摘要:
為得出直墻拱形巷道圍巖應(yīng)力分布規(guī)律,應(yīng)用復(fù)變函數(shù)彈性理論推導(dǎo)了直墻拱形巷道圍巖應(yīng)力分布的解析表達(dá)式。對直墻拱形巷道邊界的圍巖應(yīng)力和巷道水平線方向的圍巖應(yīng)力分布規(guī)律進(jìn)行分析,并考慮直墻拱形巷道斷面高寬比和側(cè)壓系數(shù)對其影響規(guī)律。研究表明:在不同巷道斷面高寬比、側(cè)壓系數(shù)下,直墻拱形巷道圍巖應(yīng)力集中區(qū)域主要集中在直墻底部底角處、拱形頂板中點(diǎn)附近和底板中部3個(gè)位置。不同巷道斷面高寬比下,直墻拱形巷道沿水平線的應(yīng)力分布規(guī)律基本相同。側(cè)壓系數(shù)大于1時(shí),采用巷道斷面高寬比小于1較有利于巷道穩(wěn)定;側(cè)壓系數(shù)小于等于1時(shí),采用巷道斷面高寬比大于1較有利于巷道穩(wěn)定。
關(guān)鍵詞:直墻拱形巷道;復(fù)變函數(shù);圍巖應(yīng)力
中圖分類號(hào):U451文獻(xiàn)標(biāo)志碼:A文章編號(hào):16744764(2015)03007907
Abstract:The conformal transformation and elastic theory of complex function are used to derive the analytical expression of surrounding rock stress distribution of vertical wall archy roadway. The distribution laws of roadway boundary surrounding rock stress and the stress along horizontal line are analyzed. Also the impact of different aspect ratios of roadway crosssection and different lateral pressure coefficients on stress field of surrounding rocks are studied. The results showe that: with different aspect ratios of roadway crosssection and different lateral pressure coefficients, three locations of vertical wall archy roadway surrounding rocks are main stress concentration area concentrated . The three locations are the basic angle at bottom of vertical wall,the location near midpoint of archy roof and the center of floor. Under different aspect ratios of roadway crosssection, the distribution laws of stress along horizontal line of vertical wall archy roadway are the same basically. When the lateral pressure coefficient is greater than one, roadway is stable with aspect ratio of roadway crosssection less than one. While,when the lateral pressure coefficient is not greater than 1,roadway is stable with aspect ratio of roadway crosssection greater than one.
Key words:vertical wall archy roadway; complex function; surrounding rock stress
