的研究重點和方向。

        硫丹;POPs;水生生物;環(huán)境行為;毒理效應

        硫丹(endosulfan)分子式:C9H6Cl6O3S,又稱賽丹或安殺丹,純品為白色晶體,易溶于氯仿、丙酮等有機溶劑。其在堿性介質中不穩(wěn)定,可緩慢水解為硫丹二醇和二氧化硫,常見的α-硫丹和β-硫丹2種異構體混合物比例約為7:3[1]。作為一種危害性極高的有機氯農藥,硫丹曾廣泛用于棉花、煙草、茶葉和咖啡等農業(yè)生產中。據統(tǒng)計,全世界范圍使用硫丹總量為30.8萬t[2-3]。由于具有較強的遷移作用,硫丹在生產、使用和廢棄過程中可通過污水、廢水、地表徑流或大氣沉降等最終進入水環(huán)境中,且其在水體中的濃度水平危及水生生物和人類的健康,因此硫丹在水體中的分布及其對水生生物的毒理效應一直是人們關注的焦點[4]。然而從目前資料來看,關于硫丹在環(huán)境中的分布情況研究較多,而硫丹對水生生物的生理生化、內分泌毒性、遺傳毒性及代謝機制等方面研究較少。本文綜述了近年來硫丹的環(huán)境行為及對水生生物的毒性作用研究,并分析今后的研究思路,對以后的研究熱點做了展望。

        1 概 述

        1.1 硫丹的環(huán)境行為及分布

        環(huán)境中硫丹有2個來源:一是硫丹在農業(yè)生產中大量使用,使一部分硫丹揮發(fā)進入大氣,另一部分是黏附在農作物上的硫丹在雨水沖刷、淋溶及地表徑流的作用下,被轉運至土壤和水體中;二是硫丹生產工廠廢棄污染物排放使硫丹進入水體和土壤環(huán)境中。硫丹2種異構體均可被氧化、水解為硫丹硫酸鹽(endosulfan sulphate)和硫丹二醇(endosulfan diol)[5]。

        硫丹具有較強的環(huán)境遷移能力,據報道,硫丹作為一種有機氯農藥廣泛存在于大氣環(huán)境中,并可隨大氣環(huán)流遷移到全球各個地區(qū),高山地區(qū)、極地地區(qū)環(huán)境介質中均發(fā)現硫丹及硫丹硫酸鹽存在。Pozo等[6]檢測到智利北部大氣硫丹濃度為4~101 pg·m-3,并發(fā)現硫丹主要生產使用地的北部地區(qū)大氣硫丹含量高于南部地區(qū)。加拿大西部高山地區(qū)大氣中也檢測出硫丹存在,且α-硫丹濃度高于β-硫丹濃度[7]。我國大氣中同樣發(fā)現硫丹,通過對我國的37個城市及3個背景點的空氣中有機氯進行分析,α-硫丹和β-硫丹的濃度范圍分別為0~1 190 pg·d-1和0~422 pg·d-1[8],同時發(fā)現,含量較高采樣點出現在棉花種植區(qū),表明農業(yè)使用是我國空氣中硫丹的重要來源。

        水環(huán)境中同樣有硫丹的存在,我國太湖中也檢測出硫丹,表1列出了世界上部分典型水體中硫丹的含量。

        美國高海拔(3 024~3 030 m)湖泊沉積物中也檢測出硫丹硫酸鹽存在[13]。研究發(fā)現加拿大北極圈群島Devon島DV09地平線以上湖底沉積物中有α-硫丹存在,最高濃度達0.04 ng·g-1(干重),且流量為6.2 ng·(m2y)-1,自1990年起,這些湖泊沉積物硫丹含量在逐漸增加[14]。

        表1 硫丹在部分水環(huán)境中的濃度Table 1 The concentration of endosulfan in the water environment

        1.2 硫丹在水生生物體內的蓄積

        研究報道,水生生物體內也已普遍檢測出硫丹。其中,我國華南沿海牡蠣(Crassostrea rivularis)體中硫丹含量為廣東:2.13 ng·g-1(濕重),海南:1.23 ng·g-1(濕重),廣西:0.76 ng·g-1(濕重)[15]。Kelly等[16]發(fā)現北極紅點鮭(Salvelinus alpinus)、環(huán)斑海豹(Phoca hispida)和白鯨(Delphinapterus leucas)體內α-硫丹和β-硫丹含量分別為(0.12±0.09) ng·g-1(濕重)、(0.46±0.55) ng·g-1(濕重);(2.0±3.2) ng·g-1(濕重)、(1.7±2.1) ng·g-1(濕重)和(4.0±5.9) ng·g-1(濕重)、(6.5±2.8) ng·g-1(濕重)。而Stern等[24]發(fā)現加拿大北極群島雄性白鯨體內硫丹硫酸鹽含量從3.7 ng·g-1(脂重)到94 ng·g-1(脂重)不等。加拿大北極群島Lancaster海峽和Jones海峽雄性白鯨體內(28~94 ng·g-1)發(fā)現更高濃度的硫丹硫酸鹽,而Baffin島Cumberland海峽和Frobisher灣的白鯨體內硫丹硫酸鹽的含量為8.1~23 ng·g-1。據報道,印度超過60%的市售海水魚可檢測出硫丹,其濃度為5~22 ng·g-1(濕重)[17]。大量研究顯示,硫丹及其降解產物主要在動物的肝臟、皮膚、脂肪及肌肉中分布[18]??梢?,除了毒物代謝器官,脂肪及皮膚也是硫丹主要分布區(qū)域,這可能是因為硫丹的辛醇—水分配系數(logKow)顯示其進入富含脂肪組織中的可能性較大,并可隨著胚胎中脂肪轉運進入卵細胞或者傳遞給下一代。

