馬少坤,趙乃峰,2,潘柏羽,周 東,江 杰
(1. 廣西大學(xué) 土木建筑工程學(xué)院;工程防災(zāi)與結(jié)構(gòu)安全重點(diǎn)實(shí)驗(yàn)室,南寧 530004;2. 同濟(jì)大學(xué) 地下建筑與工程系,上海 200092)
?
改進(jìn)超固結(jié)狀態(tài)參量次加載面模型數(shù)值實(shí)現(xiàn)與應(yīng)用
馬少坤1,趙乃峰1,2,潘柏羽1,周 東1,江 杰1
(1. 廣西大學(xué) 土木建筑工程學(xué)院;工程防災(zāi)與結(jié)構(gòu)安全重點(diǎn)實(shí)驗(yàn)室,南寧 530004;2. 同濟(jì)大學(xué) 地下建筑與工程系,上海 200092)
為合理描述超固結(jié)土復(fù)雜的彈塑性力學(xué)行為,對(duì)現(xiàn)有Hashiguchi次加載面模型中的超固結(jié)狀態(tài)參量R進(jìn)行修正,在硬化方程中,考慮塑性體應(yīng)變與塑性剪應(yīng)變的綜合作用,提出了修正超固結(jié)狀態(tài)參量的次加載面模型。同時(shí),著重介紹了該模型的隱式積分算法及數(shù)值實(shí)現(xiàn)過(guò)程,編制了對(duì)應(yīng)的接口子程序,實(shí)現(xiàn)了該模型在有限元軟件ABAQUS中的應(yīng)用。通過(guò)不同工況和加載方式下的數(shù)值模擬驗(yàn)證了程序的合理性,最后應(yīng)用模型研究了Fujinomori 黏土的三軸壓縮力學(xué)特性并與UH模型的模擬結(jié)果、室內(nèi)試驗(yàn)研究進(jìn)行對(duì)比。結(jié)果表明,子程序具有較高的計(jì)算精度和可靠性,模型能夠準(zhǔn)確地模擬黏土的超固結(jié)特性。
次加載面模型;超固結(jié)土;ABAQUS;用戶子程序
在隧道、基坑等大型地下工程的開(kāi)挖過(guò)程中,開(kāi)挖面土體因所處位置不同而經(jīng)受不同的加載、卸載等復(fù)雜應(yīng)力路徑,應(yīng)力狀態(tài)發(fā)生變化,由正常固結(jié)狀態(tài)轉(zhuǎn)變?yōu)槌探Y(jié)狀態(tài)。Mesri[1]、Tavenas等[2]及眾多巖土力學(xué)學(xué)者研究表明,自然沉積土多數(shù)為結(jié)構(gòu)性土且處于超固結(jié)狀態(tài)。超固土體具有剪脹、應(yīng)變軟化等特性,其應(yīng)力應(yīng)變關(guān)系與正常固結(jié)土存在較大差異。以劍橋模型[3-4]為代表的經(jīng)典彈塑性理論認(rèn)為:巖土介質(zhì)只存在一個(gè)屈服面,土在卸載再加載過(guò)程中,應(yīng)力應(yīng)變關(guān)系為彈性,如圖1(a)所示。而實(shí)際上,正常固結(jié)土一旦卸載就處于超固結(jié)狀態(tài),土在超固結(jié)狀態(tài)下的再加載過(guò)程仍具有塑性變形,如圖1(b)所示[5]。
為準(zhǔn)確反映超固結(jié)土的以上特性,許多學(xué)者提出了不同的模型。如Krieg[6]、Dafatias等[7]提出的二面模型,Dafatias等[8]提出的邊界面模型,Hashiguchi等[9-12]提出的次加載面模型等。次加載面模型認(rèn)為超固結(jié)狀態(tài)下無(wú)純彈性域[13],塑性屈服由次加載面控制,該面始終過(guò)當(dāng)前應(yīng)力狀態(tài)點(diǎn),隨加卸載擴(kuò)大或縮小,以此來(lái)描述超固結(jié)狀態(tài)下的塑性應(yīng)變。張鋒等[5]基于Nakai等[14]提出的土的密度的概念,建立了一個(gè)新的超固結(jié)重塑黏土的次加載面劍橋模型;Asaoka等[15-16]基于原始劍橋模型屈服準(zhǔn)則,提出了可以考慮土的結(jié)構(gòu)性和超固結(jié)性的上加載面模型,但模型中超固結(jié)狀態(tài)參數(shù)R和結(jié)構(gòu)狀態(tài)參數(shù)R*的定義模糊,限制了模型的推廣與應(yīng)用。
圖1 經(jīng)典彈塑性理論土與實(shí)際土應(yīng)力應(yīng)變關(guān)系[5]Fig.1 Relationships of stress-strain in critical state theory and reality[5]