煤礦巷道圍巖應(yīng)力大小和規(guī)律是巷道支護(hù)方式選取的重要依據(jù)之一。圍巖應(yīng)力大小不僅與煤礦采深、側(cè)壓系數(shù)等有關(guān),還與巷道斷面形狀等相關(guān)(即使相同圍巖條件下,圍巖應(yīng)力分布規(guī)律和圍巖變形破壞規(guī)律也因巷道斷面形狀不同而不同)。直墻拱形斷面巷道的斷面由下部分矩形和上部分拱形組成,長期實(shí)踐證明,直墻拱形斷面巷道具有較好的穩(wěn)定性,所以服務(wù)年限較長的巷道一般均采用直墻拱形斷面巷道。了解和掌握巷道圍巖應(yīng)力分布規(guī)律對合理選擇巷道支護(hù)方式具有重要的理論意義和實(shí)際應(yīng)用價(jià)值。對于常規(guī)的圓形、橢圓形等巷道的圍巖應(yīng)力可以采用Cauchy積分法或冪級數(shù)法方便解出[13],但復(fù)雜巷道圍巖應(yīng)力公式需借助復(fù)變函數(shù)彈性理論[46]及映射函數(shù)[79]。朱大勇等[10]求解了矩形斷面圍巖應(yīng)力彈性解,趙凱等[11]利用多角形法得出了矩形硐室圍巖應(yīng)力,王潤富[12]、劉金高等[13]求解了梯形孔口的應(yīng)力,湯澄波等[14]、祝江鴻[15]分別利用復(fù)變函數(shù)法求解了天幕線拱形圍巖應(yīng)力和兩個(gè)表示斷面圍巖應(yīng)力的解析函數(shù)通式,但前提是能給出復(fù)雜斷面映射函數(shù)。針對直墻拱形巷道圍巖應(yīng)力研究較少,對其他復(fù)雜巷道研究大多也只給出復(fù)雜巷道應(yīng)力解析的隱函數(shù),未給出巷道應(yīng)力分布情況,也未對巷道斷面高寬比和側(cè)壓系數(shù)對其影響規(guī)律進(jìn)行深入分析。
1模型建立
為簡化計(jì)算,將巷道整個(gè)斷面簡化為以y軸為對稱軸的六邊形,無支護(hù)阻力,遠(yuǎn)場鉛垂應(yīng)力為σv,水平應(yīng)力為σh=kσv,k為側(cè)壓系數(shù),不計(jì)體力,計(jì)算模型如圖1所示。設(shè)頂板寬為B1A1=2a,底板寬為B3A3=2b,斷面總高度為DN=2h,拱的高度為OD=hb,直墻高為ON=hb=2h-ha,直墻拱形斷面高寬比c0=h/b。以拱頂與直墻交界線和直墻拱形巷道斷面的對稱軸為x、y軸建立平面直角坐標(biāo)系。以y軸為對稱軸的六邊形的頂點(diǎn)從右上方順時(shí)針依次為A1、A2、A3、B3、B2、B1。A1、A2、A3處的外角分別為1=1、2=2、3=3=3π[]2。由幾何關(guān)系可得出
從圖 4(a)可得:巷道斷面高寬比為0.5情況下,側(cè)壓系數(shù)大于1時(shí)圍巖邊界環(huán)向應(yīng)力有相同變化趨勢,即底板中點(diǎn)到直墻底部再到直墻頂部的邊界環(huán)向應(yīng)力先增后減,在直墻底部底角處區(qū)域出現(xiàn)較大應(yīng)力集中;直墻頂部到拱形頂板中點(diǎn)的邊界環(huán)向應(yīng)力先減后增再減。側(cè)壓系數(shù)小于1時(shí),圍巖邊界環(huán)向應(yīng)力也有相同變化趨勢,即底板中點(diǎn)和頂板中點(diǎn)附近均出現(xiàn)拉應(yīng)力,直墻底部到直墻頂部的邊界環(huán)向應(yīng)力較為恒定;直墻頂部到拱形頂板中點(diǎn)的邊界環(huán)向應(yīng)力先增后減然后變?yōu)槔瓚?yīng)力。應(yīng)力集中區(qū)域主要集中在直墻底部底角處和拱形頂板中點(diǎn)附近。
從圖4(b)可得:巷道斷面高寬比為1情況下,側(cè)壓系數(shù)大于1時(shí),圍巖邊界環(huán)向應(yīng)力有相同變化趨勢,即底板中點(diǎn)附近均出現(xiàn)拉應(yīng)力,底板中點(diǎn)到直墻底部再到直墻頂部的邊界環(huán)向應(yīng)力先由拉應(yīng)力變?yōu)閴簯?yīng)力,然后增加后減?。恢眽敳康焦靶雾敯逯悬c(diǎn)的邊界環(huán)向應(yīng)力先減后增再減。側(cè)壓系數(shù)小于1時(shí),圍巖邊界環(huán)向應(yīng)力也有相同變化趨勢,即頂板中點(diǎn)附近均出現(xiàn)拉應(yīng)力,底板中點(diǎn)到直墻底部再到直墻頂部的邊界環(huán)向應(yīng)力先由逐漸減?。恢眽敳康焦靶雾敯逯悬c(diǎn)的邊界環(huán)向應(yīng)力先增后減然后變?yōu)槔瓚?yīng)力。應(yīng)力集中區(qū)域主要集中在底板中部和拱形頂板中點(diǎn)附近,且拱形頂板應(yīng)力集中系數(shù)小于底板。
從圖4(c)可得:巷道斷面高寬比為1.5情況下,巷道圍巖應(yīng)力分布規(guī)律與巷道斷面高寬比為1情況基本相同,不同之處在于拱形頂板應(yīng)力集中系數(shù)大于底板,圍巖應(yīng)力分布比巷道斷面高寬比為1時(shí)較好。
3.2直墻拱形巷道沿水平線的應(yīng)力分布規(guī)律