        硫丹在水生生物體內的濃度水平能直接反映水體中硫丹的污染情況,進而可以評價其對生態(tài)系統(tǒng)的潛在危害。有研究表明,水體中β-硫丹較α-硫丹含量更高,這或許表明α-硫丹更容易被水生生物轉化、富集[19]。α-硫丹、β-硫丹的logKow分別為4.94和4.78,因此沉積物對α-硫丹的吸附作用較β-硫丹強,α-硫丹生物富集能力略強于β-硫丹[20]。一般認為當有機化合物logKow>5時,該化合物具有生物富集性。浮游動物比浮游植物更易富集硫丹,而魚類對硫丹富集能力明顯大于浮游生物[21]。生物富集系數(BCF)經常用來評價污染物在水生生物體內的富集效果。研究表明,黃脂鯉魚(Hyphessobrycon bifasciatus)對硫丹BCF高達11 000[22],淡水綠藻(Pseudokirchneriella subcapitatum)和淡水大型溞(Daphnia magna)對硫丹BCF分別為2 682和3 678[23],而野鯪(Labeo rohita)對硫丹BCF只有不到50[24],因此不同生物對硫丹富集能力存在較大差別。

        2 硫丹的水生生物毒性效應

        不同形態(tài)的硫丹在環(huán)境中的降解速率不同,生物毒性也不相同。β-硫丹較α-硫丹降解慢,α-硫丹半衰期為7~75 d,而β-硫丹半衰期為33~376 d,研究表明,硫丹硫酸鹽是環(huán)境中硫丹的主要降解產物[25]。水中α-硫丹較β-硫丹更易降解為硫丹硫酸鹽[26],在土壤環(huán)境中也有同樣發(fā)現,并且硫丹降解速率受土壤水分、溫度、含氧量、pH等環(huán)境因素影響,溫度較低、水分較小、含氧量低、pH較低情況下硫丹的降解速率較慢[27]。硫丹降解產物毒性較小,如:硫丹硫酸鹽對金魚(Carassius auratus)和雅羅魚(Leuciscus idus melanotus)48 h半數致死濃度(48 h LC50)接近100 μg·L-1,而α-硫丹 < 10 μg·L-1[28]。另外,硫丹與其他污染物的聯合毒性效應更強。資料顯示,394 μg·L-1毒死蜱與4.5 μg·L-1、7.9 μg·L-1、1 μg·L-1硫丹共同作用下,太平洋樹蛙幼體(Pseudacris regilla)致死率顯著高于硫丹單一染毒[29]。2.1 硫丹的急性致毒效應

        幾乎所有水生生物對硫丹都非常敏感。水生無脊椎動物是水生動物中較低等的動物類群,表2列出了硫丹對一些水生無脊椎動物的毒性值。

        表2 硫丹對甲殼類動物毒性Table 2 Toxicity of endosulfan on shellfish

        研究表明,硫丹對藻類也有較高毒性,硫丹對近頭狀偽蹄型藻(Pseudokirchneriella subcapitatum)96 h EC50為428 μg·L-1[23]。此外,有研究顯示,不同的環(huán)境條件也可能影響硫丹對甲殼動物的毒性。當暴露環(huán)境中有底泥存在時,硫丹對褐蝦(Penaeus aztecus)96 h LC50從無底泥存在時的0.2 μg·L-1提高到6.9 μg·L-1[37];斑節(jié)對蝦(Penaeus monodon)96 h LC50從無底泥存在時的1.6 μg·L-1降低到0.5 μg·L-1;96 h最低可觀察效應濃度(LOEC)從無底泥存在時的1.038 μg·L-1降低到0.141 μg·L-1;96 h最低無可觀察效應濃度(NOEC)從無底泥存在時的0.536 μg·L-1降低到 < 0.141 μg·L-1[38]。0.1 μg·L-1硫丹暴露96 h,美洲龍蝦幼體(Homarus americanus)代謝范圍較對照組顯著降低25%[39]。

        硫丹對魚類同樣具有較強毒性。研究顯示,硫丹對大部分魚類的96 h LC50為0.09~4.4 μg·L-1[40],且淡水魚類相對海水魚類具有更高的耐受性,見表3。

        根據毒性分級,LC50< 1 000 μg·L-1為劇毒物質。絕大部分魚類對硫丹極為敏感,96 h LC50均在10 μg·L-1以下,可見硫丹對魚類毒性極強。硫丹對不同魚類LC50有所差異,可能原因有2種:一是受試動物對硫丹的耐受程度不同,二是暴露試驗的環(huán)境條件不同。另外,研究發(fā)現,高等魚類較低等魚類對硫丹的耐受能力更強一些,這可能是因為高等魚類的代謝器官更為發(fā)達、解毒系統(tǒng)更為完善,使毒物對機體的毒性作用更小。

        2.2 干擾正常受體—配體的相互作用

        受體是許多組織細胞的生物大分子,與化學物質即配體相結合后形成受體—配體復合物,能產生一定的生物學效應。許多毒物尤其是某些神經毒物的毒性作用與其干擾正常受體—配體相互作用的能力有關。 目前有研究表明,硫丹可與γ-氨基丁酸(GABA)拮抗,從而抑制GABA受體聚集[45]。GABA是中樞神經系統(tǒng)抑制性神經遞質,硫丹作為GABA非競爭性的拮抗物,可抑制GABA受體聚集,聚集程度的降低將導致神經元細胞去極化,使動物焦躁不安[46]。 膽堿能神經是以乙酰膽堿(ACh)為神經傳遞物質,在ACh完成傳遞任務后,若繼續(xù)存在,則將不斷刺激突觸后膜,引起神經功能的紊亂,因此必須及時將之分解消除,這有賴于乙酰膽堿酯酶(AChE)對ACh的催化作用,AChE可將ACh分解為乙酸和膽堿,避免ACh積累對神經的過多刺激。有機磷農藥已被證實可抑制動物膽堿酯酶(ChE)活性,使其失去分解ACh能力,導致ACh積聚,阻斷神經傳導,引起神經功能紊亂[51]。研究顯示,3.3~5 μg·L-1硫丹暴露96 h,可顯著抑制橙色莫桑比克羅非魚(Oreochromis mossambicus)腦AChE活性[52]。同樣發(fā)現,0.072~1.4 μg·L-1硫丹暴露,可顯著抑制四眼青鳉(Jenynsia multidentata)肌肉AChE活性,并發(fā)現隨著硫丹暴露質量濃度升高或時間延長,其活動能力明顯下降,游泳能力受到顯著影響[53]。2.4 μg·L-1硫丹暴露96 h,斑馬魚腦AChE活性顯著降低,較對照組下降近40%,其活動能力同樣顯著降低[54]。

