鄒 云, 余資江, 林金棠
(貴州醫(yī)科大學, 貴州 貴陽 550004)
大鼠脊髓半橫斷損傷后膠質(zhì)細胞反應性增生的變化規(guī)律及意義*
鄒 云, 余資江**, 林金棠
(貴州醫(yī)科大學, 貴州 貴陽 550004)
目的: 探討脊髓損傷(SCI)后神經(jīng)膠質(zhì)細胞反應性增生的變化規(guī)律及其在損傷修復中的可能機制。方法: 將70只雄性成年SD大鼠隨機分為正常組(10只)、假手術組(10只)及模型組(行T10脊髓右側(cè)半切術,術后分為1,7,14,21及28 d組,每組各10只),術后于相應時間點采用BBB法行后肢神經(jīng)功能評分,評分后處死大鼠,分別行HE染色及免疫組化染色,觀察各組大鼠SCI后的損傷部位脊髓的組織形態(tài)學變化,GFAP及MBP陽性細胞。結(jié)果: (1)BBB評分,模型組大鼠麻醉清醒后即出現(xiàn)癱瘓,術后7 d傷側(cè)后肢運動功能開始好轉(zhuǎn),神經(jīng)功能逐漸恢復,14 d時恢復最明顯;(2)HE染色,模型組大鼠術后1 d可見損傷區(qū)域彌漫性出血,神經(jīng)元變性、壞死,7 d時炎性細胞浸潤,14~21 d時囊腔形成,術后28d脊髓損傷處被瘢痕組織替代;(3)GFAP陽性細胞,模型組GFAP表達較正常組及假手術組均增加,星形膠質(zhì)細胞增生、肥大,術后14 d星形膠質(zhì)細胞增生達到高峰;(4)MBP陽性細胞,模型組術后1 d MBP表達明顯降低,損傷區(qū)域內(nèi)髓鞘破壞,術后7 d軸突間隙增寬,MBP表達開始升高,術后14 d軸突間隙擴大。結(jié)論: SCI后,大鼠后肢神經(jīng)功能的恢復可能與星形膠質(zhì)細胞及少突膠質(zhì)細胞反應性增生有關。
脊髓損傷; 神經(jīng)膠質(zhì)細胞; 膠質(zhì)纖維酸性蛋白; 髓鞘堿性蛋白; 大鼠,Sprague-Dawley
脊髓損傷是由于外傷、炎癥、腫瘤等原因引起脊髓的橫貫性損害而出現(xiàn)損傷平面以下的運動、感覺、括約肌等功能障礙,其致殘率、發(fā)病率高,給患者帶來巨大的心理問題,也給家庭和社會帶來沉重的負擔?,F(xiàn)已明確脊髓損傷(spinal cord injury,SCI)的病理變化機制是原發(fā)性損傷和繼發(fā)性損傷[1]。繼發(fā)性損傷是神經(jīng)功能恢復的主要障礙,是目前研究的熱點。在繼發(fā)性損傷中膠質(zhì)細胞發(fā)揮著重要的作用,各種原因引起的中樞神經(jīng)系統(tǒng)(central nervous system,CNS)損傷,均能激活星形膠質(zhì)細胞,膠質(zhì)纖維酸性蛋白(glial fibrillary acidic protein, GFAP)合成增加[2],同時釋放大量神經(jīng)營養(yǎng)因子,參與神經(jīng)損傷修復;同時,星形膠質(zhì)細胞的突起包裹周圍的損傷區(qū)域,形成膠質(zhì)瘢痕[3-4]。少突膠質(zhì)細胞是CNS中第3類重要的細胞,主要參與髓鞘形成,其產(chǎn)生的髓鞘堿性蛋白(myelin basic protein, MBP)是髓鞘的特異性標記物,檢測MBP的表達情況,可反映損傷后神經(jīng)脫髓鞘病變的情況[5]。在SCI中,細胞增生和相關特異性標志蛋白表達變化是膠質(zhì)細胞活化的標志,本研究觀察SCI后神經(jīng)膠質(zhì)細胞反應性增生與大鼠后肢神經(jīng)功能恢復的變化規(guī)律,探討星形膠質(zhì)細胞和少突膠質(zhì)細胞反應性增生在SCI修復中的可能作用。
