亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        氟喹諾酮類抗生素環(huán)境行為及其生態(tài)毒理研究進(jìn)展

        2015-06-05 09:51:45孟磊楊兵薛南冬
        生態(tài)毒理學(xué)報(bào) 2015年2期
        關(guān)鍵詞:污染環(huán)境

        孟磊,楊兵,薛南冬

        中國環(huán)境科學(xué)研究院 環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評估國家重點(diǎn)實(shí)驗(yàn)室,北京100012

        氟喹諾酮類抗生素環(huán)境行為及其生態(tài)毒理研究進(jìn)展

        孟磊,楊兵,薛南冬*

        中國環(huán)境科學(xué)研究院 環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評估國家重點(diǎn)實(shí)驗(yàn)室,北京100012

        氟喹諾酮類抗生素(FQs)是治療人和動(dòng)物細(xì)菌性感染的高效廣譜抗菌藥,隨著氟喹諾酮類抗生素在禽畜養(yǎng)殖業(yè)的廣泛使用,由此引起的環(huán)境污染受到人們的關(guān)注。本文綜述了氟喹諾酮類抗生素在水體、土壤/沉積物中的污染現(xiàn)狀、吸附降解環(huán)境行為及其生態(tài)毒理研究進(jìn)展。FQs抗生素的環(huán)境行為和風(fēng)險(xiǎn)應(yīng)從環(huán)境多介質(zhì)層面進(jìn)行評估,同時(shí)應(yīng)加強(qiáng)對生態(tài)毒性機(jī)理以及與其他環(huán)境污染物的聯(lián)合毒性效應(yīng)的研究。

        氟喹諾酮;抗生素;污染現(xiàn)狀;環(huán)境行為;吸附和降解;生態(tài)毒理

        氟喹諾酮類(fluoroquinolones, FQs)抗生素是一類由人工合成的廣譜類抗菌藥,是喹諾酮的哌嗪基派生物,它通過抑制細(xì)菌的DNA解旋酶II(topoisomerase II)和拓?fù)洚悩?gòu)酶IV(topoisomerase IV)而影響細(xì)菌的DNA復(fù)制過程[1]。FQs藥物都具有酮酸的共同骨架結(jié)構(gòu)(圖1),F(xiàn)Qs抗生素是在喹諾酮類抗生素的基礎(chǔ)上,在第一代萘啶酸和第二代吡哌酸的引入氟原子開發(fā)出的。常用的FQs藥物主要有諾氟沙星(norfloxacin)、恩諾沙星(enrofloxacin)、環(huán)丙沙星(ciprofloxacin)、洛美沙星(lomefloxacin)、氧氟沙星(ofloxacin)、沙拉沙星(sarafloxacin)、培氟沙星(pefloxacin)、依諾沙星(enoxacin)、氟羅沙星(fleroxacin)和二氟沙星(difloxacin)等[2]。由于FQs抗生素在治療人和動(dòng)物細(xì)菌性感染具有良好的藥物動(dòng)力學(xué)特性及治療效果,應(yīng)用廣、使用量大。據(jù)統(tǒng)計(jì),喹諾酮藥物的使用量已位于抗感染藥物前列,2009年,占據(jù)全球抗生素17%的市場份額[3]。WHO(1998年)調(diào)查顯示[4],據(jù)美國、日本、韓國和歐盟等國家和組織的統(tǒng)計(jì),年消費(fèi)喹諾酮類藥物中作為專用產(chǎn)品約有50 t,作為通用產(chǎn)品70 t,在中國分別為l 350 t和470 t。其中,諾氟沙星、環(huán)丙沙星和氧氟沙星的生產(chǎn)量最大[5]。而抗生素進(jìn)入人或動(dòng)物體內(nèi)后40%~90%以母體或代謝物的形式隨畜禽糞便進(jìn)入環(huán)境[6]。2010年,在中國排放到環(huán)境中畜禽糞便的量達(dá)45億t。環(huán)境調(diào)查發(fā)現(xiàn),F(xiàn)Qs抗生素在水體、沉積物、土壤等多種環(huán)境介質(zhì)中都有檢出[7-8]。在一些養(yǎng)殖場周圍的水體和土壤中,抗生素含量可達(dá)到異常高的水平[9-10]。目前,盡管國內(nèi)外定期推出抗生素用藥使用原則,但尚無FQs抗生素的環(huán)境標(biāo)準(zhǔn)。研究表明,環(huán)境中抗生素可能導(dǎo)致生物毒性和致病菌產(chǎn)生抗藥性基因等環(huán)境風(fēng)險(xiǎn)和生態(tài)風(fēng)險(xiǎn)[11],因此,抗生素引起的環(huán)境污染引起人們的高度關(guān)注和重視,對FQs抗生素的環(huán)境污染現(xiàn)狀、環(huán)境行為和生態(tài)毒性日益成為環(huán)境科學(xué)的研究熱點(diǎn)。本文介紹了FQs抗生素在環(huán)境多介質(zhì)中的污染現(xiàn)狀,綜述了它們的環(huán)境行為和生態(tài)毒理研究進(jìn)展。

        圖1 氟喹諾酮類抗生素的分子結(jié)構(gòu)Fig. 1 The molecular structure of the fluoroquinolone antibiotics

        1 FQs抗生素污染(FQs antibiotics pollution)

        1.1 水體FQs抗生素污染

        不同水環(huán)境(污水處理廠、醫(yī)院廢水、養(yǎng)殖廢水、地表水、地下水、飲用水)中FQs抗生素種類及污染水平見表1。由表1可知,水環(huán)境中FQs抗生素以諾氟沙星、環(huán)丙沙星、氧氟沙星污染較為普遍,其濃度也較高。FQs抗生素在污廢水中的殘留量與污水的來源和特性有關(guān),污水處理廠、醫(yī)院污水、養(yǎng)殖廢水中抗生素含量較高,濃度在μg·L-1級。如在美國在醫(yī)院廢水中檢出氧氟沙星的濃度達(dá)25.5~35.5 μg·L-1[12]。各地不同污水處理廠中FQs抗生素濃度差異很大,濃度范圍在0.013~13.625 μg·L-1之間。與污水相比,地表水和地下水中抗生素含量相對較低(濃度在ng·L-1級)。一般污水處理廠的抗生素去除效率在60%到90%,因此,盡管城市污水大部分進(jìn)入污水處理系統(tǒng),也可能存在抗生素對地表水、飲用水源和地下水污染[13]。