        2.3 生物膜損傷作用

        生物膜具有十分重要的生物功能,它可選擇地進行物質交換,以維持細胞內部有一個相對穩(wěn)定的理化特性,并維持細胞內自身穩(wěn)定。Na+、K+-ATP酶和Ca2+、Mg2+-ATP酶又稱依賴ATP膜結合蛋白酶,對建立跨膜的離子梯度、維持細胞膜電位與細胞生理活動、調節(jié)細胞滲透壓、控制細胞容量和正常代謝以及為其他離子和營養(yǎng)物質的轉運提供動力方面具有重要作用[55]。

        表3 硫丹對部分魚類的LC50Table 3 LC50 of endosulfan on fish

        研究表明,硫丹可影響魚類ATP酶活性,從而影響細胞正常生物功能。2.2 μg·L-1硫丹暴露15 d,可激活寬額鱧(Channa gachua)Na+、K+-ATP酶和Mg2+-ATP酶活性;3.7 μg·L-1硫丹暴露30 d后,其肝臟、腎臟及肌肉ATP酶活性顯著受到抑制[56]。暴露于0.010~0.264 μg·L-1硫丹下,羅氏沼蝦仔蝦(Macrobrachium rosenbergii)Na+、K+-ATPase活性顯著升高[57]。翠鱧(Channa punctatus)鰓Na+、K+-ATP酶活性在1.2 μg·L-1硫丹暴露90 d后明顯降低[58]。大西洋鮭(Salmo salar)硫丹(4~710 μg·kg-1)經口染毒14 d,鰓Na+、K+-ATP酶活性明顯降低,35 d后恢復到正常水平;腸Na+、K+-ATP酶活性14 d和35 d均被顯著抑制[59]。Velasco等[60]報道,0.16 μg·L-1和0.48 μg·L-1硫丹暴露14 d,可引起斑馬魚Na+、K+-ATP酶活性升高,并在28 d后恢復到正常水平,同時發(fā)現其鰓絲組織增生。

        2.4 活性氧生成與氧化損傷機理

        活性氧(ROS)是指在生物體內與氧代謝有關的含氧自由基和易形成自由基的過氧化物總稱,如O2·-、·OH、H2O2、ROOH等。生物體自身生理活動可產生ROS,如分解氧以提供能量的電子傳遞鏈過程、吞噬細胞吞噬作用以及外源物質的分解過程,污染物也可誘導生物細胞內外源性ROS形成[61]。

        體內的ROS具有一定的功能,如免疫和信號轉導過程,但由于它有未成對電子,自由基和自由原子非?;顫姡虼诉^多的ROS就會有破壞作用,導致正常細胞和組織的損壞。正常情況下細胞內的抗氧化酶類SOD、CAT、GSH-Px等可以清除ROS,而當ROS的產生與清除平衡被擾亂,細胞無法及時清除時,就會導致機體氧化損傷[62]。ROS過量生成可干擾多種信號轉導通路,從而影響細胞凋亡,如MAPKs信號通路、ERK1/2通路、Nrf2-Keap1通路、JNK/SPAK通路等。研究表明,硫丹等機氯農藥通過生成大量的ROS,可明顯激活ERK1/2通路,激活的ERK通過磷酸化抗凋亡分子,同時激活轉錄因子,以刺激表達存活相關基因而產生抗凋亡作用[63]。

        已有研究表明,硫丹可誘導斑馬魚[64]和草魚(Ctenopharyngodon idellus)[65]肝臟Ⅰ相(APND;ERND)和Ⅱ相(GST)解毒酶活性升高,進而影響正常生理機能。硫丹暴露可誘導水芪草(Myriophyllum quitense)[66]、大型溞(Daphnia magna)[30]、虹鱒(Oncorhynchus mykiss)[67]、四眼青鳉(Jenynsia multidentata)[68]、斑馬魚[45-69]、草魚[70-71]、奧尼羅非魚(Oreochromis niloticus)[72]、中華大蟾蜍(Bufo bufo)[73]、鬼針草蟾(Bidens laevis)[74]、菲律賓蛤仔(Venerupis philippinarum)[75]等水生生物機體產生過量ROS,并產生氧化脅迫,表現為機體組織SOD、CAT、GSH-Px、GST等抗氧化酶活性的非正常變化,LPO升高,嚴重導致細胞NDA損傷、凋亡、組織病變甚至個體死亡。

        2.5 內分泌干擾作用

        研究表明硫丹對內分泌系統(tǒng)存在潛在的影響,對人類和生物具有較大的負面影響,其能夠干擾生物體內源激素的合成、釋放、轉運、結合和代謝,從而影響機體的內環(huán)境穩(wěn)定、生殖、發(fā)育及行為。體外毒性試驗顯示,硫丹可以激活雌激素受體α(ERα)的AF2功能,使孕酮受體(PR)水平升高和雌激素響應基層細胞增殖[76]。通過對ERα轉染HeLa細胞系研究發(fā)現,硫丹與雌二醇競爭結合ERα,并可反饋激活ERα,誘導ERE依賴基因表達[77]。研究表明,硫丹暴露可下調胡子鯰(Clarias batrachus)卵巢泛素與Esco2蛋白表達,上調黑素皮質素受體-2蛋白表達[78];2.5 μg·L-1硫丹與33 μg·L-1氟他胺共同影響下,幼體胡子鯰睪丸發(fā)育相關轉錄因子(dmrt1、sox9a、wt1)、類固醇生成酶(11-hsd2、17-hsd12、P450c17)、類固醇激素合成急性調節(jié)蛋白、孤核受體(nr2c1、Ad4BP/SF-1)基因表達量顯著降低[79]。硫丹是一種類雌激素,可模擬雌激素的生理作用促進子宮正常發(fā)育[80]。硫丹對魚類也有類雌激素作用,硫丹暴露可誘導斑馬魚胚胎及幼體卵黃蛋白原(VTG)表達[81]。對大西洋鮭(Salmo salar)肝細胞卵透明帶(ZP)和VTG基因表達研究[82]也有類似作用。正常情況下,只有性成熟的雌性動物卵子發(fā)生階段在雌二醇的控制下才能產生ZP和VTG。雄魚體內含有VTG后,雄性特征會逐步退化,雌性特征會逐步明顯,雄魚逐漸雌性化。