1.1 主要材料
伊紅、蘇木精購于北京索萊寶生物科技有限公,兔抗GFAP多克隆抗體、兔抗MBP多克隆抗體購于武漢博士德生物公司,RM2016輪轉(zhuǎn)切片機購于上海徠卡儀器有限公司,自備常規(guī)手術器械。
1.2 方法
1.2.1 實驗動物分組及手術方法 選擇健康成年雄性SD大鼠70只,體重250~300 g,隨機分為正常組(10只),假手術組(10只)及 模型組(手術后1,7,14,21及28 d組,每組10只),模型組參照黃國鈞等[6]的動物模型制作方法造模,行T10脊髓右側(cè)半切術。大鼠麻醉后常規(guī)消毒鋪巾,俯臥位固定大鼠,定位T10棘突。切開T9~T11皮膚,分離兩側(cè)棘突旁肌肉,暴露T9~T11棘突和椎板,固定T10椎板,小號持針器仔細摘除T10棘突、右側(cè)椎板至右側(cè)關節(jié)突,充分暴露手術視野,定位中線,將尖刀片刀背對著正中溝,刀鋒向右向脊髓內(nèi)垂直刺入切斷右半側(cè)脊髓,止血,青霉素沖洗切口,逐層縫合。假手術組只摘除棘突和椎板,正常組常規(guī)分籠飼養(yǎng)。
1.2.2 大鼠后肢神經(jīng)功能評分 各組于相應時間點采用BBB法[7]行后肢運動功能評分,觀察SCI后后肢功能恢復情況。BBB評分是根據(jù)動物髖、膝、踝、趾、前后肢協(xié)調(diào)運動等情況評定運動功能恢復情況,分22級,0~21分。采用雙盲、雙人獨立觀察記錄,最后取平均值。
1.2.3 觀察指標 各組于相應時間點灌注取材:大鼠麻醉后開胸,暴露心臟,經(jīng)左心室插管,先后灌注0~9%生理鹽水和4%多聚甲醛溶液各250 mL,取出以脊髓損傷區(qū)為中心長約3 cm完整脊髓組織。后固定24 h后行石蠟包埋,LEICA RM2016輪轉(zhuǎn)切片機縱形連續(xù)切片,片厚調(diào)整為5 μm,按“隔五取二”原則貼片,分別行HE染色觀察受損部位脊髓形態(tài)學改變,免疫組化染色觀察受損部位脊髓GFAP和MBP陽性細胞表達,按照說明書進行操作。
1.3 統(tǒng)計學方法
2.1 大鼠后肢神經(jīng)功能評分(BBB法)
正常組大鼠后肢感覺運動功能無異常。假手術組:大鼠麻醉清醒后即可四處活動,術后2~3 d傷側(cè)后肢功能基本恢復正常。模型組:大鼠麻醉清醒后即出現(xiàn)癱瘓癥狀,感覺功能明顯異常,術后7 d傷側(cè)后肢運動功能開始好轉(zhuǎn),神經(jīng)功能逐漸恢復,術后14 d時恢復最明顯。見表1。
2.2 受損部位脊髓組織學圖片
正常脊髓切片中神經(jīng)元結(jié)構(gòu)完整,數(shù)量較多,胞核大而圓,核仁明顯;模型組術后1 d損傷處可見彌漫性出血,細胞大量壞死;術后7 d出血明顯減少,炎性細胞浸潤;術后14 d時炎癥反應減輕,出血基本吸收完全,可見有囊腔形成;21 d時囊腔數(shù)量增多,直徑擴大;術后28 d損傷處脊髓完全被瘢痕組織替代。見圖1。
組別BBB評分正常組21.0±0.00假手術組19.0±0.71術后1d組 0±0.00(1)(2) 7d組 3.4±0.55(1)(2) 14d組 7.2±0.84(1)(2) 21d組 11.2±0.84(1) 28d組 13.6±0.55(1)
(1)與正常組比較,P<0.05;(2)與術后28 d組比較,P<0.05
注:a為正常組,b為術后1 d組, c為術后7 d組, d為術后14 d組, e為術后21 d組,f為術后28 d組
2.3 GFAP陽性細胞