        1.2 土壤/沉積物中FQs抗生素的污染

        表2列出了不同地區(qū)土壤/沉積物中FQs抗生素的污染水平。由表2可以看出,不同國家和地區(qū)土壤/沉積物中FQs抗生素的種類和污染水平存在差異,這與抗生素的用量、畜禽糞肥的施用量、環(huán)境條件等差異相關(guān)[39]。土壤/沉積物中FQs抗生素以諾氟沙星、環(huán)丙沙星、恩諾沙星、氧氟沙星污染為主,含量在μg·kg-1~mg·kg-1數(shù)量級范圍。如在西班牙Morales-Muoz等[40]檢測到土壤中高濃度FQs抗生素,在施用糞肥的2處土壤中諾氟沙星濃度分別為6.2 mg·kg-1和9.8 mg·kg-1,環(huán)丙沙星的濃度分別為3 mg·kg-1和5.8 mg·kg-1。在瑞士Golet等[41]檢測到土壤中環(huán)丙沙星的濃度為1.96 mg·kg-1。中國山東省中北部和珠江三角洲菜地土壤中檢出諾氟沙星的最高濃度分別為288.3 μg·kg-1和150.2 μg·kg-1,環(huán)丙沙星的最高檢出濃度分別為651.6 μg·kg-1和119.8 μg·kg-1[42-43]。與其他環(huán)境介質(zhì)相比,污泥中FQs抗生素的污染更重,中國污泥中氧氟沙星殘留濃度高達(dá)21 mg·kg-1[44],其他國家FQs在污泥中檢出濃度在0.04~8.3 mg·kg-1范圍內(nèi)。在畜禽糞便中,Zhao等[45]檢測到我國豬糞中恩諾沙星濃度為33.26 mg·kg-1,環(huán)丙沙星濃度為33.98 mg·kg-1??梢?,我國土壤/沉積物中FQs抗生素污染相對較嚴(yán)重。

        表1 水體中氟喹諾酮類抗生素的污染水平Table 1 The concentrations of fluoroquinolone antibiotics in water

        表2 土壤/沉積物中氟喹諾酮類抗生素的污染水平Table 2 The concentrations of fluoroquinolone antibiotics in soils and sediments

        2 FQs抗生素的環(huán)境行為(Environmental behaviorsof FQs antibiotics)

        FQs抗生素按用途分為人用和獸用兩類。環(huán)境中FQs抗生素主要來源于工業(yè)排放、醫(yī)院排放、廢物垃圾、畜禽排泄、水產(chǎn)養(yǎng)殖等,進(jìn)入環(huán)境中的抗生素經(jīng)過吸附、遷移、轉(zhuǎn)化、降解(光解、水解和生物降解)等過程在土壤、水和沉積物等環(huán)境介質(zhì)間再分配。圖2 環(huán)境中FQs抗生素的來源和遷移途徑示意圖。

        圖2 環(huán)境中氟喹諾酮類抗生素的來源和遷移Fig. 2 Sources and pathways of fluoroquinolone antibiotics in environment

        2.1 環(huán)境中FQs的吸附

        抗生素進(jìn)入土壤途徑主要包括施用含有抗生素的糞肥、污泥和含抗生素的污水灌溉[58-59]。進(jìn)入土壤中的抗生素可通過吸附作用停留在土壤中,而影響其吸附的主要因素有土壤礦物質(zhì)、有機(jī)質(zhì)、多價(jià)態(tài)金屬陽離子及污泥等。FQs抗生素容易在土壤表層積累,向下層土的遷移很弱,這與-COOH對FQs抗生素吸附的貢獻(xiàn)較大有關(guān)[60-63];喹諾酮類抗生素吸附系數(shù)(Kd)值較大,吸附能力較強(qiáng),易在土壤中蓄積[64]。土壤對恩諾沙星具有較強(qiáng)的吸附作用,其中青紫泥田和黃泥砂田的Kd值較高, 分別在3 694~5 546 L·kg-1和3 800~4 696 L·kg-1之間,殘留在土壤中的低量恩諾沙星主要被吸附在固體顆粒上,不易釋放和隨水遷移[65]。一些多價(jià)態(tài)金屬陽離子是影響部分抗生素吸附行為的重要因素。FQs抗生素能和金屬離子(Ca2+、Mg2+、Fe3+或Al3+)形成絡(luò)合物,使其在環(huán)境介質(zhì)中較穩(wěn)定存在[66]。水體和污水處理中的FQs抗生素也可以通過污泥吸附的方式去除。FQs從廢水中轉(zhuǎn)移到活性污泥中,從而達(dá)到去除目的[67],環(huán)丙沙星通過污泥吸附去除率也達(dá)到60%[68]。

        2.2 環(huán)境中FQs的降解

        降解是環(huán)境抗生素重要的代謝途徑,包括光解、水解和生物降解。FQs抗生素在環(huán)境介質(zhì)中主要發(fā)生光解和生物降解等降解過程,很難發(fā)生水解作用[69-70]。

        FQs抗生素屬光降解敏感型,主要降解產(chǎn)物包括10多種有機(jī)物及F-和HCOO-等離子。FQs的光解路徑依賴于母體結(jié)構(gòu),對于哌嗪環(huán)N4-烷基取代的FQs,N4-烷基脫除為最主要的光解路徑,而對于N4-H結(jié)構(gòu)的FQs,光導(dǎo)致脫羧和羥基化脫氟為重要的光解反應(yīng)路徑[71-72]。FQs通過母體萘啶環(huán)上取代基的脫除而生成中間產(chǎn)物,易進(jìn)入發(fā)光菌的細(xì)胞而產(chǎn)生毒性[73-74]。Yuan等[75]研究發(fā)現(xiàn)環(huán)丙沙星在一定紫外光強(qiáng)下的降解產(chǎn)物對費(fèi)氏弧菌的毒性比母體化合物更強(qiáng)。表3列出了不同環(huán)境介質(zhì)中FQs抗生素光解的半衰期。由表3可以看出,光解是地表水中的FQs抗生素主要降解方式[76-77],但降解過程緩慢,導(dǎo)致在環(huán)境中的殘留時(shí)間比較久。沉積物中FQs的光解只發(fā)生在沉積物表層[78],且相當(dāng)緩慢。而土壤中吸附的FQs抗生素充分暴露于自然光下,能很好地促使它們降解[79]。Sturini等[80]研究了土壤中2種FQs抗生素恩諾沙星和麻保沙星的光解作用,實(shí)驗(yàn)結(jié)果表明,經(jīng)過50 h后2種FQs的降解率達(dá)到80%。

        表3 環(huán)境中氟喹諾酮類抗生素光解的半衰期Table 3 Half-life of fluoroquinolone antibiotics photolysis in environment

