亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Exact Solutions for Unsteady Riabouchinsky Flow of Couple Stress Fluids

        2015-05-04 09:55:24ZHANGDaoxiangCHENGHang
        關(guān)鍵詞:牛頓流體安徽師范大學(xué)計(jì)算機(jī)科學(xué)

        ZHANG Dao-xiang, CHENG Hang

        (College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)

        Exact Solutions for Unsteady Riabouchinsky Flow of Couple Stress Fluids

        ZHANG Dao-xiang, CHENG Hang

        (College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)

        This paper aims to investigate analytical solutions for the Riabouchinsky time-dependent flows of couple stress fluids. By assuming certain forms of the streamfunction, we obtain some exact steady and unsteady solutions. The results show that streamfunction and velocity components are all strongly dependent upon the material parameter of couple stress fluids.

        couple stress fluid; newtonian flow; Riabouchinsky flow

        Classification No: O175 Document code:A Paper No:1001-2443(2015)05-0414-05

        Couple stress fluids, such as blood fluids, lubricants and electro-rheological fluids, are particularly important because of their widespread industrial and scientific applications[1-5]. The main characteristic of couple stress fluids is that the stress tensor is anti-symmetric and their accurate flow behaviour can’t be predicted by the classical Newtonian theory. To obtain exact solutions, a common method is to assume certain physical or geometrical properties of the flow field aprior and solve the equations by this method described by Nemenyi[6]. The flow problems of Newtonian fluid, second-grade fluid and couple stress fluid have been also studied by this method[7-9].

        Taking the streamfunction to be linear in one of the space dimensions, Riabouchinsky[10]investigated the steady caseψ(x,y)=yf(x).Hayatet.al[11-12]gaveanalternateapproachtofindexactsolutionsofRiabouchinskyflowsofasecondgradefluidforsteadyandunsteadycases.Inthispaper,theanalyticalsolutionsforunsteadyRiabouchinskyflowsofcouplestressfluidsareconstructed.Meanwhilethestreamlinesareplottedinsomecasestounderstandtheflowbehavior.

        1 Basic Equations

        The flow of a viscous incompressible non-Newtonian couple stress fluid, neglecting thermal effects and body forces, is governed by (Stokes[1]):

        (1)

        (2)

        Letusconsidertheplanemotionofanunsteadycouplestressflowinwhichthevelocityfieldisoftheform

        (3)

        and the generalized pressurep′andvorticityωfunctionsaredefinedas

        (4)

        (5)

        Substitution of (3), (4) and (5) in equations (1) and (2), and elimination of the generalized pressure by cross differentiation yields

        (6)

        (7)

        Continuity equation (6) implies the existence of a streamfunctionψ(x,y,t)suchthat

        (8)

        Substitutionof(8)in(7)yields:

        (9)

        2 Solutions of Riabouchinsky flows

        2.1 solution of the type ψ=yξ(x,t)

        We consider the plane unsteady flow and examine the solution of (9) of the form:

        ψ=yξ(x,t)

        (10)

        whereξ(x,t)isanarbitraryfunctionofthevariablesx,t.Substituting(10)in(9),weobtainthefollowingequation

        ξxxt-ξxξxx+ξξxxx-ν1ξxxxx+ν2ξxxxxxx=0

        (11)

        inwhichthesubscriptsindicatethederivativeswithrespecttothevariablesx,t.

        Letusconsideraparticularsolutionof(11)oftheform

        ξ(x,t)=-V+F(x+Vt)=-V+F(s)

        (12)

        whereVisaconstantandFsatisfiesthedifferentialequation

        FF?-F′F″-ν1F(4)+ν2F(6)=0

        (13)

        Forthesolutionoftheequation(13)wewrite

        F(s)=δ(1+λeσs)

        (14)

        inwhichδ,λ,σarearbitraryrealconstants.Makinguseof(14)into(13),wehave

        δ=ν1σ-ν2σ3

        (15)

        Thusthestreamfunctionwillbe

        ψ=y[-V+(ν1σ-ν2σ3)(1+λeσ(x+Vt))]

        (16)

        Thevelocitycomponentsbecome

        u(x,y,t)=-V+(ν1σ-ν2σ3)(1+λeσ(x+Vt))

        (17)

        v(x,y,t)=-λy(ν1σ2-ν2σ4)eσ(x+Vt))

        (18)

        Thestreamlineflowforψ=Ω1isgivenbythefunctionalform

        (19)

        Inaddition,whenV=0,thesolutionreducestosteadystatesolution,i.e.ψ=y(ν1σ-ν2σ3)(1+λeσ(x))

        u(x,y,t)=(ν1σ-ν2σ3)(1+λeσ(x))

        (20)

        v(x,y,t)=-λy(ν1σ2-ν2σ4)eσ(x)

        (21)

        Thestreamlineflowforψ=Ω1isgivenbythefunctionalform

        (22)

        Weconsideranothersolutionofthetype

        ψ=yξ(x,t)+η(x,t)

        (23)

        Substitutionof(23)intoequation(9)gives

        yξxxt+ηxxt-(yξx+ηx)ξxx+ξ(yξxxx+ηxxx)-ν1(yξxxxx+ηxxxx)+ν2(yξxxxxxx+ηxxxxxx)=0.(24)

        Fromtheaboveequationweobtainthefollowingdifferentialequationssatisfiedbyξandη.