        甲狀腺是動物重要的內分泌器官,其分泌的甲狀腺激素T3、T4具有重要的生理功能:促進組織分化、生長與發(fā)育,作用于細胞核受體,刺激DNA轉錄過程,促進mRNA形成,加速蛋白質與各種酶生成,增強碳水化合物利用,促進脂肪酸及脂肪合成等。魚類甲狀腺素對代謝活動、生長、滲透壓調節(jié)、生殖、體色、中樞神經活動和行為等方面都有影響[83]。某些有機氯農藥可直接與甲狀腺激素受體結合,激活受體或抑制受體,使激素不能發(fā)揮正常功能。研究顯示,硫丹可影響魚類的甲狀腺激素水平。0.1 μg·L-1硫丹暴露35 d,尼羅羅非魚(Oreochromis niloticus)血漿T4水平顯著降低,T3水平變化不明顯[84]。同樣研究表明,硫丹可不同程度影響薩羅羅非魚(Sarotherodon mossambicus)血清T3、T4水平[85]。有研究顯示,硫丹是通過干擾肝臟Ⅰ型脫碘酶和Ⅲ型脫碘酶活性來影響甲狀腺激素水平[86]。魚類血漿T3的濃度與腎臟、肝臟中脫碘酶的活性密切相關[87]。此外,硫丹還可引起魚類催乳激素、皮質醇、胰島素水平變化,從而間接影響魚類滲透壓調節(jié)、應激反應及碳水化合物代謝等功能[85]。

        3 總結與展望

        本文總結了近年來硫丹的環(huán)境分布,并介紹了其對水生生物的毒性及致毒機制。由于硫丹與環(huán)境的相互作用復雜,已有的研究結果和認識還存在一定的局限性,因此有必要進一步加強硫丹對水生生物整個生命周期及在多種環(huán)境污染物共存條件下硫丹對水生生物的生理生化及生態(tài)學研究。另外,應進一步深入研究硫丹污染脅迫下,特別是低劑量長期暴露下,生物體內生理生化反應及分子機制,對于進一步揭示硫丹生物毒性的分子和細胞作用機制及其與機體健康的內在聯系具有重要的意義。

        [1] United Nations Environment Programme. Consideration of a Newly Proposed Chemical, Endosulfan, for Inclusion in Annexes A, B or C of the Convention [C]. Stockholm Convention on Persistent Organic Pollutants Review Committee Third Meeting, 2007

        [2] Li Y F, Macdonald R W. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: A review [J]. Science of the Total Environment, 2005, 342(1): 87-106

        [3] Jia H, Li Y F, Wang D, et al. endosulfan in China 1: Gridded usage inventories [J]. Environmental Science and Pollution Research, 2009, 16(3): 295-301

        [4] Miles C J, Pfeuffer R J. Pesticides in canals of South Florida [J]. Archives of Environmental Contamination and Toxicology, 1997, 32(4): 337-345

        [5] Walse S S, Scott G I, Ferry J L, et al. Stereoselective degradation of aqueous endosulfan in modular estuarinemesocosms: Formation of endosulfan γ-hydroxycarboxylate [J]. Journal of Environmental Monitoring, 2003, 5: 373-379

        [6] Pozo K, Harner T, Shoeib M, et al. Passive-sampler derived air concentrations of persistent organic pollutants on a north-south transect in Chile [J]. Environmental Science & Technology, 2004, 38(24): 6529-6537

        [7] Daly G L, Lei Y D, Teixeira C, et al. Pesticides in western Canadian mountain air and soil [J]. Environmental Science & Technology, 2007, 41(17): 6020-6025

        [8] Liu X, Zhang G, Li J, et al. Seasonal patterns and current sources of DDTs, chlordanes, hexachlorobenzene, and endosulfan in the atmosphere of 37 Chinese cities [J]. Environmental Science & Technology, 2009, 43(5): 1316-1321

        [9] Gregor D J, Gummer W D. Evidence of atmospheric transport and deposition of organochlorine pesticides and polychlorinated biphenyls in Canadian Arctic snow [J]. Environmental Science & Technology, 1989, 23: 561-565

        [10] Weber J, Halsall C J, Muir D C G, et al. Endosulfan and γ-HCH in the Arctic: An assessment of surface seawater concentrations and airsurface exchange [J]. Environmental Science & Technology, 2006, 40(24): 7570-7576

        [11] Muir D C G, Alaee M, Teixeira C, et al. Newcontaminants in the Arctic and Subarctic Atmospheric and Aquatic Environments [R]. CEPA Resources Report-FY 2006-2007. Burlington ON: Environment Canada, Aquatic Ecosystem Protection Research Division, 2007

        [12] Qiu X H, Zhu T, Wang F, et al. Air-water gas exchange of organochlorine pesticides in Taihu Lake China [J]. Environmental Science & Technology, 2008, 42(6): 1928-1932

        [13] Usenko S, Landers D H, Appleby P G, et al. Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain national park [J]. Environmental Science & Technology, 2007, 41(21): 7235-7241