        生物降解是抗生素在環(huán)境中降解的重要的途徑。被生物降解的抗生素,可能轉(zhuǎn)化為生物體的組成部分或是最終轉(zhuǎn)化為無機(jī)或有機(jī)小分子。FQs的生物降解主要是母體結(jié)構(gòu)脫-H2O、-HF、-CO2等,打斷哌嗪取代基,產(chǎn)生一系列的降解產(chǎn)物。Ailette Prieto等[84]研究了白腐真菌對環(huán)丙沙星和諾氟沙星的降解過程,環(huán)丙沙星的降解產(chǎn)物為Cip-1(C15H17FN3O3), Cip-2(C13H12FN2O3), Cip-3(C17H19FN3O4), Cip-4(C17H17FN3O5)等。Alexy等[85]在密閉瓶中模擬18種抗生素的降解實(shí)驗(yàn)表明,氧氟沙星的生物降解率較低僅為7.5%,而其它類抗生素如芐青霉素和金霉素則被完全降解。Boxall等[86]報(bào)道了喹諾酮類抗生素在糞便中的半衰期為100 d。

        廢水處理中FQs的生物降解研究發(fā)現(xiàn),F(xiàn)Qs的生物降解<10%,幾乎可以忽略[87];而在活性污泥反應(yīng)器中進(jìn)行生物降解試驗(yàn),結(jié)果表明添加250 μg·kg-1的環(huán)丙沙星,2.5 d之后,去除率達(dá)50%[88];在硝化條件下,F(xiàn)Qs生物降解的去除率達(dá)60%[89];Li和Zhang等[90]研究了污泥中環(huán)丙沙星、氧氟沙星、恩諾沙星的生物降解,48 h之后,去除率達(dá)40%。目前,研究者多認(rèn)為,F(xiàn)Qs的主要去除機(jī)制是活性污泥的吸附,而非生物降解[91-92,87]。

        3 FQs抗生素的生態(tài)毒理(Ecological toxicologyof FQs antibiotics)

        相對較低濃度的恩諾沙星殘留對土壤微生物群落多樣性的影響不明顯,而相對較高濃度的恩諾沙星殘留則降低了其微生物群落的多樣性,即藥物濃度越高,則土壤微生物多樣性就越低[93]。馬驛等[94]發(fā)現(xiàn)恩諾沙星藥物濃度大于或等于0.1 μg·kg-1可顯著降低土壤微生物的豐富度和多樣性,藥物濃度越高,土壤微生物的豐富度和多樣性就越低。顯然,F(xiàn)Qs進(jìn)入土壤環(huán)境中會導(dǎo)致土壤微生物多樣性的下降。

        土壤呼吸作用反映了土壤微生物的總活性,可以用來作為監(jiān)測土壤生態(tài)環(huán)境變化的重要指標(biāo)[95]。諾氟沙星在濃度為小于1 mg·kg-1時(shí),對土壤微生物呼吸都有一定的抑制作用,濃度大于5 mg·kg-1為激活作用,激活作用隨著處理濃度的增加而升高,恩諾沙星對呼吸的影響隨濃度變化變化先激活后抑制[96]。恩諾沙星殘留在土壤中作用達(dá)2~4 d 時(shí),較低濃度的恩諾沙星對土壤呼吸作用有刺激作用,較高濃度則對其產(chǎn)生抑制作用[97]。王麗平等[98]也發(fā)現(xiàn),低質(zhì)量分?jǐn)?shù)的恩諾沙星(0.1 mg·kg-1)可刺激土壤中微生物的生長和呼吸作用,而高質(zhì)量分?jǐn)?shù)的恩諾沙星(2~20 mg·kg-1)會抑制土壤微生物活性和有機(jī)碳的礦化。恩諾沙星還影響土壤微生物功能,進(jìn)而對土壤特性和土壤呼吸作用、纖維分解作用、以及氨化作用等生態(tài)過程造成影響。研究還發(fā)現(xiàn),恩諾沙星可顯著抑制土壤脫氫酶和磷酸酶的活性,抑制土壤微生物的呼吸強(qiáng)度和硝化作用,土壤微生物群落功能多樣性(基于Biolog方法)隨恩諾沙星濃度升高顯著降低[99]??梢酝茰y抗生素對土壤微生物呼吸的激活作用,可能因?yàn)榭股乇荒承┪⑸锢米鳛樽陨砩L的碳源,促進(jìn)微生物的生長,對微生物呼吸起到促進(jìn)作用[100-101]。要明確抗生素對土壤微生物的影響機(jī)理,需要通過生理生化測定方法和分子生物學(xué)手段來分析測定更多的指標(biāo)來綜合評價(jià)。

        環(huán)境中抗生素殘留對植物的生態(tài)毒性效應(yīng)的研究目前報(bào)道的還較少且主要集中在實(shí)驗(yàn)室模擬條件下水生植物和陸生植物的毒性研究。Migliore等[102]研究表明低濃度恩諾沙星(50~100 μg·L-1)促進(jìn)了香瓜、萵苣、蘿卜和菜豆的生長,高濃度則顯著抑制了這4種作物主根、胚軸、子葉的長度,降低了葉片數(shù)量,其中對根的抑制效果最明顯,這可能與FQs抗生素在植物根部的蓄積量有關(guān),在根部蓄積量最多,因此表現(xiàn)出對根生長的抑制作用最為顯著。Boxall等[103]研究發(fā)現(xiàn),土培條件下1 mg·kg-1恩諾沙星顯著抑制胡蘿卜和萵苣生長,而相同濃度的阿莫西林、磺胺嘧啶、泰樂素、甲氧芐啶和氟苯尼考等其生長影響不顯著。金彩霞等[104]采用室內(nèi)生長箱培養(yǎng)方法,研究了環(huán)丙沙星對小麥、白菜和番茄種子發(fā)芽、根伸長、芽伸長的影響,結(jié)果表明,作物根伸長和芽伸長的抑制率隨著土壤中環(huán)丙沙星含量的增高而增大,兩者呈正相關(guān)(P< 0.05)。與根伸長和芽伸長抑制相比, 植物種子發(fā)芽對抗生素脅迫的敏感性較弱。

        FQs抗生素對水生生物藥害作用較強(qiáng)[105]。不同抗生素對水生生物的半最大效應(yīng)濃度(EC50,μg·L-1)影響有差異。表4列出了FQs抗生素對不同水生生物體的EC50,由表可知EC50介于μg·L-1~ mg·L-1之間。藍(lán)藻在水生生物體中最為敏銳,藻類和植物比無脊椎動(dòng)物和魚較敏銳。FQs濃度較高時(shí),會對生物體產(chǎn)生急性毒性,但是長期暴露在低濃度下產(chǎn)生的副作用也不容被忽視[106-107]。Martins等[108]實(shí)驗(yàn)表明,長期暴露在低濃度的環(huán)丙沙星下會對Daphnia magna產(chǎn)生慢性損害。

