亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Exact Solutions for Unsteady Riabouchinsky Flow of Couple Stress Fluids

        2015-05-04 09:55:24ZHANGDaoxiangCHENGHang
        關(guān)鍵詞:牛頓流體安徽師范大學(xué)計(jì)算機(jī)科學(xué)

        ZHANG Dao-xiang, CHENG Hang

        (College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)

        Exact Solutions for Unsteady Riabouchinsky Flow of Couple Stress Fluids

        ZHANG Dao-xiang, CHENG Hang

        (College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)

        This paper aims to investigate analytical solutions for the Riabouchinsky time-dependent flows of couple stress fluids. By assuming certain forms of the streamfunction, we obtain some exact steady and unsteady solutions. The results show that streamfunction and velocity components are all strongly dependent upon the material parameter of couple stress fluids.

        couple stress fluid; newtonian flow; Riabouchinsky flow

        Classification No: O175 Document code:A Paper No:1001-2443(2015)05-0414-05

        Couple stress fluids, such as blood fluids, lubricants and electro-rheological fluids, are particularly important because of their widespread industrial and scientific applications[1-5]. The main characteristic of couple stress fluids is that the stress tensor is anti-symmetric and their accurate flow behaviour can’t be predicted by the classical Newtonian theory. To obtain exact solutions, a common method is to assume certain physical or geometrical properties of the flow field aprior and solve the equations by this method described by Nemenyi[6]. The flow problems of Newtonian fluid, second-grade fluid and couple stress fluid have been also studied by this method[7-9].

        Taking the streamfunction to be linear in one of the space dimensions, Riabouchinsky[10]investigated the steady caseψ(x,y)=yf(x).Hayatet.al[11-12]gaveanalternateapproachtofindexactsolutionsofRiabouchinskyflowsofasecondgradefluidforsteadyandunsteadycases.Inthispaper,theanalyticalsolutionsforunsteadyRiabouchinskyflowsofcouplestressfluidsareconstructed.Meanwhilethestreamlinesareplottedinsomecasestounderstandtheflowbehavior.

        1 Basic Equations

        The flow of a viscous incompressible non-Newtonian couple stress fluid, neglecting thermal effects and body forces, is governed by (Stokes[1]):

        (1)

        (2)

        Letusconsidertheplanemotionofanunsteadycouplestressflowinwhichthevelocityfieldisoftheform

        (3)

        and the generalized pressurep′andvorticityωfunctionsaredefinedas

        (4)

        (5)

        Substitution of (3), (4) and (5) in equations (1) and (2), and elimination of the generalized pressure by cross differentiation yields

        (6)

        (7)

        Continuity equation (6) implies the existence of a streamfunctionψ(x,y,t)suchthat

        (8)

        Substitutionof(8)in(7)yields:

        (9)

        2 Solutions of Riabouchinsky flows

        2.1 solution of the type ψ=yξ(x,t)

        We consider the plane unsteady flow and examine the solution of (9) of the form:

        ψ=yξ(x,t)

        (10)

        whereξ(x,t)isanarbitraryfunctionofthevariablesx,t.Substituting(10)in(9),weobtainthefollowingequation

        ξxxt-ξxξxx+ξξxxx-ν1ξxxxx+ν2ξxxxxxx=0

        (11)

        inwhichthesubscriptsindicatethederivativeswithrespecttothevariablesx,t.

        Letusconsideraparticularsolutionof(11)oftheform

        ξ(x,t)=-V+F(x+Vt)=-V+F(s)

        (12)

        whereVisaconstantandFsatisfiesthedifferentialequation

        FF?-F′F″-ν1F(4)+ν2F(6)=0

        (13)

        Forthesolutionoftheequation(13)wewrite

        F(s)=δ(1+λeσs)

        (14)

        inwhichδ,λ,σarearbitraryrealconstants.Makinguseof(14)into(13),wehave

        δ=ν1σ-ν2σ3

        (15)

        Thusthestreamfunctionwillbe

        ψ=y[-V+(ν1σ-ν2σ3)(1+λeσ(x+Vt))]

        (16)

        Thevelocitycomponentsbecome

        u(x,y,t)=-V+(ν1σ-ν2σ3)(1+λeσ(x+Vt))

        (17)

        v(x,y,t)=-λy(ν1σ2-ν2σ4)eσ(x+Vt))

        (18)

        Thestreamlineflowforψ=Ω1isgivenbythefunctionalform

        (19)

        Inaddition,whenV=0,thesolutionreducestosteadystatesolution,i.e.ψ=y(ν1σ-ν2σ3)(1+λeσ(x))

        u(x,y,t)=(ν1σ-ν2σ3)(1+λeσ(x))

        (20)

        v(x,y,t)=-λy(ν1σ2-ν2σ4)eσ(x)

        (21)

        Thestreamlineflowforψ=Ω1isgivenbythefunctionalform

        (22)

        Weconsideranothersolutionofthetype

        ψ=yξ(x,t)+η(x,t)

        (23)

        Substitutionof(23)intoequation(9)gives

        yξxxt+ηxxt-(yξx+ηx)ξxx+ξ(yξxxx+ηxxx)-ν1(yξxxxx+ηxxxx)+ν2(yξxxxxxx+ηxxxxxx)=0.(24)

        Fromtheaboveequationweobtainthefollowingdifferentialequationssatisfiedbyξandη.