如上所述,現(xiàn)有次加載面模型理論復(fù)雜、形式多樣,在有限元軟件的本構(gòu)模型庫(kù)中鮮有涉及,使該模型的應(yīng)用與推廣受到極大限制。首先基于Hashiguchi[9-12]、Yamakawa等[17]的次加載面劍橋模型,改進(jìn)超固結(jié)狀態(tài)變量R的演化規(guī)則,在硬化方程中考慮塑性體應(yīng)變與塑性剪應(yīng)變對(duì)超固結(jié)狀態(tài)參量R的共同作用,再利用隱式積分算法編制與改進(jìn)模型對(duì)應(yīng)的接口子程序,實(shí)現(xiàn)對(duì)有限元軟件ABAQUS的二次開(kāi)發(fā),建立適用于超固結(jié)土應(yīng)力應(yīng)變關(guān)系的數(shù)值模擬平臺(tái);最后通過(guò)不同工況和加載方式的數(shù)值模擬,對(duì)Fujinomori 黏土數(shù)值模擬與室內(nèi)試驗(yàn)結(jié)果、UH模型模擬結(jié)果對(duì)比驗(yàn)證程序的合理性,為該模型的實(shí)際工程應(yīng)用奠定基礎(chǔ)。
1.1 次加載面概念
次加載面理論認(rèn)為超固結(jié)土存在兩個(gè)應(yīng)力狀態(tài)面:正常固結(jié)屈服面和次加載面,如圖2所示。正常固結(jié)屈服面為修正劍橋模型的屈服面,大小由土在其固結(jié)歷史上所經(jīng)受的最大應(yīng)力水平來(lái)確定。次加載面[18-19]為土體卸荷至某一應(yīng)力狀態(tài)時(shí)通過(guò)此應(yīng)力狀態(tài)點(diǎn)與正常固結(jié)屈服面幾何相似的面,相似比為R,相似中心為p-q應(yīng)力空間的原點(diǎn)。次加載面位于正常固結(jié)屈服面內(nèi),隨應(yīng)力狀態(tài)的變化擴(kuò)大或縮小。卸載時(shí),當(dāng)前應(yīng)力狀態(tài)點(diǎn)遠(yuǎn)離正常固結(jié)屈服面,R減小,次加載面縮?。患虞d時(shí),當(dāng)前應(yīng)力狀態(tài)點(diǎn)向正常固結(jié)屈服面靠近,R增大,次加載面擴(kuò)大,若當(dāng)前應(yīng)力狀態(tài)點(diǎn)處于正常固結(jié)屈服面上,則R=1,次加載面與正常固結(jié)面重合,土由超固結(jié)狀態(tài)轉(zhuǎn)變?yōu)檎9探Y(jié)狀態(tài)。
圖2 p-q空間中的次加載面示意圖Fig.2 Sketch of subloading surface in p-q space
1.2 屈服面方程與塑性勢(shì)函數(shù)
引入描述超固結(jié)程度的超固結(jié)比(OCR)概念,給出本文模型兩個(gè)應(yīng)力狀態(tài)面相似比(R)的定義式:
(1)
式中:pc為次加載面大?。籶nc為正常固結(jié)屈服面大小。
結(jié)合正常固結(jié)屈服面方程(修正劍橋模型屈服面方程[2])及式(1)可得次加載面在p-q應(yīng)力空間的方程:
(2)
為準(zhǔn)確描述土及軟巖的力學(xué)特征,近代土力學(xué)尤其是次加載面理論建議采用相關(guān)聯(lián)流動(dòng)法則[3],因此,式(2)即為本文模型的塑性勢(shì)函數(shù)表達(dá)式。
確定了塑性勢(shì)函數(shù)后,塑性應(yīng)變率即可由以下流動(dòng)法則給出:
(3)
1.3 協(xié)調(diào)方程
由式(2)等號(hào)兩邊取微分,得到滿足塑性一致條件的協(xié)調(diào)方程式(4)。
(4)
式中dpnc可用修正劍橋模型的硬化規(guī)律表達(dá):
(5)
對(duì)式(4)中描述超固結(jié)程度的狀態(tài)變量R的微分(dR)而言,Hashiguchi[11]、Asaoka等[15-16]建議:
(6)
式中:mR為材料參數(shù),其大小表示超固結(jié)狀態(tài)隨塑性體應(yīng)變?cè)黾佣У目炻?/p>
式(6)中dR僅與塑性體應(yīng)變相關(guān),沒(méi)有考慮到塑性剪應(yīng)變對(duì)超固結(jié)性的影響??紤]到超固結(jié)性的發(fā)展受塑性體應(yīng)變和塑性剪應(yīng)變綜合影響的情況,本文綜合Asaoka等[15-16]、Yamakawa等[17]的建議式,把塑性體應(yīng)變?cè)隽颗c塑性剪應(yīng)變?cè)隽繉?duì)超固結(jié)性的影響做加權(quán),得出本文模型dR的表達(dá)式