        FQs抗生素誘發(fā)水生動(dòng)物的毒性,魚類對FQs抗生素的代謝過程中會產(chǎn)生一些具有親電子活性的中間產(chǎn)物,可能誘導(dǎo)生物體內(nèi)抗氧化酶活性的變化,進(jìn)而造成機(jī)體的氧化應(yīng)激效應(yīng)[109],導(dǎo)致機(jī)體代謝紊亂,引發(fā)其他疾病。有研究發(fā)現(xiàn)恩諾沙星會引起魚腦和肝臟內(nèi)谷胱甘肽含量降低,過氧化氫酶和谷胱甘肽轉(zhuǎn)移酶活性發(fā)生變化,誘導(dǎo)魚體內(nèi)脂質(zhì)過氧化和神經(jīng)功能障礙等疾病[109],并證實(shí)在鱸魚體內(nèi)恩諾沙星主要是通過細(xì)胞色素代謝為環(huán)丙沙星,且恩諾沙星對細(xì)胞色素具有明顯的抑制作用[110]。

        表4 氟喹諾酮類抗生素對水生物種的半最大效應(yīng)濃度(EC50)Table 4 The concentration for 50% of maximal effect of fluoroquinolone antibiotics on aquatic species

        抗生素種類繁多,降解和代謝產(chǎn)物復(fù)雜,近年來,研究者對抗生素的聯(lián)合毒性作用主要集中在四環(huán)素和磺胺類抗生素[119-121],對FQs抗生素研究甚少,環(huán)境中共存的FQs抗生素及其轉(zhuǎn)化產(chǎn)物之間的聯(lián)合毒性作用還有待進(jìn)一步研究。

        4 結(jié)論(Conclusion)

        FQs抗生素作為環(huán)境中一類新型污染物,在環(huán)境中普遍存在,對人類健康和生態(tài)環(huán)境構(gòu)成威脅。FQs抗生素水體含量在ng·L-1~μg·L-1之間,土壤/沉積物含量在μg·kg-1~mg·kg-1數(shù)量級,其中諾氟沙星、環(huán)丙沙星、恩諾沙星、氧氟沙星濃度相對較高。環(huán)境行為和生態(tài)毒理研究表明,F(xiàn)Qs抗生素在環(huán)境介質(zhì)中吸附能力較強(qiáng),在環(huán)境中主要通過光解和生物降解等途徑降解;FQs抗生素污染導(dǎo)致土壤微生物的多樣性下降和微生物活性降低,抑制植物的生長發(fā)育,對水生生物產(chǎn)生生態(tài)毒性效應(yīng)。FQs抗生素的環(huán)境風(fēng)險(xiǎn)應(yīng)從環(huán)境多介質(zhì)層面進(jìn)行評估,同時(shí)應(yīng)加強(qiáng)對生態(tài)毒性機(jī)理以及與其他環(huán)境污染物的聯(lián)合毒性效應(yīng)研究。

        [1] 汪昆平, 章琴琴, 郭勁松, 等. 環(huán)境中氟喹諾酮類抗生素殘留檢測和去除研究進(jìn)展[J]. 安全與環(huán)境學(xué)報(bào), 2012, 12(2): 104-110

        Wang K P, Zhang Q Q, Xu Q Q, et al. Review of the determination of fluoroquinolones in the environment and its removal from the sewage [J]. Journal of Safety and Environment, 2012, 12(2): 104-110 (in Chinese)

        [2] Lipsky B A, Baker C A. Fluoroquinolone toxicity profiles: A review focusing on newer agents [J]. Clinical Infectious Disease, 1999, 28(2): 352-364

        [3] Hamad B. The antibiotics market [J]. Nature Reviews Drug Discovery, 2010, 9(9): 675-676

        [4] World Health Organization. Use of quinolones in food animals and potential impact on human health [R]. Geneva: WHO, 1998: 2-5

        [5] Sukul P, Spiteller M. Fluoroquinolone antibiotics in the environment [M]// Reviews of Environmental Contamination and Toxicology. New York: Springer, 2007: 131-162

        [6] Boulanger B, Vargo J D, Schnoor J L, et al. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product [J]. Environmental Science & Technology, 2005, 39(15): 5524-5530

        [7] Díaz-Cruz M S, Barceló D. Determination of antimicrobial residues and metabolites in the aquatic environment by liquid chromatography tandem mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2006, 386(4): 973-985

        [8] Khetan S K, Collins T J. Human pharmaceuticals in the aquatic environment: A challenge to green chemistry [J]. Chemical Reviews, 2007, 107(6): 2319-2364

        [9] Leung H W, Minh T B, Murphy M B, et al. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China [J]. Environment International, 2012, 42: 1-9

        [10] Gao L, Shi Y, Li W, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6): 665-671

        [11] 管荷蘭, 于海鳳, 王嘉宇. 氟喹諾酮類抗生素在土壤中的歸趨及其生態(tài)毒性研究進(jìn)展[J]. 生態(tài)學(xué)雜志, 2012, 31(12): 3228-3234

        Guan H L, Yu H F, Wang J Y. Fate and ecological toxicity of fluoroquinolone antibiotics in soil: A review [J]. Chinese Journal of Ecology, 2012, 31(12): 3228-3234 (in Chinese)

        [12] Brown K D, Kulis J, Thomson B, et al. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico [J]. Science of the Total Environment, 2006, 366(2): 772-783

        [13] 陳濤. HPLC/MS/MS分析廣州和珠海污水處理廠廢水中多種抗生素污染研究[D]. 廣州: 暨南大學(xué)理工學(xué)院, 2010

        Chen T. Research on a variety of antibiotics of wastewate treatment plants in Guangzhou and Zhuhai by HPLC/LC-MS analysis method [D]. Guangzhou: Jinan University, 2010 (in Chinese)

        [14] Lee H B, Peart T E, Svoboda M L. Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection, and liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2007, 1139(1): 45-52

        [15] Lindberg R H, Wennberg P, Johansson M I, et al. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden [J]. Environmental Science & Technology, 2005, 39(10): 3421-3429

        [16] Vieno N, Tuhkanen T, Kronberg L. Elimination of pharmaceuticals in sewage treatment plants in Finland [J]. Water Research, 2007, 41(5): 1001-1012