        ξxxt-ξxξxx+ξξxxx-ν1ξxxxx+ν2ξxxxxxx=0

        (25)

        ηxxt-ηxξxx+ξηxxx-ν1ηxxxx+ν2ηxxxxxx=0

        (26)

        Weobservethatthedifferentialequation(25)forξisthesameastheequation(11)whichsolutionisgivenin(12), (14)and(15).Inaddition,aparticularsolutionof(26)isη=ξ(x,t)andthisfactisusefulforthepurposeofpursuingfurthersolutions.Inparticular,ifξisgivenin(12), (14)and(15),wealsoconsidertheformofη

        η=-V+G(x+Vt)=-V+G(s)

        (27)

        Insertingthesolutionofξand(27)intoequation(26),weget

        -λ(ν1σ3-ν2σ5)eσsK(s)+(ν1σ-ν2σ3)(1+λeσs)K″(s)-ν1K?(s)+ν2K(5)(s)=0

        (28)

        whereK(s)=G′(s).Itisnotedthatthedifferentialequation(28)forKisalinearordinarydifferentialequation.Itisnoteasytoobtainthegeneralsolution,soweconsiderthefollowingspecialcases:

        Case 1. whenν1σ-ν2σ3=0, (28)reducesto

        -ν1K?(s)+ν2K(5)(s)=0

        (29)

        Thesolutionofaboveequationis

        (30)

        Weonlyconsiderν1ν2>0.ThenG(s)willbe

        (31)

        (32)

        (33)

        u(x,y,t)=-V

        (34)

        Thestreamlineflowforψ=Ω2isgivenbythefunctionalform

        (35)

        Figure2demonstratesthestreamlinespatternof(32)forV=1,ν1=0.3,ν2=0.4,t=1andb0=b2=b4=0,b1=b3=1.Ifν2=0,thefluidreducestoaNewtonianfluid.Thenwecangetσ=0andψ=-V-Vy+b0+b1(x+Vt)+b2(x+Vt)2+b3(x+Vt)3.AssumingagainthatV=0,weobtainasteadygeneralsolution.

        ψ=b0+b1x+b2x+b3x

        (36)

        u(x,y)=0

        (37)

        v(x,y)=-b1-2b2x-3b3x

        (38)

        Ifb3≠0,itrepresentsthestreamlinesofPoiseuilleflows.Ifb3=0,b2≠0,itdenotestheSimpleCouetteflowswhosevelocityprofileislinearfunctionofx.Figure3representsthesimpleparallelCouetteflowof(36)forb0=-9,b1=-1,b2=10,b3=0anditiscomposedbyparallellines.

        Case 2. whenσ=1andλ=0, (28)reducesto

        (ν1-ν2)K″(s)-ν1K?(s)+ν2K(5)(s)=0

        (39)

        Thesolutionofaboveequationis

        (40)

        (41)

        (44)

        Thestreamlineflowforψ=Ω3isgivenbythefunctionalform

        Figure4demonstratesthestreamlinespatternof(42)forV=1,ν1=0.3,ν2=0.4,σ=1,t=1andd0=d1=d2=d5=0,d3=d4=1.

        3 Conclusions

        [1] STOKES V K. Couple stress in fluid[J]. The physics of fluids, 1966,9:1709-1715.

        [2] HAYAT T, MUSTAFA M, IQBAL Z, ALSAEDI A. Stagnation-point flow of couple stress fluid with melting heat transfer[J]. Applied Mathematics and Mechanics (English Edition), 2013,34(2):167-176.

        [3] HADJESFANDIARI A R, HAJESFANDIARI A, DARGUSH G F. Skew symmetric couple-stress fluid mechanics[J]. Acta Mechanica, 2015,226:871-895.

        [4] RAMESH K, DEVAKAR M. Effects of heat and mass transfer on the peristaltic transport of MHD couple stress fluid through porous medium in a vertical asymmetric channel[J]. Journal of Fluids, 2015,163832.

        [5] ZHANG D X, FENG S X, LU Z M, LIU Y L.Exact solutions for steady flow of second-grad fluid[J]. Journal of Shanghai University(English Edition), 2009,13(4):340-344.