(7)
(7′)
式中:η為非負(fù)的材料參數(shù),表示塑性剪應(yīng)變?cè)隽繉?duì)超固結(jié)性的發(fā)展貢獻(xiàn)比。
圖3 完全隱式積分算法示意圖[20]Fig.3 Sketch of implicit integration algorithm[20]
2.1 初始變量計(jì)算
由狀態(tài)變量σN、RN及材料參數(shù)M可得:
(8)
式中:pc,N、pnc,N分別表示N增量步時(shí)次加載面和正常固結(jié)屈服面的大小。
2.2 彈性試算
(9)
模型彈性計(jì)算采用多孔介質(zhì)非線性彈性,體積彈性模量和剪切模量分別為
(10)
式中:v為泊松比。
2.3 初始屈服判斷
首先由試探應(yīng)力分量σtr計(jì)算試探平均應(yīng)力ptr、試探剪切應(yīng)力qtr,進(jìn)而計(jì)算初始屈服函數(shù)ftr:
(11)
若屈服函數(shù)f小于某個(gè)容許誤差值ftol,則應(yīng)力狀態(tài)處于彈性階段,進(jìn)行下文2.6節(jié)的處理,否則進(jìn)行塑性修正。本文設(shè)定ftol=1×10-5。
2.4 塑性修正
(1)更新第k步迭代時(shí)φ的值φk:
其中:
2.5 一致切線模量
2.6 變量更新與存儲(chǔ)
由下式進(jìn)行應(yīng)變、孔隙比等的更新,并進(jìn)行狀態(tài)變量STATEV(NSTATV)的存儲(chǔ):
(12)
為了驗(yàn)證本文算法的可靠性與程序的精度,選取文獻(xiàn)[22]中所列土樣,采用一階八節(jié)點(diǎn)三維實(shí)體孔壓?jiǎn)卧?C3D8P),對(duì)試樣進(jìn)行不同工況下不同加載方式的數(shù)值模擬,并進(jìn)行結(jié)果比較。限于篇幅,本文僅列出正常固結(jié)(NC)和超固結(jié)(OC)工況下三軸排水壓縮(CD)、三軸不排水壓縮(CU)兩種加載方式的實(shí)驗(yàn)結(jié)果。材料參數(shù)如表1所示。
表1 材料參數(shù)[22]
式(7)中的材料參數(shù)mR在文獻(xiàn)[5,15-16]、文獻(xiàn)[23]中的取值在[2, 10]之間,經(jīng)驗(yàn)證,當(dāng)mR取8.0時(shí),本文模型的模擬結(jié)果更合理;對(duì)式(7′)中與超固結(jié)狀態(tài)參數(shù)R的發(fā)展有關(guān)的參數(shù)η,根據(jù)本文模擬,取0.8較合適。
模擬過(guò)程為:在初始分析步中限定模型土樣底部X、Y兩個(gè)方向的位移,給模型土樣施加圍壓并在以后的分析步驟中圍壓保持不變;在荷載步驟中給模型土樣施加軸向位移15.2 mm(軸向應(yīng)變的20%)。
圖5為本文算法與修正劍橋模型結(jié)果的應(yīng)力路徑圖。如圖所示,固結(jié)過(guò)程中正常固結(jié)土的應(yīng)力路徑從“濕側(cè)區(qū)域”達(dá)到臨界狀態(tài)線,超固結(jié)土的應(yīng)力路徑從“干側(cè)區(qū)域”穿過(guò)臨界狀態(tài)線后又返回到臨界狀態(tài)線上,反映了土固結(jié)的一般規(guī)律。對(duì)比本文算法、修正劍橋模型的應(yīng)力路徑(圖5(a))可知:在模擬正常固結(jié)土的固結(jié)過(guò)程時(shí),本文算法與修正劍橋模型有著極強(qiáng)的一致性,說(shuō)明本文算法能夠準(zhǔn)確描述正常固結(jié)土固結(jié)過(guò)程的應(yīng)力狀態(tài)變化;在模擬超固結(jié)土的固結(jié)過(guò)程時(shí),本文算法的應(yīng)力路徑更平滑,與實(shí)際中平滑過(guò)渡的應(yīng)力路徑更接近。對(duì)比本文算法、Sheng等[22]算法的應(yīng)力路徑(圖5(b)),可以明顯看出,在模擬正常固結(jié)土不排水固結(jié)過(guò)程時(shí),本文算法模擬結(jié)果的應(yīng)力路徑與實(shí)際平滑的應(yīng)力路徑更接近。說(shuō)明本文算法相對(duì)修正劍橋模型與Sheng等[22]算法,能更準(zhǔn)確地描述實(shí)際正常固結(jié)土和超固結(jié)土固結(jié)過(guò)程中的應(yīng)力狀態(tài)變化。