取φ=0,ζ=ρ為直墻拱形巷道水平線位置, 由x=R(1+c1ρ2+c3ρ4)/ρ可將曲線坐標(biāo)表示的應(yīng)力分量表達(dá)式轉(zhuǎn)換為直角坐標(biāo)表示。取a=1 m,b=2 m,斷面高寬比c0分別取0.5、1、1.5時(shí), 可得沿x軸圍巖應(yīng)力分布規(guī)律,如圖5(a)、(b)、(c)。
從圖 5可得:1)不同巷道斷面高寬比下,直墻拱形巷道沿水平線的應(yīng)力分布規(guī)律基本相同。2)側(cè)壓系數(shù)大于1時(shí),不同巷道斷面高寬比的環(huán)向應(yīng)力均隨至巷道邊界距離增大而迅速增大,在距離巷道邊界2~4 m后達(dá)到穩(wěn)定;側(cè)壓系數(shù)小于1時(shí),不同巷道斷面高寬比的環(huán)向應(yīng)力均隨至巷道邊界距離增大而先增大后減小,在距離巷道邊界1 m左右達(dá)到最大值,然后較小并在距離巷道邊界2~4 m后達(dá)到穩(wěn)定。3)側(cè)壓系數(shù)大于1時(shí),不同巷道斷面高寬比的徑向應(yīng)力均隨至巷道邊界距離增大而先減小后變?yōu)槔瓚?yīng)力然后增加,在距離巷道邊界4~6 m后達(dá)到穩(wěn)定;側(cè)壓系數(shù)小于1時(shí),不同巷道斷面高寬比的徑向應(yīng)力均隨至巷道邊界距離增大而增大,在距離巷道邊界2~4 m后達(dá)到穩(wěn)定。4)直墻拱形巷道邊界3 m范圍內(nèi)出現(xiàn)了剪應(yīng)力,剪應(yīng)力隨至巷道邊界距離增大而迅速減小。當(dāng)側(cè)壓系數(shù)大于1時(shí),最大剪應(yīng)力隨側(cè)壓系數(shù)增加而增大;當(dāng)側(cè)壓系數(shù)小于1時(shí),最大剪應(yīng)力隨側(cè)壓系數(shù)增加而減小。
4結(jié)論
1)采用保角變換,應(yīng)用復(fù)變函數(shù)彈性理論推導(dǎo)了直墻拱形巷道圍巖應(yīng)力分布的解析表達(dá)式。
2)不同巷道斷面高寬比、側(cè)壓系數(shù)下,直墻拱形巷道圍巖應(yīng)力集中區(qū)域均主要集中在直墻底部底角處、拱形頂板中點(diǎn)附近和底板中部3個(gè)位置。巷道斷面高寬比一定情況下,側(cè)壓系數(shù)大于1時(shí),圍巖邊界環(huán)向應(yīng)力有相同變化趨勢;采用巷道斷面高寬比小于1較有利于巷道穩(wěn)定;側(cè)壓系數(shù)小于等于1時(shí),圍巖邊界環(huán)向應(yīng)力也有相同變化趨勢;采用巷道斷面高寬比大于1較有利于巷道穩(wěn)定。
3)道斷面高寬比對直墻拱形巷道沿水平線的應(yīng)力分布規(guī)律影響較小。側(cè)壓系數(shù)大于1時(shí),巷道環(huán)向應(yīng)力均隨至巷道邊界距離增大而迅速增大,徑向應(yīng)力均隨至巷道邊界距離增大而先減小后變?yōu)槔瓚?yīng)力然后增加,最大剪應(yīng)力隨側(cè)壓系數(shù)增加而增大;側(cè)壓系數(shù)小于1時(shí),巷道環(huán)向應(yīng)力均隨至巷道邊界距離增大而先增大后減小,徑向應(yīng)力均隨至巷道邊界距離增大而增大,最大剪應(yīng)力隨側(cè)壓系數(shù)增加而減小。
參考文獻(xiàn):
[1]
王明斌,李術(shù)才,李樹忱,等.圓形隧道圍巖附加應(yīng)力場的解析解答[J].巖土力學(xué),2006,27(Sup) : 207210.
Wang M B,Li S C,Li S C,et al.Analytical solution of subsidiary stress field for circular tunnel [J].Rock and Soil Mechanics,2006,27(Sup) : 207210.(in Chinese).
[2]盧文超,仲政,王旭.淺埋隧道圍巖應(yīng)力場的解析解[J].力學(xué)季刊,2003,24(1) : 5054.
Lu W C,Zhong Z,Wang X.Analytical solution for stress field in surrounding rocks of shallow tunnel [J].Journal of Chinese Quarterly Mechanics,2003,24(1) : 5054. (in Chinese)
[3]蔡曉鴻,蔡勇斌,蔡勇平,等.二向不等圍壓和內(nèi)壓作用下橢圓形洞室的計(jì)算[J].地下空間與工程學(xué)報(bào),2008,4(3) : 453459.