        [6] NEMENYI P F. Recent developments in inverse and semi-inverse methods in the mechanics of continua[J]. Advances in Applied Mechanics, 1951,2(11):123-151.

        [7] HUI W H, Exact solutions of the 2-dim navier-stokes equations[J]. J Appl Math Phys ZAMP, 1987,38(5):689-702.

        [8] LABROPULU F. A few more exact solutions of a second grade fluid via inverse method[J]. Mechanics Research Communications, 2000,27(6):713-720.

        [9] ZHANG D X, SHI L R. Exact solutions of couple stress fluids, Chinese Quarterly of Mechanics, 2010,31(2):159164.

        [10] Riabouchinsky D. Some considerations regarding plane irrotational motion of a liquid[J]. Compt Rend Hebd Seanc Acad Sci(Paris), 1924,179:1133-1136.

        [11] ALSAEDI A, ALI N, TRIPATHI D, HAYAT T. Peristaltic flow of couple stress fluid through uniform porous medium, Applied Mathematics and Mechanics(English Edition), 2014,35(4):469-480.

        [12] HAYAT T, MOHYUDDIN M R, ASGHAR S. Some inverse solutions for unsteanian fluid[J]. Tamsui Oxford Journal of Mathematical Sciences, 2005,21(1):1-20.

        張道祥,程航.偶應(yīng)力流體的Riabouchinsky型精確解[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2015,38(5):414-418.

        偶應(yīng)力流體的Riabouchinsky型精確解

        張道祥, 程 航

        (安徽師范大學(xué) 數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,安徽 蕪湖 241000)

        本文目的是研究時(shí)間依賴的Riabouchinsky型偶應(yīng)力流體的精確解.通過預(yù)設(shè)流函數(shù)的特定形式,我們獲得了流體運(yùn)動(dòng)的定常和非定常解.結(jié)果表明,偶應(yīng)力流體的速度場強(qiáng)烈地依賴于流體的物質(zhì)參數(shù).

        偶應(yīng)力流體;牛頓流體;Riabouchinsky流

        10.14182/J.cnki.1001-2443.2015.05.002

        date:2014-09-03

        Supported by National Nature Science Foundation of China(10302002);the Foundation of Outstanding Young Talent in University of Anhui Province of China(2011SQRL022ZD).

        Biography: Daoxiang Zhang(1979-), male, born at Tianchang, Anhui, associate professor, major in stability of differential equations and fluid mechanics.

        猜你喜歡
        牛頓流體安徽師范大學(xué)計(jì)算機(jī)科學(xué)
        非牛頓流體
        《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
        什么是非牛頓流體
        少兒科技(2019年3期)2019-09-10 07:22:44
        探討計(jì)算機(jī)科學(xué)與技術(shù)跨越式發(fā)展
        區(qū)別牛頓流體和非牛頓流體
        Hemingway’s Marriage in Cat in the Rain
        淺談?dòng)?jì)算機(jī)科學(xué)與技術(shù)的現(xiàn)代化運(yùn)用
        電子制作(2017年2期)2017-05-17 03:55:01
        重慶第二師范學(xué)院計(jì)算機(jī)科學(xué)與技術(shù)專業(yè)簡介
        首款XGEL非牛頓流體“高樂高”系列水溶肥問世
        《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
        国产精品视频一区二区噜噜| 免费在线观看av不卡网站| 色一情一乱一伦麻豆| 热re99久久精品国产99热| 中文字幕久久久人妻无码| 亚洲天堂一区二区三区视频| 人妻少妇哀求别拔出来| 精品成人av一区二区三区| 国产精品毛片无码久久| 亚洲大片一区二区三区四区| 亚洲视频在线一区二区| 美女视频黄的全免费视频网站| 最新无码国产在线播放| 亚洲在线一区二区三区| 97成人精品国语自产拍| 少妇性荡欲视频| 国产国拍亚洲精品永久不卡| 国产视频免费一区二区| 国产在线第一区二区三区| 老色鬼永久精品网站| 国产欧美日韩专区毛茸茸| 亚洲精品中文字幕乱码| 国产精品成人免费视频一区| 国语对白做受xxxxx在线中国 | 亚洲双色视频在线观看| 国产一区亚洲二区三区极品 | 免费 无码 国产精品| 日韩精品一区二区亚洲观看av | 日本xxxx色视频在线播放| 久久777国产线看观看精品| 亚洲精品一区二区| 视频在线观看一区二区三区| 在线观看一区二区三区国产| 亚洲色欲久久久综合网东京热| 99久久免费看少妇高潮a片特黄| 五码人妻少妇久久五码| 亚洲国产美女高潮久久久| 无码人妻精品丰满熟妇区| 久久精品成人91一区二区| 人妻中文字幕一区二区视频| 玩弄丰满奶水的女邻居|