        [17] Costanzo S D, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment [J]. Marine Pollution Bulletin, 2005, 51(1-4): 218-223

        [18] Zuccato E, Castiglioni S, Bagnati R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment [J]. Journal of Hazardous Materials, 2010, 179(1-3): 1042-1048

        [19] Rosal R, Rodríguez A, Perdigón-Melón J A, et al. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation [J]. Water Research, 2010, 44(2): 578-588

        [20] Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling [J]. Water Research, 2007, 41(18): 4164-4176

        [21] Ghosh G, Okuda T, Yamashita N, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in Japan and their effects on bacterial ammonia oxidation [J]. Water Science and Technology, 2009, 59(4): 779-786

        [22] Xu W, Zhang G, Li X, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China [J]. Water Research, 2007, 41(19): 4526-4534

        [23] Lindberg R, Jarnheimer P ?, Olsen B, et al. Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards [J]. Chemosphere, 2004, 57(10): 1479-1488

        [24] Duong H A, Pham N H, Nguyen H T, et al. Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam [J]. Chemosphere, 2008, 72(6): 968-973

        [25] Chang X, Meyer M T, Liu X, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China [J]. Environmental Pollution, 2010, 158(5): 1444-1450

        [26] Sim W J, Lee J W, Lee E S, et al. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures [J]. Chemosphere, 2011, 82(2): 179-186

        [27] Zhou L J, Ying G G, Liu S, et al. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China [J]. The Science of the Total Environment, 2013, 444: 183-195

        [28] 陳永山, 章海波, 駱永明, 等. 典型規(guī)?;B(yǎng)豬場廢水中獸用抗生素污染特征與去除效率研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 2010, 30(11): 2205-2212

        Chen Y S, Zhang H B, Luo Y M, et al. A preliminary study on the occurrence and dissipation of antibiotics in swine wastewater [J]. Acta Scientiae Circumstantiae, 2010, 30(11): 2205-2212 (in Chinese)

        [29] Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment [J]. Ecological Indicators, 2008, 8(1): 1-13

        [30] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance [J]. Environmental Science & Technology, 2002, 36(6): 1202-1211

        [31] Ginebreda A, Muoz I, de Alda M L, et al. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain) [J]. Environment International, 2010, 36(2): 153-162

        [32] Castiglioni S, Fanelli R, Calamari D, et al. Methodological approaches for studying pharmaceuticals in the environment by comparing predicted and measured concentrations in River Po, Italy [J]. Regulatory Toxicology and Pharmacology, 2004, 39(1): 25-32

        [33] 葉計(jì)朋, 鄒世春, 張干, 等. 典型抗生素類藥物在珠江三角洲水體中的污染特征[J]. 生態(tài)環(huán)境, 2007, 16(2): 384-388

        Ye J P, Zou S C, Zhang G, et al. Characteristics of selected antibiotics in the aquatic environment of the Pearl River Delta, South China [J]. Ecology and Environment, 2007, 16(2): 384-388 (in Chinese)

        [34] Hu X, Zhou Q, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, Northern China [J]. Environmental Pollution, 2010, 158(9): 2992-2998

        [35] Xu W, Zhang G, Zou S, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China [J]. Water Environment Research, 2009, 81(3): 248-254

        [36] Zou S, Xu W, Zhang R, et al. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities [J]. Environmental Pollution, 2011, 159(10): 2913-2920

        [37] 張川, 胡冠九, 孫成. UPLC-ESI-MS/MS法同時(shí)測定水中7種抗生素[J]. 環(huán)境監(jiān)測管理與技術(shù), 2009, 21(3): 37-40

        Zhang C, Hu G J, Sun C. Simultaneous analysis of 7 antibioticsin water by ultra performance liquid chromatography-electrospray ionization-tandem massspectrometry [J]. The Administration and Technique of Environmental Monitoring, 2009, 21(3): 37-40 (in Chinese)

        [38] Vieno N M, H?rkki H, Tuhkanen T, et al. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant [J]. Environmental Science & Technology, 2007, 41(14): 5077-5084

        [39] Sarmah A K, Meyer M T, Boxall A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759

        [40] Morales-Muoz S, Luque-García J L, Luque de Castro M D. Continuous microwave-assisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples [J]. Journal of Chromatography A, 2004, 1059(1-2): 25-31

        [41] Golet E M, Strehler A, Alder A C, et al. Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction [J]. Analytical Chemistry, 2002, 74(21): 5455-5462

        [42] Xie Y, Li X W, Wang J F, et al. Spatial estimation of antibiotic residues in surface soils in a typical intensive vegetable cultivation area in China [J]. Science of the Total Environment, 2012, 430: 126-131

        [43] Li Y W, Wu X L, Mo C H, et al. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta Area, Southern China [J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7268-7276

        [44] Gao L, Shi Y, Li W, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6): 665-671

        [45] Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China [J]. Science of the Total Environment, 2010, 408(5): 1069-1075

        [46] Ferdig M, Kaleta A, Buchberger W. Improved liquid chromatographic determination of nine currently used (fluoro) quinolones with fluorescence and mass spectrometric detection for environmental samples [J]. Journal of Separation Science, 2005, 28(13): 1448-1456

        [47] Zhou L J, Ying G G, Zhao J L, et al. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in Northern China [J]. Environmental Pollution, 2011, 159(7): 1877-1885

        [48] Gao L, Shi Y, Li W, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Haihe River in China [J]. Journal of Environmental Monitoring, 2012, 14(4): 1247-1254

        [49] Spongberg A L, Witter J D. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio [J]. The Science of the Total Environment, 2008, 397(1): 148-157

        [50] Golet E M, Xifra I, Siegrist H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil [J]. Environmental Science & Technology, 2003, 37(15): 3243-3249

        [51] Lindberg R H, Wennberg P, Johansson M I, et al. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden [J]. Environmental Science & Technology, 2005, 39(10): 3421-3429

        [52] Lindberg R H, Olofsson U, Rendahl P, et al. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge [J]. Environmental Science & Technology, 2006, 40(3): 1042-1048

        [53] Xu W, Zhang G, Li X, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China [J]. Water Research, 2007, 41(19): 4526-4534

        [55] 邰義萍, 莫測輝, 吳小蓮, 等. 東莞市蔬菜基地土壤中喹諾酮類抗生素的污染特征研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 2011, 31(4): 839-845

        Tai Y P, Mo C H, Wu X L, et al. Occurrence of quinolone antibiotics in soils from vegetable fields of Dongguan City [J]. Acta Scientiae Circumstantiae, 2011, 31(4): 839-845 (in Chinese)