圖5 有效應(yīng)力路徑圖Fig.5 Elevation Effective stress path diagram
圖6為關(guān)于孔隙比與有效應(yīng)力關(guān)系的本文算法模擬結(jié)果(標(biāo)記為UMAT)與文獻(xiàn)[22]結(jié)果(標(biāo)記為Sheng)的對(duì)比圖。由圖可知,正常固結(jié)土(NC)在不排水固結(jié)(CU)過(guò)程中孔隙比保持不變,在排水固結(jié)(CD)過(guò)程中孔隙比隨固結(jié)壓力增大而減小,表現(xiàn)出剪縮性;超固結(jié)土(OC)在不排水固結(jié)(CU)過(guò)程中孔隙比保持不變,在排水固結(jié)(CD)過(guò)程中孔隙比隨固結(jié)壓力增大先減小后增大,表現(xiàn)出剪脹性,在一定程度上反應(yīng)了超固結(jié)土的應(yīng)變軟化特性。以上特性與臨界狀態(tài)理論完全一致,范慶來(lái)[24]也曾得出相似的結(jié)論,可見(jiàn)本文算法能夠較好地描述土的減縮、剪脹及軟化特征。
圖6 孔隙比與平均有效應(yīng)力關(guān)系Fig.6 Relationship between porosity ratio and mean effective stress
圖7 超固結(jié)土偏應(yīng)力軸向應(yīng)變關(guān)系曲線Fig.7 Relationships between deviatoric stress and axial strain of overconsolidated soils
綜上所述,本文算法與修正劍橋模型的模擬結(jié)果有著良好的一致性,且能更準(zhǔn)確地描述超固結(jié)土的彈塑性力學(xué)行為,說(shuō)明本文算法合理,所編子程序正確。
應(yīng)用本文模型,對(duì)Fujinomori 黏土進(jìn)行三軸壓縮試驗(yàn)?zāi)M,并與該土樣的室內(nèi)試驗(yàn)結(jié)果[25]、UH模型模擬結(jié)果[26]進(jìn)行比較。土樣參數(shù)如表2所示,具體試驗(yàn)見(jiàn)文獻(xiàn)[25]。
表2 Fujinomori clay主要材料參數(shù)[25]
表2中的材料參數(shù)Rcs為三軸壓縮過(guò)程破壞時(shí)的極限主應(yīng)力比(σ1/σ3)cs,由文獻(xiàn)[25]中的公式換算為本文模型的參數(shù)M=1.364。
圖8 試驗(yàn)結(jié)果與模擬結(jié)果對(duì)比圖Fig.8 Comparison between Simulation and experience
建立了改進(jìn)超固結(jié)狀態(tài)參量的次加載面模型,通過(guò)編制該模型對(duì)應(yīng)的用戶子程序,實(shí)現(xiàn)了對(duì)有限元軟件的二次開(kāi)發(fā),建立了適用于超固結(jié)土的數(shù)值模擬平臺(tái)。隨后,應(yīng)用模型分析了不同工況和加載條件下土的力學(xué)特性,并與UH模型的數(shù)值模擬結(jié)果及試驗(yàn)結(jié)果進(jìn)行了對(duì)比分析,得如下結(jié)論:
3)在描述超固結(jié)土的力學(xué)行為方面,本文模型相對(duì)UH模型能夠更準(zhǔn)確地刻畫(huà)超固結(jié)土的應(yīng)變軟化、峰值強(qiáng)度與殘余強(qiáng)度值以及應(yīng)力應(yīng)變關(guān)系等特征。
[1] Mesri G. Discussion of “New design procedure for stability of soft clays” [J]. Journal of the Geotechnical Engineering Division,ASCE,1975,1:409-412.
[2] Tavenas F,Leroueil S. Laboratory and in situ stress-strain-time behavior of soft clays:A state of the art [C]//International Symposium on Geotechnical Engineering of Soft Soils,Mexico City,1987,2:3-48.