        [14] Stern G A, Braekevelt E, Helm P A, et al. Modem and historical fluxes of halogenated organic contaminants to a lake in the Canadian arctic, as determined from annually laminated sediment cores [J]. Science of the Total Environment, 2005, 342(1-3): 223-2243

        [15] 甘居利, 柯常亮, 陳潔文, 等. 華南沿海近江牡蠣體中硫丹殘留特征研究[J]. 農業(yè)環(huán)境科學學報, 2014, 33(2): 271-275

        Gan J L, Ke C L, Chen J W, et al. Residues ofendosulfan in ostrea oysters (Crassostrea rivularis) from near sea water of South China [J]. Journal of Agro-Environment Science, 2014, 33(2): 271-275 (in Chinese)

        [16] Kelly B C, Ikonomou M G, Blair J D, et al. Food web-specific biomagnification of persistent organic pollutants [J]. Science, 2007, 317(5835): 236-239

        [17] Muralidharan S, Dhananjayan V, Jayanthi P, et al. Organochlorine pesticides in commercial marine fishes of Coimbatore, India and their suitability for human consumption [J]. Environmental Research, 2009, 109(1): 15-21

        [18] Johansen P, Muir D C G, Amund G, et al. Human exposure to contaminants in the traditional Greenland diet [J]. Science of the Total Environment, 2004, 331(1-3): 189-206

        [19] Zhang Z L, Hong H S, Zhou J L, et al. Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River estuary, Southeast China [J]. Chemosphere, 2003, 52(9): 1423-1430

        [20] Shen L, Wania F, Ying D L, et al. Atmospheric distribution and long-range transport behaviour of organochlorine pesticides in North America [J]. Environmental Science & Technology, 2005, 39(2): 409-420

        [21] Weber J, Halsall C J, Muir D, et al. endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic [J]. Science of the Total Environment, 2010, 408(15): 2966-2984

        [22] Jonsson C M, Toledo M C F. Bioaccumulation and elimination of endosulfan in the fish Yellow Tetra (Hyphessobrycon bifasciatus) [J]. Bulletin of Environmental Contamination and Toxicology, 1993, 50(4): 572-577

        [23] DeLorenzo M E, Taylor L A, Lund S A, et al. Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton [J]. Archives of Environmental Contamination and Toxicology, 2002, 42(2): 173-181

        [24] Ramaneswari K, Rao L M. Bioconcentration of endosulfan and monocrotophos by Labeo Rohita and Channa Punciaia [J]. Bulletin of Environmental Contamination and Toxicology, 2000, 65(5): 618-622

        [25] Laabs V, Amelung W, Pinto A A, et al. Pesticides in surface water, sediment, and rainfall of the northeastern Pantanal basin, Brazil [J]. Journal of Environmental Quality, 2002, 31(5): 1636-1648

        [26] Leonard A W, Hyne R V, Lim R P, et al. Fate and toxicity of endosulfan in Namoi River water and bottom sediment [J]. Journal of Environmental Quality, 2001, 30(3): 750-759

        [27] Ghadiri H, Rose C W. Degradation of endosulfan in a clay soil from cotton farms of western Queensland [J]. Journal of Environmental Management, 2001, 62(2): 155-169

        [28] USEPA. ECOTOX User Guide: Ecotoxicology Database System, Version 4.0. United States Environmental Protection Agency; 2007c. [EB/OL]. [2011-10-16]. http://www.epa.gov/ecotox. htm

        [29] Dimitrie D A, Sparling D W. Joint toxicity of chlorpyrifos and endosulfan to Pacific Treefrog (Pseudacris regilla) Tadpoles [J]. Archives of Environmental Contamination and Toxicology, 2014, 67: 444-452

        [30] Barata C, Varo I, Navarro J C, et al. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds [J]. Comparative Biochemistry and Physiology: Part C, 2005, 140(2): 175-186

        [31] Bhavan P S, Zayapragassarazan Z, Geraldine P, et al. Acute toxicity tests of endosulfan and carbaryl for the freshwater prawn, Macrobrachium malcolmsonii (H.Milne Edwards) [J]. Environmental Science and Pollution Research, 1997, 16(5): 5-7

        [32] Sumith J A, Parkpian P, Leadprathom N, et al. Dredging influenced sediment toxicity of endosulfan and lindane on black tiger shrimp (Penaeus monodon Fabricius) in Chantaburi River estuary in Thailand [J]. International Journal of Sediment Research, 2009, 24(4): 455-464

        [33] Schimmel S C, Patrick J M, Wilson A J, et al. Acute Toxicity to and Bioconcentration of Endosulfan by Estuarine Animals [M]. USA: ASTM STP634, American Society for Testing and Material, Philadelphia, 1977: 241-252

        [34] Wirth E F, Lund S A, Fulton M H, et al. Determination of acute mortality in adults and sublethal embryo responses of Palaemonetes pugio to endosulfan and methoprene exposure [J]. Aquatic Toxicology, 2001, 53(1): 9-18

        [35] Johnson W W, Finley M T. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates [M]. Washington DC: Resource Publication 137. U.S. Department of Interior, Fish and Wildlife Service, 1980: 6-56

        [36] 陳尚朝, 陳敏東, 宋玉芝, 等. 2種有機殺蟲劑對中華絨螯蟹毒性研究[J]. 環(huán)境科學與技術, 2014, 37(9): 5-9

        Chen S C, Chen M D, Song Y Z, et al.Toxic effects of two organic pesticides on Eriocheir sinensis [J]. Environmental Science & Technology, 2014, 37(9): 5-9 (in Chinese)

        [37] McLeese D W, Metcalfe C D. Toxicities of eight organochlorine compounds in sediment and seawater to Crangon septemspinosa [J]. Bulletin of Environmental Contamination and Toxicology, 1980, 25(6): 921-928

        [38] Sumith J A, Parkpian P. Behaviour of Endosulfan and Lindane During Sediment Elutriate and Water Spike Toxicity Tests Under Saline Conditions [M]. Sri Lanka: Annals of the Sri Lanka Department of Agriculture, Vol. 10, 2008: 231-243