正常脊髓切片中星形膠質(zhì)細胞數(shù)量較少,染呈棕黃色,突起細而長,形如蜘蛛;模型組術后第1 d,損傷周圍星形膠質(zhì)細胞開始增多。7 d時,星形膠質(zhì)細胞胞體肥大,突起增多,染色增強;14 d后星形膠質(zhì)細胞增生達到高峰,胞體肥大,突起增多增粗明顯,染色更深;21~28 d,星形膠質(zhì)細胞形態(tài)未見明顯變化,GFAP陽性細胞見圖2。SCI后不同時間點GFAP平均陽性細胞數(shù)量見表2。
2.4 MBP陽性細胞
正常脊髓切片可見髓鞘縱斷面為連續(xù)或不連續(xù)的條索狀,呈規(guī)整的網(wǎng)格結(jié)構(gòu)。模型組術后1 d髓鞘破壞,脊髓結(jié)構(gòu)疏松、紊亂,7 d時損傷區(qū)域內(nèi)軸突間隙增寬,14 d時軸突間隙擴大,21~28 d時,髓鞘正常結(jié)構(gòu)喪失,軸突間隙進一步擴大,空泡形成,MBP陽性細胞見圖3。SCI后不同時間點MBP平均陽性細胞數(shù)量見表2。
星形膠質(zhì)細胞是CNS中最為豐富的一類膠質(zhì)細胞,它在調(diào)控神經(jīng)遞質(zhì)、形成細胞外基質(zhì)等方面有重要作用。GFAP是星形膠質(zhì)細胞胞漿中長約8~10 nm的中間絲,是公認的星形膠質(zhì)細胞的特征性標志物。一般情況下,星形膠質(zhì)細胞的增生是其對神經(jīng)細胞損害的反應,在急、慢性中樞神經(jīng)系統(tǒng)損傷中,都能引起星形膠質(zhì)細胞活化,表現(xiàn)為細胞腫脹、肥大、突起增多和延長,GFAP免疫組化染色表達增強,可能對損傷有保護作用[8]。但脊髓損傷后GFAP過高水平表達,將會促進膠質(zhì)瘢痕的形成[9],影響神經(jīng)沖動的傳導和突觸的構(gòu)建[10-11]。
注:a為正常組,b為術后1 d組, c為術后7 d組, d為術后14 d組, e為術后21 d組,f為術后28 d組
注:a為正常組,b為術后1 d組, c為術后7 d組, d為術后14 d組, e為術后21 d組,f為術后28 d組
組別GFAPMBP正常組14.4±0.5413.8±0.83假手術組14.4±0.5513.8±0.84術后1d組17.0±0.70(2)3.6±0.54(1)(2) 7d組21.6±1.14(1)(2)7.8±0.83(1)(2) 14d組34.4±1.14(1)16.8±0.83 21d組33.6±0.89(1)16.0±0.71 28d組33.2±0.83(1)15.6±0.55
(1)與正常組比較,P<0.05;(2)與術后28 d組比較,P<0.05
髓鞘是腦白質(zhì)的重要成分,髓鞘的損傷可破壞信號傳導,從而對CNS的整體功能造成嚴重影響。MBP是神經(jīng)髓鞘特有的膜蛋白,位于髓鞘漿膜面,占髓鞘總蛋白的30%,由成熟少突膠質(zhì)細胞合成分泌,與酸性脂質(zhì)結(jié)合構(gòu)成髓鞘的基本成份,形成穩(wěn)定的膜狀板層結(jié)構(gòu),起著絕緣和快速傳導信號的作用,是維持神經(jīng)元髓鞘結(jié)構(gòu)和功能穩(wěn)定的重要物質(zhì)基礎。因而,檢測MBP可反映中樞神經(jīng)系統(tǒng)實質(zhì)性的損害,MBP是反映髓鞘脫失變化較特異敏感的指標[12]。在本實驗中,SCI后,大鼠傷側(cè)后肢BBB評分降至0分,隨后逐漸好轉(zhuǎn),14d時恢復最為明顯;相應的,早期GFAP表達開始上調(diào),星形膠質(zhì)細胞的數(shù)量增多,胞體增大,突觸增多增粗;MBP在SCI后急劇下降,隨后開始增加,至14 d時達高峰,提示脊髓損傷后刺激星形膠質(zhì)細胞及少突膠質(zhì)細胞反應性增生。這與孫文閣等[13]的研究結(jié)果相一致。