        [56] 劉鋒, 廖德潤, 李可, 等. 畜禽養(yǎng)殖基地磺胺類喹諾酮類和大環(huán)內(nèi)酯類抗生素污染特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2013, 32(4): 847-853

        Liu F, Liao D R, Li K, et al. Pollution characteristics of the sulfonamides, quinolones and macrolides in the samples collected from livestock and poultry feedlots [J]. Journal of Agro-Environment Science, 2013, 32(4): 847-885 (in Chinese)

        [57] Morales-Muoz S, Luque-García J L, Luque de Castro M D. Continuous microwave-assisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples [J]. Journal of Chromatography A, 2004, 1059(1): 25-31

        [58] Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China [J]. Water Research, 2008, 42(1): 395-403

        [59] Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment [J]. Ecological Indicators, 2008, 8(1): 1-13

        [60] Zhang J, Dong Y. Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China [J]. Journal of Hazardous Materials, 2008, 151(2-3): 833-839

        [61] Zhang H, Huang C H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite [J]. Chemosphere, 2007, 66(8): 1502-1512

        [62] Gu C, Karthikeyan K G. Interaction of tetracycline with aluminum and iron hydrous oxides [J]. Environmental Science & Technology, 2005, 39(8): 2660-2667

        [63] Gu C, Karthikeyan K G, Sibley S D, et al. Complexation of the antibiotic tetracycline with humic acid [J]. Chemosphere, 2007, 66(8): 1494-1501

        [64] Tolls J. Sorption of veterinary pharmaceuticals in soils: A review [J]. Environmental Science & Technology, 2001, 35(17): 3397-3406

        [65] 王麗平, 章明奎, 鄭順安. 土壤中恩諾沙星的吸附/解吸特性和生物學(xué)效應(yīng)[J]. 土壤通報(bào), 2008, 39(2): 393- 397

        Wang L P, Zhang M K, Zheng S A. Adsorption- desorption characteristics and biological effects of enrofloxacin in agricultural soils [J]. Journal of Soil Science, 2008, 39(2): 393- 397 (in Chinese)

        [66] Seifrtová M, Nováková L, Lino C, et al. An overview of analytical methodologies for the determination of antibiotics in environmental waters [J]. Analytica Chimica Acta, 2009, 649(2): 158-179

        [67] Lindberg R H, Olofsson U, Rendahl P, et al. Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge [J]. Environmental Science & Technology, 2006, 40(3): 1042-1048

        [68] Castiglioni S, Bagnati R, Fanelli R, et al. Removal of pharmaceuticals in sewage treatment plants in Italy [J]. Environmental Science & Technology, 2006, 40(1): 357-363

        [69] Halling-S?rensen B. Algal toxicity of antibacterial agents used in intensive farming [J]. Chemosphere, 2000, 40(7): 731-739

        [70] Kümmerer K. Antibiotics in the aquatic environment-A review-part I [J]. Chemosphere, 2009, 75(4): 417-434

        [71] 葛林科. 水中溶解性物質(zhì)對氯霉素類和氟喹諾酮類抗生素光解的影響[D]. 大連: 大連理工大學(xué), 2009

        Ge L K. Effects of aqueous dissolved matter on photodegradation of phenicol and fluoroquinolone antibiotics [D]. Dalian: Dalian University of Technology, 2009 (in Chinese)

        [72] Wammer K H, Korte A R, Lundeen R A, et al. Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin [J]. Water Research, 2013, 47(1): 439-448

        [73] Jiao S, Zheng S, Yin D, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria [J]. Chemosphere, 2008, 73(3): 377-382

        [74] Lu G H, Zhao Y H, Yang S G, et al. Quantitative structure-biodegradability relationships of substituted benzenes and their biodegradability in river water [J]. Bulletin of Environmental Contamination and Toxicology, 2002, 69(1): 111-116

        [75] Yuan F, Hu C, Hu X, et al. Photodegradation and toxicity changes of antibiotics in UV and UV/H(2)O(2) process [J]. Journal of Hazardous Materials, 2011, 185(2-3): 1256-1263

        [77] Ge L, Chen J, Wei X, et al. Aquatic photochemistry of fluoroquinolone antibiotics: Kinetics, pathways, and multivariate effects of main water constituents [J]. Environmental Science & Technology, 2010, 44(7): 2400-2405

        [78] Xu W H, Zhang G, Wai O W H, et al. Transport and adsorption of antibiotics by marine sediments in a dynamic environment [J]. Journal of Soils and Sediments, 2009, 9(4): 364-373

        [79] Speltini A, Sturini M, Maraschi F, et al. Analytical methods for the determination of fluoroquinolones in solid environmental matrices [J]. TrAC Trends in Analytical Chemistry, 2011, 30(8): 1337-1350

        [80] Sturini M, Speltini A, Maraschi F, et al. Sunlight-induced degradation of soil-adsorbed veterinary antimicrobials marbofloxacin and enrofloxacin [J]. Chemosphere, 2012, 86(2): 130-137

        [81] Lai H T, Lin J J. Degradation of oxolinic acid and flumequine in aquaculture pond waters and sediments [J]. Chemosphere, 2009, 75(4): 462-468

        [82] Knapp C W, Cardoza L A, Hawes J N, et al. Fate and effects of enrofloxacin in aquatic systems under different light conditions [J]. Environmental Science & Technology, 2005, 39(23): 9140-9146

        [83] 吳銀寶, 汪植三, 廖新悌, 等. 恩諾沙星在雞體中的排泄及其在雞糞中的降解[J]. 畜牧獸醫(yī)學(xué)報(bào), 2005, 6(10): 1069-1074

        Wu Y B, Wang Z S, Liao X D, et al. Study on the excretion of enrofloxacin in chicken and its degradation in chicken feces [J]. Acta Veterinaria et Zootechnica Sinica, 2005, 6(10): 1069-1074 (in Chinese)

        [84] Prieto A, M?der M, Rodil R, et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products [J]. Bioresource Technology, 2011, 102(23): 10987-10995

        [85] Alexy R, Kümpel T, Kümmerer K. Assessment of degradation of 18 antibiotics in the closed bottle test [J]. Chemosphere, 2004, 57(6): 505-512

        [86] Boxall A B A, Fogg L A, Blackwell P A, et al. Veterinary medicines in the environment [M]//Reviews of Environmental Contamination and Toxicology. New York: Springer, 2004: 1-91

        [87] Jia A, Wan Y, Xiao Y, et al. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant [J]. Water Research, 2012, 46(2): 387-394