        ξxxt-ξxξxx+ξξxxx-ν1ξxxxx+ν2ξxxxxxx=0

        (25)

        ηxxt-ηxξxx+ξηxxx-ν1ηxxxx+ν2ηxxxxxx=0

        (26)

        Weobservethatthedifferentialequation(25)forξisthesameastheequation(11)whichsolutionisgivenin(12), (14)and(15).Inaddition,aparticularsolutionof(26)isη=ξ(x,t)andthisfactisusefulforthepurposeofpursuingfurthersolutions.Inparticular,ifξisgivenin(12), (14)and(15),wealsoconsidertheformofη

        η=-V+G(x+Vt)=-V+G(s)

        (27)

        Insertingthesolutionofξand(27)intoequation(26),weget

        -λ(ν1σ3-ν2σ5)eσsK(s)+(ν1σ-ν2σ3)(1+λeσs)K″(s)-ν1K?(s)+ν2K(5)(s)=0

        (28)

        whereK(s)=G′(s).Itisnotedthatthedifferentialequation(28)forKisalinearordinarydifferentialequation.Itisnoteasytoobtainthegeneralsolution,soweconsiderthefollowingspecialcases:

        Case 1. whenν1σ-ν2σ3=0, (28)reducesto

        -ν1K?(s)+ν2K(5)(s)=0

        (29)

        Thesolutionofaboveequationis

        (30)

        Weonlyconsiderν1ν2>0.ThenG(s)willbe

        (31)

        (32)

        (33)

        u(x,y,t)=-V

        (34)

        Thestreamlineflowforψ=Ω2isgivenbythefunctionalform

        (35)

        Figure2demonstratesthestreamlinespatternof(32)forV=1,ν1=0.3,ν2=0.4,t=1andb0=b2=b4=0,b1=b3=1.Ifν2=0,thefluidreducestoaNewtonianfluid.Thenwecangetσ=0andψ=-V-Vy+b0+b1(x+Vt)+b2(x+Vt)2+b3(x+Vt)3.AssumingagainthatV=0,weobtainasteadygeneralsolution.

        ψ=b0+b1x+b2x+b3x

        (36)

        u(x,y)=0

        (37)

        v(x,y)=-b1-2b2x-3b3x

        (38)

        Ifb3≠0,itrepresentsthestreamlinesofPoiseuilleflows.Ifb3=0,b2≠0,itdenotestheSimpleCouetteflowswhosevelocityprofileislinearfunctionofx.Figure3representsthesimpleparallelCouetteflowof(36)forb0=-9,b1=-1,b2=10,b3=0anditiscomposedbyparallellines.

        Case 2. whenσ=1andλ=0, (28)reducesto

        (ν1-ν2)K″(s)-ν1K?(s)+ν2K(5)(s)=0

        (39)

        Thesolutionofaboveequationis

        (40)

        (41)

        (44)

        Thestreamlineflowforψ=Ω3isgivenbythefunctionalform

        Figure4demonstratesthestreamlinespatternof(42)forV=1,ν1=0.3,ν2=0.4,σ=1,t=1andd0=d1=d2=d5=0,d3=d4=1.

        3 Conclusions

        [1] STOKES V K. Couple stress in fluid[J]. The physics of fluids, 1966,9:1709-1715.

        [2] HAYAT T, MUSTAFA M, IQBAL Z, ALSAEDI A. Stagnation-point flow of couple stress fluid with melting heat transfer[J]. Applied Mathematics and Mechanics (English Edition), 2013,34(2):167-176.

        [3] HADJESFANDIARI A R, HAJESFANDIARI A, DARGUSH G F. Skew symmetric couple-stress fluid mechanics[J]. Acta Mechanica, 2015,226:871-895.

        [4] RAMESH K, DEVAKAR M. Effects of heat and mass transfer on the peristaltic transport of MHD couple stress fluid through porous medium in a vertical asymmetric channel[J]. Journal of Fluids, 2015,163832.

        [5] ZHANG D X, FENG S X, LU Z M, LIU Y L.Exact solutions for steady flow of second-grad fluid[J]. Journal of Shanghai University(English Edition), 2009,13(4):340-344.