本實驗通過建立大鼠SCI模型,對SCI后的神經(jīng)功能恢復與神經(jīng)膠質(zhì)細胞反應性增生的變化規(guī)律進行了初步探討,SCI后,大鼠傷側(cè)后肢神經(jīng)功能逐漸恢復,星形膠質(zhì)細胞及少突膠質(zhì)細胞特異性標志物的表達也相應的發(fā)生變化,研究表明,增生的神經(jīng)膠質(zhì)細胞早期還可分泌相關神經(jīng)生長促進因子[14-15],建立損傷周圍微環(huán)境等,為受損神經(jīng)的軸突的修復再生提供機會;但在損傷晚期,因膠質(zhì)細胞過度增生,產(chǎn)生膠質(zhì)瘢痕及相關抑制分子[16],影響軸突和髓鞘的再生,故在損傷晚期神經(jīng)功能恢復幅度減少。因此, SCI后,大鼠后肢神經(jīng)功能的恢復可能與星形膠質(zhì)細胞及少突膠質(zhì)細胞反應性增生有關。
[1] 李俊麗,趙鐸.脊髓損傷機制研究進展[J].中國實用神經(jīng)疾病雜志, 2009(8):145-148.
[2] Schiffer D, Giordana MT, Meighei A, et al. Glial fibrillary acidic protein and vimentin the experimental glial reaction of the rat brain[J]. Brain Res, 1986 (1) :1102-1118.
[3] Wang D,Bordey A.The astrocyte odyssey[J].Prog Neurobiol, 2008(4):342-367.
[4] He ZG . Glial inhibition of CNS axon regeneration[J].Nat Rev Neurosci, 2006(7):617-627.
[5] 黃思琴,漆偉,孫善全,等. 電針對大鼠脊髓壓迫性損傷后髓鞘再生的影響[J].中華物理醫(yī)學與康復雜志, 2013(3):161-166.
[6] 黃國鈞, 黃勤挽. 醫(yī)藥實驗動物模型:制作與應用[M].化學工業(yè)出版社, 2007:78.
[7] Basso DM,Beattie MS,Bresnahan JC.A sensitive and reliable locomotor rating scale for open field testing in rats[J]. Neurotrauma, 1995(1):1-21.
[8] Nawashiro H, Messing A, Azzam N. Mice lacking GFAP are hypersensitive to traumatic cerebro-spinal injury[J].Neuroreport, 1998(8):1691-1696.
[9] Pekny M, Johansson CB, Eliasson C,et al.Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin[J].J cell Biol, 1999(3):503-514.
[10]Ridet J, Malhotra SK, Privat A, et al.Reactive astrocytes:cellular and molecular cues to biological function[J].Trends Neurosxi, 1997(8):570-577.