        [88] Halling-S?rensen B, Lützh?ft H C H, Andersen H R, et al. Environmental risk assessment of antibiotics: Comparison of mecillinam, trimethoprim and ciprofloxacin [J]. Journal of Antimicrobial Chemotherapy, 2000, 46(s1): 53-58

        [89] Dorival-García N, Zafra-Gómez A, Navalón A, et al. Removal and degradation characteristics of quinolone antibiotics in laboratory-scale activated sludge reactors under aerobic, nitrifying and anoxic conditions [J]. Journal of Environmental Management, 2013, 120: 75-83

        [90] Li B, Zhang T. Biodegradation and adsorption of antibiotics in the activated sludge process [J]. Environmental Science & Technology, 2010, 44(9): 3468-3473

        [91] Conkle J L, Lattao C, White J R, et al. Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil [J]. Chemosphere, 2010, 80(11): 1353-1359

        [92] Golet E M, Xifra I, Siegrist H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil [J]. Environmental Science & Technology, 2003, 37(15): 3243-3249

        [93] 王加龍, 劉堅(jiān)真, 陳杖榴, 等. 恩諾沙星殘留對土壤微生物數(shù)量及群落功能多樣性的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2005, 11(1): 86-89

        Wang J L, Liu J Z, Chen Z L. Effects of enrofioxacin residue on number and community function diversity of soil microbes [J]. Chinese Journal of Applied & Environmental Biology, 2005, 11(1): 86-88 (in Chinese)

        [94] 馬驛, 陳杖榴, 曾振靈. 恩諾沙星對土壤微生物群落功能多樣性的影響[J]. 生態(tài)學(xué)報(bào), 2007, 27(8): 3400-3406

        Ma Y, Chen Z L, Zeng Z L. Effects of enrofloxacin on functional diversity of soil microbial communities [J]. Acta Ecologica Sinica, 2007, 27(8): 3400-3406 (in Chinese)

        [95] 劉鋒, 應(yīng)光國, 周啟星, 等. 抗生素類藥物對土壤微生物呼吸的影響[J]. 環(huán)境科學(xué), 2009, 30(5): 1280-1285

        Liu F, Ying Y G, Zhou Q X, et al. Effects of antimicrobial drugs on soil microbial respiration [J]. Environmental Science, 2009, 30(5): 1280-1285 (in Chinese)

        [96] 王金花, 朱魯生, 王軍, 等. 4種典型抗生素對土壤微生物呼吸的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2012, 30(11): 2232-2236

        Wang J H, Zhu L S, Wang J, et al. Effects of four typical antibiotics on soil microbial respiration [J]. Journal of Agro-Environment Science, 2012, 30(11): 2232-2236 (in Chinese)

        [97] 王加龍, 劉堅(jiān)真, 陳杖榴, 等. 恩諾沙星殘留對土壤微生物功能的影響[J]. 生態(tài)學(xué)報(bào), 2005, 25(2): 279-282

        Wang J L, Liu J Z, Chen Z L, et al. Effects of enrofloxacin residues on the functions of soil microbes [J]. Acta Ecologica Sinica, 2005, 25(2): 279-282 (in Chinese)

        [98] 王麗平, 章明奎, 鄭順安. 土壤中恩諾沙星的吸附-解吸特性和生物學(xué)效應(yīng)[J]. 土壤通報(bào), 2008, 39(2): 393-397

        Wang L P, Zhang M X, Zheng S A. Adsorption-desorption characteristics and biological effects of enrofloxacin in agricultural soils [J]. Chinese Journal of Soil Science, 2008, 39(2): 393-397 (in Chinese)

        [99] Kong W D, Zhu Y G, Fu B J, et al. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community [J]. Environmental Pollution, 2006, 143(1): 129-137

        [100] 董璐璽, 謝秀杰, 周啟星, 等. 新型環(huán)境污染物抗生素的分子生態(tài)毒理研究進(jìn)展[J]. 生態(tài)學(xué)雜志, 2010, 29(10): 2042-2048

        Dong L X, Xie X J, Zhou Q X, et al. Molecular ecotoxicology of antibiotics an emerging type of environmental contaminants: A review [J]. Chinese Journal of Ecology, 2010, 29(10): 2042-2048 (in Chinese)

        [101] 金彩霞, 劉軍軍, 陳秋穎, 等. 獸藥磺胺間甲氧嘧啶對土壤呼吸及酶活性的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2010, 29(2): 314-318

        Jin C X, Liu J J, Chen Q Y, et al. Effects of sulfamonomethoxine on soil respiration and enzyme activity [J]. Journal of Agro-Environment Science, 2010, 29(2): 314-318 (in Chinese)

        [102] Migliore L, Cozzolino S, Fiori M. Phytotoxicity to and uptake of enrofloxacin in crop plants [J]. Chemosphere, 2003, 52(7): 1233-1244

        [103] Boxall A B A, Johnson P, Smith E J, et al. Uptake of veterinary medicines from soils into plants [J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2288-2297

        [104] 金彩霞, 陳秋穎, 劉軍軍, 等. 兩種常用獸藥對作物發(fā)芽的生態(tài)毒性效應(yīng)[J]. 環(huán)境科學(xué)學(xué)報(bào), 2009, 29(3): 619-625

        Jin C X, Chen Q Y, Liu J J, et al. The eco-toxicological effect of two common veterinary drugs on crop germination [J]. Acta Scientiae Circumstantiae, 2009, 29(3): 619-625 (in Chinese)

        [105] Robinson A A, Belden J B, Lydy M J. Toxicity of fluoroquinolone antibiotics to aquatic organisms [J]. Environmental Toxicology and Chemistry, 2005, 24(2): 423-430

        [106] Fent K, Weston A A, Caminada D. Ecotoxicology of human pharmaceuticals [J]. Aquatic Toxicology, 2006, 76(2): 122-159

        [107] Santos L H, Araújo A N, Fachini A, et al. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment [J]. Journal of Hazardous Materials, 2010, 175(1-3): 45-95

        [108] Martins N, Pereira R, Abrantes N, et al. Ecotoxicological effects of ciprofloxacin on freshwater species: Data integration and derivation of toxicity thresholds for risk assessment [J]. Ecotoxicology, 2012, 21(4): 1167-1176

        [109] Wang N, Noemie N, Hien N N, et al. Adverse effects of enrofloxacin when associated with environmental stress in Tra catfish (Pangasianodon hypophthalmus) [J]. Chemosphere, 2009, 77(11): 1577-1584

        [110] Vaccaro E, Giorgi M, Longo V, et al. Inhibition of cytochrome P450 enzymes by enrofloxacin in the sea bass (Dicentrarchus labrax) [J]. Aquatic Toxicology, 2003, 62(1): 27-33