        [6] NEMENYI P F. Recent developments in inverse and semi-inverse methods in the mechanics of continua[J]. Advances in Applied Mechanics, 1951,2(11):123-151.

        [7] HUI W H, Exact solutions of the 2-dim navier-stokes equations[J]. J Appl Math Phys ZAMP, 1987,38(5):689-702.

        [8] LABROPULU F. A few more exact solutions of a second grade fluid via inverse method[J]. Mechanics Research Communications, 2000,27(6):713-720.

        [9] ZHANG D X, SHI L R. Exact solutions of couple stress fluids, Chinese Quarterly of Mechanics, 2010,31(2):159164.

        [10] Riabouchinsky D. Some considerations regarding plane irrotational motion of a liquid[J]. Compt Rend Hebd Seanc Acad Sci(Paris), 1924,179:1133-1136.

        [11] ALSAEDI A, ALI N, TRIPATHI D, HAYAT T. Peristaltic flow of couple stress fluid through uniform porous medium, Applied Mathematics and Mechanics(English Edition), 2014,35(4):469-480.

        [12] HAYAT T, MOHYUDDIN M R, ASGHAR S. Some inverse solutions for unsteanian fluid[J]. Tamsui Oxford Journal of Mathematical Sciences, 2005,21(1):1-20.

        張道祥,程航.偶應(yīng)力流體的Riabouchinsky型精確解[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2015,38(5):414-418.

        偶應(yīng)力流體的Riabouchinsky型精確解

        張道祥, 程 航

        (安徽師范大學(xué) 數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,安徽 蕪湖 241000)

        本文目的是研究時(shí)間依賴的Riabouchinsky型偶應(yīng)力流體的精確解.通過預(yù)設(shè)流函數(shù)的特定形式,我們獲得了流體運(yùn)動(dòng)的定常和非定常解.結(jié)果表明,偶應(yīng)力流體的速度場(chǎng)強(qiáng)烈地依賴于流體的物質(zhì)參數(shù).

        偶應(yīng)力流體;牛頓流體;Riabouchinsky流

        10.14182/J.cnki.1001-2443.2015.05.002

        date:2014-09-03

        Supported by National Nature Science Foundation of China(10302002);the Foundation of Outstanding Young Talent in University of Anhui Province of China(2011SQRL022ZD).

        Biography: Daoxiang Zhang(1979-), male, born at Tianchang, Anhui, associate professor, major in stability of differential equations and fluid mechanics.

        猜你喜歡
        牛頓流體安徽師范大學(xué)計(jì)算機(jī)科學(xué)
        非牛頓流體
        《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
        什么是非牛頓流體
        少兒科技(2019年3期)2019-09-10 07:22:44
        探討計(jì)算機(jī)科學(xué)與技術(shù)跨越式發(fā)展
        區(qū)別牛頓流體和非牛頓流體
        Hemingway’s Marriage in Cat in the Rain
        淺談?dòng)?jì)算機(jī)科學(xué)與技術(shù)的現(xiàn)代化運(yùn)用
        電子制作(2017年2期)2017-05-17 03:55:01
        重慶第二師范學(xué)院計(jì)算機(jī)科學(xué)與技術(shù)專業(yè)簡(jiǎn)介
        首款XGEL非牛頓流體“高樂高”系列水溶肥問世
        《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
        在线成人爽a毛片免费软件| 无遮无挡爽爽免费毛片| 丰满五十六十老熟女hd| 天天射色综合| 久久精品国产亚洲av试看| 又硬又粗进去好爽免费| 欧美大屁股xxxx| 国产午夜亚洲精品理论片不卡 | 日韩精品久久不卡中文字幕| 青青草在线免费播放视频| 亚洲成av人影院| 久久亚洲精品成人| 国产偷拍盗摄一区二区| 国产视频自拍一区在线观看 | 精品国产品香蕉在线| 东北老女人高潮疯狂过瘾对白 | 丰满少妇高潮在线观看| 亚洲天堂av在线网站| 亚洲午夜福利在线视频| 中文人成影院| 日韩日本国产一区二区| 天天躁夜夜躁狠狠是什么心态| 被群cao的合不拢腿h纯肉视频| 911国产在线观看精品| 大陆少妇一区二区三区| 色婷婷亚洲一区二区三区| 精品亚洲aⅴ在线观看| 97色人阁俺也去人人人人人| 久久青青草原一区网站| 中国少妇×xxxx性裸交| 国产第一页屁屁影院| AV无码系列一区二区三区| 中文字幕免费人成在线网站| 亚洲成av人片天堂网 | 国产主播一区二区在线观看| 一本色道久久综合亚洲| 亚洲第一se情网站| 亚洲综合偷自成人网第页色| 亚洲熟妇av一区二区三区hd| av无码国产在线看免费网站| 三上悠亚免费一区二区在线|