Cai X H,Cai Y B,Cai Y P,et al. Computation of elliptic tunnel under the combined action of twodimensional unequal adjoining rock pressure and internal pressure [J].Chinese Journal Underground Space and Engineering,2008,4(3) : 453459. (in Chinese )
[4]Muskhelishvili N I. Some basic problems of the mathematical theory of elasticity: Fundamental equations,plane theory of elasticity,torsison and bending [M].Groningen: P Noordhoof,1953.
[5]陳子蔭.圍巖力學(xué)分析中的解析方法[M].北京: 煤炭工業(yè)出版社,1994.
Chen Z Y.Analytic method of mechanical analysis for the surrounding rock[M].Beijing: Coal Industry Publishing House,1994.(in Chinese)
[6]Zhang Z Z,Sun Y Z. Analytical solution for a deep tunnel with arbitrary cross section in a transversely isotropic rock mass [J].International Journal of Rock Mechanics and Mining Sciences,2011,48(8) : 13591363.
[7]房營光,孫鈞. 地面荷載下淺埋隧道圍巖的黏彈性應(yīng)力和變形分析[J].巖石力學(xué)與工程學(xué)報(bào), 1998, 17(3): 239247.
Fang Y G, Sun J. Viscoelastic stress and deformation analysis of shallow tunnels under the load on the ground surrounding [J].Chinese Journal of Rock Mechanics and Engineering, 1998, 17(3): 239247.(in Chinese)
[8]朱大勇,錢七虎,周早生,等.復(fù)雜形狀洞室映射函數(shù)的新解法[J].巖石力學(xué)與工程學(xué)報(bào),1999,18(3) : 279282.
Zhu D Y,Qian Q H,Zhou Z S,et al. New method for calculating mapping function of opening with complex shape [J].Chinese Journal of Rock Mechanics and Engineering,1999,18(3) : 279282. (in Chinese )
[9]皇甫鵬鵬,伍法權(quán),郭松峰,等.基于邊界點(diǎn)搜索的洞室外域映射函數(shù)求解法[J].巖石力學(xué),2011,32 (5): 14181424.
Huangfu P P,Wu F Q,Guo S F,et al. A new method for calculating mapping function of external area of cavern with arbitrary shape based on searching points on boundary [J].Rock and Soil Mechanics,2011,32 (5): 14181424.(in Chinese )
[10]朱大勇,錢七虎,周早生,等.復(fù)雜形狀洞室圍巖應(yīng)力彈性解析分析[J].巖石力學(xué)與工程學(xué)報(bào),1999,18(4): 402404.
Zhu D Y,Qian Q H,Zhou Z S,et al.Elastic solution to stresses of rock masses around openings with complex shape [J].Chinese Journal of Rock Mechanics and Engineering,1999,18(4): 402 404.(in Chinese )
[11]趙凱,劉長武,張國良.用彈性力學(xué)的復(fù)變函數(shù)法求解矩形硐室周邊應(yīng)力[J].采礦與安全工程學(xué)報(bào), 2007, 24(3): 361365.
Zhao K,Liu C W,Zhang G L.Solution for perimeter stresses of rocks around a rectangular chamber using the complex function of elastic mechanics[J].Journal of Mining Safety Engineering,2007,24(3): 361365.(in Chinese )
[12]王潤富. 彈性力學(xué)的復(fù)變函數(shù)計(jì)算機(jī)解[J].河海大學(xué)學(xué)報(bào),1991,19(2): 7174.
Wang R F.Computer solutions for complex function in elasticity [J].Journal of Hohai University,1991,19(2): 7174.(in Chinese )
[13]劉金高,王潤富.馬蹄形孔口和梯形孔口的應(yīng)力集中問題[J].巖土工程學(xué)報(bào),1995,17(5): 5763.
Liu J G,Wang R F.The stress concentration of U shaped and ladder shaped holes [J].Chinese Journal of Geotechnical Engineering,1995,17(5): 5763.(in Chinese)
[14]湯澄波,范廣勤. 高地應(yīng)力區(qū)天幕線拱形硐室斷面的解法[J].煤炭工程,1989 (1): 1618.
Tang C B,F(xiàn)an G Q.Determination of the mapping function for the exterior domain of a noncircular opening by means of the multiplication of tree absolutely convergent series [J].Coal Engineering,1989(1): 1618.(in Chinese )
[15]祝江鴻.隧洞圍巖應(yīng)力復(fù)變函數(shù)分析法中的解析函數(shù)求解[J].應(yīng)用數(shù)學(xué)和力學(xué),2013,34(4):346354.
Zhu J H. Rock for caverns with the complex variable theory [J].Applied Mathematics and Mechanics,2013,34(4):346354.(in Chinese)
(編輯王秀玲)