        [111] Robinson A A, Belden J B, Lydy M J. Toxicity of fluoroquinolone antibiotics to aquatic organisms [J]. Environmental Toxicology and Chemistry, 2005, 24(2): 423-430

        [112] Halling-S?rensen B, Lützh?ft H C H, Andersen H R, et al. Environmental risk assessment of antibiotics: Comparison of mecillinam, trimethoprim and ciprofloxacin [J]. Journal of Antimicrobial Chemotherapy, 2000, 46(s1): 53-58

        [113] Nie X, Gu J, Lu J, et al. Effects of norfloxacin and butylated hydroxyanisole on the freshwater microalga Scenedesmus obliquus [J]. Ecotoxicology, 2009, 18(6): 677-684

        [114] Brain R A, Johnson D J, Richards S M, et al. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test [J]. Environmental Toxicology and Chemistry, 2004, 23(2): 371-382

        [115] Yang L H, Ying G G, Su H C, et al. Growth-inhibiting effects of twelve antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata [J]. Environmental Toxicology and Chemistry, 2008, 27(5): 1201-1208

        [116] Lützh?ft H C H, Halling-S?rensen B, J?rgensen S E. Algal toxicity of antibacterial agents applied in Danish fish farming [J]. Archives of Environmental Contamination and Toxicology, 1999, 36(1): 1-6

        [117] Ebert I, Bachmann J, Kühnen U, et al. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms [J]. Environmental Toxicology and Chemistry, 2011, 30(12): 2786-2792

        [118] Kim J, Park J, Kim P G, et al. Implication of global environmental changes on chemical toxicity-effect of water temperature, pH, and ultraviolet B irradiation on acute toxicity of several pharmaceuticals in Daphnia magna [J]. Ecotoxicology, 2010, 19(4): 662-669

        [119] Eguchi K, Nagase H, Ozawa M, et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae [J]. Chemosphere, 2004, 57(11): 1733-1738

        [120] Zou X, Lin Z, Deng Z, et al. The joint effects of sulfonamides and their potentiator on Photobacterium phosphoreum: Differences between the acute and chronic mixture toxicity mechanisms [J]. Chemosphere, 2012, 86(1): 30-35

        [121] De Liguoro M, Fioretto B, Poltronieri C, et al. The toxicity of sulfamethazine to Daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim [J]. Chemosphere, 2009, 75(11): 1519-1524

        A Review on Environmental Behaviors and Ecotoxicology of Fluoroquinolone Antibiotics

        Meng Lei, Yang Bing, Xue Nandong*

        State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China

        18 November 2014 accepted 7 January 2015

        Fluoroquinolone antibiotics (FQs) were the broad-spectrum antibacterial drugs which were widely applied in livestock and poultry breeding industry to treat bacterial infection. The pollution of FQs in environment has been widely concerned. Environmental behaviors such as adsorption and desorption in water and soil/sediment and ecotoxicology of FQs were summarized in the paper. It is suggested that environmental behaviors and risk of FQs should be assessed at the level of environmental multimedia. More study should be conducted on ecological toxicity mechanism of FQs as well as on effects of the joint toxicity with other environmental pollutants.

        fluoroquinolone; antibiotics; pollution situation; environmental behaviors; adsorption and desorption; ecotoxicology

        國家高技術(shù)研究發(fā)展計(jì)劃(863)項(xiàng)目(2012AA06A304)

        孟磊(1987-),女,碩士,研究方向?yàn)橥寥乐杏袡C(jī)污染物環(huán)境化學(xué)行為,E-mail: zimin616@163.com;

        *通訊作者(Corresponding author), E-mail: xuend@craes.org.cn

        10.7524/AJE.1673-5897.20141118006

        2014-11-18 錄用日期:2015-01-07

        1673-5897(2015)2-76-13

        X171.5

        A

        薛南冬(1964-),男,理學(xué)博士,研究員,主要研究方向?yàn)橥寥烙袡C(jī)物污染及其環(huán)境修復(fù),土壤化學(xué)品污染與控制等,發(fā)表學(xué)術(shù)論文90余篇。

        孟磊, 楊兵, 薛南冬. 氟喹諾酮類抗生素環(huán)境行為及其生態(tài)毒理研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào), 2015, 10(2): 76-88

        Meng L, Yang B, Xue N D. A review on environmental behaviors and ecotoxicology of fluoroquinolone antibiotics [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 76-88 (in Chinese)

        猜你喜歡
        污染環(huán)境
        長期鍛煉創(chuàng)造體內(nèi)抑癌環(huán)境
        什么是污染?
        一種用于自主學(xué)習(xí)的虛擬仿真環(huán)境
        什么是污染?
        孕期遠(yuǎn)離容易致畸的環(huán)境
        不能改變環(huán)境,那就改變心境
        堅(jiān)決打好污染防治攻堅(jiān)戰(zhàn)
        環(huán)境
        孕期遠(yuǎn)離容易致畸的環(huán)境
        堅(jiān)決打好污染防治攻堅(jiān)戰(zhàn)
        亚洲国产综合在线亚洲区亚洲av| 亚洲av美女在线播放啊| 操B小视频国产| 久久精品国产9久久综合| 呦系列视频一区二区三区| 色婷婷久久一区二区三区麻豆| 国产在线视欧美亚综合| 一区二区国产视频在线| 日韩在线永久免费播放| 欧产日产国产精品精品| 无码超乳爆乳中文字幕| 日本久久大片中文字幕| 夜夜高潮夜夜爽国产伦精品| 男女野外做爰电影免费| 亚洲av午夜成人片精品| 国产一级黄色片在线播放| 永久免费人禽av在线观看 | 国产目拍亚洲精品一区二区| 蜜桃视频一区视频二区| 乱子轮熟睡1区| 青青青国产精品一区二区| 蜜桃成人永久免费av大| 扒开美女内裤舔出白水| 极品av麻豆国产在线观看| 囯产精品无码一区二区三区| 免费人成黄页在线观看国产| 久久99精品久久久久久噜噜| 大胆欧美熟妇xxbbwwbw高潮了| 国产一级做a爱视频在线| 九九久久精品国产免费av| 国产女人高潮叫床视频| 免费无码中文字幕A级毛片| 一区二区三区国产天堂| 亚洲av无码乱码在线观看富二代| 亚洲国产区男人本色| 风流少妇一区二区三区| 色狠狠一区二区三区中文| 欧美jizzhd精品欧美| 日本国产一区二区三区在线观看| 久久这里都是精品99| 色综合视频一区中文字幕|