[11]Liesi P, KauppilaT. Induction of type lV collagen and other basement membrane associated proteins after spinal cord injury of the adult rat participate in formation of the glial scar[J].Exp Neurol, 2002(7),173:31-45.
[12]Yamazaki Y, Yada K, Morii S, et al.Diagnostic significance of serum neuro-specific endase and myelin basic protein assay in patients with acute head injury[J].SurgNeurol, 1995(3):267-269.
[13]孫文閣,李春鵬,張曄,等.脊髓半切損傷后髓鞘堿性蛋白及膠質(zhì)纖維酸性蛋白的表達及意義[J].蘇州大學學報:醫(yī)學版, 2005(6):947-950.
[14]Cheng H, Wu JP. Neuroprotection of glialcenline-derived neurotrophic factor in damaged spinal cords following eontusive [J].Neurosci Res, 2002(3):397-401.
[15]Kawai H, Arata N. Three-dimensional distribution of astrocytes in zebra fish spinal cord[J].Glia, 2001(3):406-413.
[16]張世民.中樞神經(jīng)軸突再生與修復[J].中國矯形外科雜志, 2001(7):692-694.
(2015-06-07收稿,2015-07-01修回)
中文編輯: 周 凌; 英文編輯: 劉 華
The Significance of Proliferation of Glial Cells Induced by Experimental Hemi-sectioned Spinal Cord Injury
ZOU Yun, YU Zijiang, LIN Jintang
(GuizhouMedicalUniversity,Guiyang550004,Guizhou,China)
Objective: To explore the change rule of neurogliocyte reactive hyperplasia and its possible mechanism in damage repair after spinal cord injury (SCI). Methods: Seventy healthy adult male SD rats were selected and randomly divided into 3 groups: normal control group, sham group and SCI model groups (1 day after SCI, 7 day after SCI, 14 day after SCI, 21 day after SCI, 28 day after SCI, respectively, 10 rats per group). After the establishment of animal model of SCI, the functional recovery of the hind limb was evaluated by BBB score (The Basso, Beattie and Bresnahan locomotor rating scale) at 1 d,7 d,14 d, 21 d and 28 d. Then the rats were sacrificed to undergo HE staining and immunohistochemical staining. The morphological change of spinal cord, and GFAP and MBP positive cells after SCI were observed through optical microscope. Results: In BBB score evaluation, the rats of SCI model groups paralyzed after anesthetic awareness. The neurologic function of the SCI rats' hind limb began to recover gradually, with the recovery being most obvious at 14d. HE staining showed that 1d after SCI operation, in injured area diffusing hemorrhage, neuronal degeneration and necrosis could be observed. At 7 d after SCI operation, inflammatory cell infiltration could be observed. Capsule cavity formed at 14~21 d after SCI operation. At 28 d after SCI operation, spinal cord injury was replaced by cicatricial tissue. Immunohistochemistry staining showed that the expression of GFAP positive cells in SCI model groups increased compared with normal control group and sham group. The astrocyte in the SCI area proliferated and hypertrophied, with hyperplasia being most obvious at 14 d after SCI operation. The expression of MBP positive cells decreased obviously at 1 d after SCI operation. The myelin sheath in the SCI area was destroyed. At 7 d after SCI operation, the axon clearance began to widen, the expression of MBP positive cells began to increase. At 14 d after SCI operation, the axon clearance continued to widen. Conclusion: After SCI operation, the recovery of neurologic function of rats' hind limb may be related with reactive hyperplasia of astrocyte and oligodendrocyte.
spinal cord injury; microglia; glial fibrillary acidic protein; myelin basic protein; rats, Sprague-Dawley
國家自然科學基金項目(81060108)
時間:2015-08-07
http://www.cnki.net/kcms/detail/52.5012.R.20150807.2244.018.html
R322.81
A
1000-2707(2015)09-0905-05
**通信作者 E-mail:893767473@qq.com