        [39] Daoud D, Fairchild W L, Comeau M, et al. Impact of an acute sublethal exposure of endosulfan on early juvenile lobster (Homarus americanus) [J]. Aquatic Science and Technology, 2014, 2(2): 14-40

        [40] 胡國成, 許木啟, 戴家銀, 等. 硫丹對水生生物毒理效應的研究進展[J]. 中國水產科學, 2007, 14(6): 1042-1047

        Hu G C, Xu M Q, Dai J Y, et al. Progress in the study of toxicological effects of endosulfan on aquatic organisms [J]. Journal of Fishery Sciences of China, 2007, 14(6): 1042-1047 (in Chinese)

        [41] Pandey S, Nagpure N S, Kumar R, et al. Genotoxicity evaluation of acute doses of endosulfan to freshwater teleost Channa punctatus (Bloch) by alkaline single-cell gel electrophoresis [J]. Ecotoxicology and Environmental Safety, 2006, 65(1): 56-61

        [42] Capkin E, Altinok I, Karahan S, et al. Water quality and fish size affect toxicity of endosulfan, an organochlorine pesticide, to rainbow trout [J]. Chemosphere, 2006, 64(10): 1793-1800

        [43] 胡國成, 甘煉, 吳天送, 等. 硫丹對斑馬魚的毒性效應[J]. 動物學雜志, 2008, 43(4): 1-6

        Hu G C, Gan L, Wu T S, et al. Toxicological effects of endosulfan on Danio rerio [J]. Chinese Journal of Zoology, 2008, 43(4): 1-6 (in Chinese)

        [44] Hii Y S, Lee M Y, Chuah T S, et al. Acute toxicity of organochlorine insecticide endosulfan and its effect on behaviour and some hematological parameters of Asian swamp eel (Monopterus albus, Zuiew) [J]. Pesticide Biochemistry and Physiology, 2007, 89(1): 46-53

        [45] Dutta H M, Arends D A. Effects of endosulfan on brain acetylcholinesterase activity in juvenile bluegill sunfish [J]. Environmental Research Letters, 2003, 91(3): 157-162

        [46] 李思雯, 肖蓉, 程李芳, 等. 硫丹和高效氯氟氰菊酯對葛氏鱸塘鱧的急性毒性研究[J]. 安徽農業(yè)科學, 2014, 42(11): 3282-3283, 3286

        Li S W, Xiao R, Cheng L F, et al. Study on the acute toxicity of endosulfan and lambda-cyhalothrin on Perccottus glenii [J]. Journal of Anhui Agricultural Sciences, 2014, 42(11): 3282-3283, 3286 (in Chinese)

        [47] 武煥陽, 靳濤, 丁詩華, 等. 硫丹對草魚魚種的急性毒性效應[J]. 水產科學, 2012, 31(1): 37-40

        Wu H Y, Jin T, Ding S H, et al. Acute toxicity of endosulfan to juvenile grass carp Ctenopharyngodon idellus [J]. Fisheries Science, 2012, 31(1): 37-40 (in Chinese)

        [48] Carriger J F, Hoang T C, Rand G M, et al. Acute toxicity and effects analysis of endosulfan sulfate to freshwater fish species [J]. Archives of Environmental Contamination and Toxicology, 2011, 60(2): 281-289

        [49] Jia Z, Misra H P. Developmental exposure to pesticides zineb and/or endosulfan renders the nigrostriatal dopamine system more susceptible to these environmental chemicals later in life [J]. Neurotoxicology, 2007, 28(4): 727-735

        [50] Scremin O U, Chialvo D R, Lavarello S, et al. The environmental pollutant endosulfan disrupts cerebral cortical function at low doses [J]. Neurotoxicology, 2011, 32(1): 31-37

        [51] Garg U K, Pal A K, Jha G J, et al. Pathophysiological effects of chronic toxicity with synthetic pyrethroid, organophosphate and chlorinated pesticides in broiler chicks [J]. International Immunopharmacology, 2004, 4(13): 709-722

        [52] Kumar N, Prabhu P A J, Pal A K, et al. Anti-oxidative and immuno-hematological status of Tilapia (Oreochromis mossambicus) during acute toxicity test of endosulfan [J]. Pesticide Biochemistry and Physiology, 2011, 99(1): 45-52

        [53] Ballesteros M L, Durando P E, Nores M L, et al. endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes) [J]. Environmental Pollution, 2009, 157(5): 1573-1580

        [54] Pereira V M, Bortolotto J W, Kist L W, et al. endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio) [J]. Neurotoxicology, 2012, 33(3): 469-475

        [55] Piovavroval N B. Effects of cadmium on ciliary and ATPase activity in the gills of freshwater mussel Anodonta cygnea [J]. Comparative Biochemistry and Physiology, 1992, 103(3): 27-30

        [56] Sharma R M. Effect of endosulfan on adenosine triphosphatase (ATPase) activity in liver, kidney, and muscles of Channa gachua [J]. Bulletin of Environmental Contamination and Toxicology, 1988, 41(3): 317-323

        [57] 熊昭娣, 戴習林, 謝劍, 等. 硫丹對羅氏沼蝦溞狀幼體及仔蝦的急性毒性作用[J]. 廣東農業(yè)科學, 2013, 11: 111-114

        Xiong Z D, Dai X L, Xie J, et al.Acute toxicity of endosulfan to zoea and postlarve of Macrobrachium rosenbergii [J]. Guangdong Agricultural Sciences, 2013, 11: 111-114 (in Chinese)

        [58] Sarma K, Pal A K, Sahu N P, et al. Dietary high protein and vitamin C mitigates endosulfan toxicity in the spotted murrel, Channa punctatus (Bloch, 1793) [J]. Science of the Total Environment, 2009, 407(12): 3668-3673

        [59] Glover C N, Petri D, Tollefsen K E, et al. Assessing the sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan exposure using tissue biochemistry and histology [J]. Aquatic Toxicology, 2007, 84(3): 346-355

        [60] Velasco S Y M, Handy R D, Katherine A, et al. endosulfan affects health variables in adult zebrafish (Danio rerio) and induces alterations in larvae development [J]. Comparative Biochemistry and Physiology, Part C, 2011, 153: 1-9

        [61] Valavanidis A, Vlahogianni T, Dassenakis M, et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants [J]. Ecotoxicology and Environmental Safety, 2006, 64(2): 178-189

        [62] Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine [M]. Oxford: Oxford University Press, 1999: 543

        [63] Ledirac N, Antherieu S, d'Uby A D, et al. Effects of organochlorine insecticides on MAP kinase pathways in human HaCat keratinocytes: Key role of reactive oxygen species [J]. Toxicological Sciences, 2005, 86(2): 444-452

        [64] Dong M, Zhu L S, Shao B, et al. The effects of endosulfan on cytochrome P450 enzymes and glutathione S-transferases in zebrafish (Danio rerio) livers [J]. Ecotoxicology and Environmental Safety, 2013, 92(1): 1-9

        [65] 武煥陽, 靳濤, 許莉佳, 等. 硫丹對草魚Ⅰ相Ⅱ相酶活性及DNA損傷的影響[J]. 生態(tài)與農村環(huán)境學報, 2012, 28(1): 54-60

        Wu H Y, Jin T, Xu L J, et al. Effects of endosulfan on phase Ⅰ and Ⅱ enzyme activities and DNA damage of Ctenopharyngodon idellus [J]. Rural Eco-Environment, 2012, 28(1): 54-60 (in Chinese)

        [66] Menone M L, Pesce S F, Díaz M P, et al. endosulfan induces oxidative stress and changes on detoxication enzymes in the aquatic macrophyte Myriophyllum quitense [J]. Phytochemistry, 2008, 69(5): 1150-1157

        [67] Dorval J, Leblond V S, Hontela A, et al. Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro to endosulfan, an organochlorine pesticide [J]. Aquatic Toxicology, 2003, 63(3): 229-241

        [68] Ballesteros M L, Wunderlin D A, Bistoni M A, et al. Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan [J]. Ecotoxicology and Environmental Safety, 2009, 72(1): 199-205

        [69] Shao B, Zhu L S, Dong M, et al. DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio) [J]. Ecotoxicology, 2012, 21(5): 1533-1540

        [70] 武煥陽, 丁詩華, 唐毅, 等. 硫丹對草魚外周血紅細胞微核及核異常的影響[J]. 淡水漁業(yè), 2011, 41(5): 28-34

        Wu H Y, Ding S H, Tang Y, et al. Effects of endosuifan on micronuclei and nuclear anomalies in peripheral blood erythrocytes of Ctenopharyngodon idellus [J]. Freshwater Fisheries, 2011, 41(5): 28-34 (in Chinese)

        [71] 武煥陽, OSCAR Ortegon, 許莉佳, 等. 硫丹對草魚乙酰膽堿酯酶及抗氧化酶活性的影響[J]. 生態(tài)環(huán)境學報, 2011, 20(10): 1496-1502

        Wu H Y, Oscar O, Xu L J, et al. Effects of endosulfan on activities of acetylcholinesterase and antioxidant enzyme of Ctenopharyngodon idellus [J]. Ecology and Environmental Sciences, 2011, 20(10): 1496-1502 (in Chinese)

        [72] Tellez B M C, Santerre A, Casas S J, et al. Oxidative stress in macrophages from spleen of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of endosulfan [J]. Fish & Shellfish Immunology, 2009, 27(2): 105-111

        [73] Brunelli E, Bernabòa I, Berg C, et al. Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles [J]. Aquatic Toxicology, 2009, 91(2): 135-142

        [74] Pérez D J, Menone M L, Camadro E L, et al. Genotoxicity evaluation of the insecticide endosulfan in the wetland macrophyte Bidens laevis L. [J]. Environmental Pollution, 2008, 153(3): 695-698

        [75] 陶顏霞. 菲律賓蛤仔(Venerupis philippinarum)在硫丹脅迫下毒性效應與分子生物標志物的研究[D]. 青島: 中國海洋大學, 2013: 26-28

        Tao Y X. Study of toxicity effects and molecular biomarkers of clam Venerupis philippinarum exposed to endosulfan [D]. Qingdao: Ocean University of China, 2013: 26-28 (in Chinese)

        [76] Hunter D S, Hodges L C, Vonier P M, et al. Estrogen receptor activation via activation function 2 predicts agonism of xenoestrogens in normal and neoplastic cells of the uterine myometrium [J]. Cancer Research, 1999, 59: 3090-3099

        [77] Lemaire G, Mnif W, Mauvais P, et al. Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines [J]. Life Sciences, 2006, 79(12): 1160-1169

        [78] Laldinsangi C, Vijayaprasadarao K, Rajakumar A, et al. Two-dimensional proteomic analysis of gonads of air-breathing catfish, Clarias batrachus after the exposure of endosulfan and malathion [J]. Environmental Toxicology and Pharmacology, 2014, 37(3): 1006-1014

        [79] Rajakumar A, Singh R, Chakrabarty S, et al. endosulfan and flutamide impair testicular development in the juvenile Asian catfish, Clarias batrachus [J]. Aquatic Toxicology, 2012, 110-111: 123-132

        [80] Varayoud J, Monje L, Bernhardt T, et al. endosulfan modulates estrogen-dependent genes like a non-uterotrophic dose of 17β-estradiol [J]. Reproductive Toxicology, 2008, 26(2): 138-145

        [81] Chow W S, Chan W K L, Chan K M, et al. Toxicity assessment and vitellogenin expression in zebrafish (Danio rerio) embryos and larvae acutely exposed to bisphenol A, endosulfan, heptachlor, methoxychlor and tetrabromobisphenol A [J]. Journal of Applied Toxicology, 2013, 33(7): 670-678

        [82] Kr?vel A V, S?fteland L, Torstensen B E, et al. endosulfan in vitro toxicity in Atlantic salmon hepatocytes obtained from fish fed either fish oil or vegetable oil [J]. Comparative Biochemistry and Physiology, Part C, 2010, 151(2): 175-186

        [83] 林浩然. 魚類生理學(第二版)[M]. 廣州: 廣東高等教育出版社, 2007: 241

        [84] Coimbra A M, Figueiredo F A, Reis H M A, et al. Nile tilapia (Oreochromis niloticus), liver morphology, CYP1A activity and thyroid hormones after endosulfan dietary exposure [J]. Pesticide Biochemistry and Physiology, 2007, 89(3): 230-236

        [85] Thangavel P, Sumathiral K, Maheswari S, et al. Hormone profile of an edible, freshwater teleost, Sarotherodon mossambicus (Peters) under endosulfan toxicity [J]. Pesticide Biochemistry and Physiology, 2010, 97(3): 229-234

        [86] Coimbra A M, Reis H M A, Darras V A, et al. Circulating thyroid hormone levels and iodothyronine deiodinase activities in Nile Tilapia (Oreochromis niloticus) following dietary exposure to endosulfan and aroclor 1254 [J]. Comparative Biochemistry and Physiology, Part C, 2005, 141(1): 8-14

        [87] Mol K A, Vandergeyten S, Darras V M, et al. Characterization of iodothyronine outer ring and inner ring deiodinase activities in the blue tilapia, Oreochromis aureus [J]. Endocrinology, 1997, 138(5): 1787-1793

        Research Progress in the Environmental Behavior and Water Ecotoxicological Effects of Endosulfan

        Wu Huanyang1,2, Ding Shihua2,*

        1. College of Environment and Energy, South China University of Technology, Guangzhou 510006, China 2. College of Animal Science and Technology, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China

        15 October 2014 accepted 6 February 2015

        As a typical persistent organic pollutants, endosulfan, the organochlorine pesticide, has been widely used in agricultural production in China. Endosulfan could go into the water envronment through the surface runoff, leaching and wet/dry deposition, which will have a direct impact on aquatic macroohytes and planktonic algae, and produce a certain amount of toxic effects on fish and other aquatic animals as well. Because of its longer half-life period, better migration abilities and higher enrichment, endosulfan could be detectable widely in the water body, herein the safety evaluation of endosulfan in the aquatic ecosystem is very important. Endosulfan is so highly-toxic to aquatic organisms that it could have influences on normally biological receptor-ligand function, membrane damage, active oxygen metabolism and have a potential role of endocrine disruption. The environmental behavior effects and several toxic mechanisms of endosulfan on aquatic organisms will be reviewed, and the future prospects in this filed will be also discussed.

        endosulfan; POPs; aquatic organisms; environmental behaviors; toxicology effects

        國家自然科學基金項目(30670226);重慶市科委農業(yè)科技成果轉化資金項目(cstc2013jcsf-nycgzhA80008)

        武煥陽(1986-),男,博士,研究方向為環(huán)境生態(tài)毒理學,E-mail: wuhuanyang@163.com;

        *通訊作者(Corresponding author), E-mail: shhding@yahoo.com.cn

        10.7524/AJE.1673-5897.20141015002

        2014-10-15 錄用日期:2015-02-06

        1673-5897(2015)2-113-10

        X171.5

        A

        丁詩華(1966—),男,遺傳學博士,教授,從事水產動物生理及研究環(huán)境生態(tài)學研究,發(fā)表學術論文50余篇。

        武煥陽, 丁詩華. 硫丹的環(huán)境行為及水生態(tài)毒理效應研究進展[J]. 生態(tài)毒理學報, 2015, 10(2): 113-122

        Wu H Y, Ding S H. Research progress in the environmental behavior and water ecotoxicological effects of endosulfan [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 113-122 (in Chinese)

        猜你喜歡
        水生魚類毒性
        基于MFCC和ResNet的魚類行為識別
        動物之最——毒性誰最強
        奇妙的古代動物 泥盆紀的魚類
        探索科學(2017年5期)2017-06-21 21:16:16
        三氯生對4種水生生物的急性毒性研究
        魚類是怎樣保護自己的
        RGD肽段連接的近紅外量子點對小鼠的毒性作用
        PM2.5中煤煙聚集物最具毒性
        魚類怎樣呼吸
        依托科技創(chuàng)新 打造現代水生蔬菜產業(yè)
        長江蔬菜(2014年1期)2014-03-11 15:09:48
        吸入麻醉藥的作用和毒性分析
        国产精品亚洲一区二区极品| 2020年国产精品| 亚洲肥老太bbw中国熟女| 亚洲国产剧情在线精品视| 久久精品一区一区二区乱码| 老太婆性杂交视频| 欧美国产一区二区三区激情无套| 乱子伦av无码中文字幕| 亚洲av一区二区三区网站 | 国产熟女精品一区二区三区| 欧美视频在线观看一区二区| 日韩最新av一区二区| 亚洲中文字幕乱码第一页| 久久久久久亚洲av成人无码国产 | 男人的天堂免费a级毛片无码| 中文字幕无码不卡免费视频| 免费a级毛片无码a∨免费| 成人av在线免费播放| 老鲁夜夜老鲁| 国产色秀视频在线播放| 国产午夜视频免费观看| 亚洲狠狠久久五月婷婷| 成人试看120秒体验区| 精品熟女日韩中文十区| 狠狠躁天天躁无码中文字幕图| 在线日韩中文字幕乱码视频 | 免费人成在线观看网站| 97人人超碰国产精品最新o| 草莓视频在线观看无码免费| 久久久熟女一区二区三区| 乱中年女人伦av一区二区| 五月天久久国产你懂的| 91热爆在线精品| 男女激情视频网站在线| 国产99久久久国产精品免费看| 亚洲中文字幕无线无码毛片 | 日韩精品无码一本二本三本色| 国产欧美一区二区精品仙草咪| 国产在线h视频| 国产一区二区黄色的网站| 在线看片免费人成视频久网下载|