[3] Roscoe K H,Schofield A N,Worth C P. On the yielding of soils [J]. Geotechnique,1958,8(1):22-53.
[4] Roscoe K H,Schofield A N and Thuraira A. Yielding of clay in states wetter than critical [J]. Geotechnique,1963,13(3):211-240.
[5] 張鋒,葉冠林. 計(jì)算土力學(xué)[M]. 北京:人民交通出版社, 2007.
[6] Krieg R D. A practical two surface plasticity theory [J].Journal of Applied Mechanics,ASME. 1975,42:641-646.
[7] Dafatias Y F,Popov E P. A model of nonlinearly hardening materials for complex loading [J]. Acta Mechanical,1975,23(3):173-192.
[8] Dafatias Y F,Herrmamn L R. A bounding surface soil plasticity model [C]//International Symposium on Soils under Cyclic Trans. Swansea,Balkema,1980:335-345.
[9] Hashiguchi K,Ueno M. Elastoplastic constitutive laws of granular material [C]//Constitutive Equations of Soils,Tokyo,JSSMFE,1977:73-82.
[10] Hashiguchi K. Constitutive equations of elastoplastic materials with elastoplastic transition [J]. Journal of Applied Mechanics,1980,47(2):266-272.
[11] Hashiguchi K. Subloading surface model in unconventional plasticity [J]. International Journal of Solids and Structures,1989,25(8):917-945.
[12] Hashiguchi K,Chen Z P. Elastoplastic constitutive equation of soils with the subloading surface and rotational hardening [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1998,22:197-227.
[13] 孔亮,鄭穎人,姚仰平. 基于廣義塑性力學(xué)的土體次加載面循環(huán)塑性模型(Ⅰ):理論與模型[J]. 巖土力學(xué),2003,24(2):141-145.
Kong L,Zheng Y R,Yao Y P. Subloading surface cyclic plastic model for soil based on Generalizedplasticity(Ⅰ):Theory and model [J]. Rock and Soil Mechanics,2003,24(2):141-145.(in Chinese)
[14] Nakai T,Horii H. Plane strain compression test of cemented sand and measurement of strain localization [C]//Proc. Of 28th Annual Conference of Japan Geotechnical Society,1993:545-548.(in Japanese)
[15] Asaoka A,Nakano M,Noda T. Superloading yield surface concept for highly structured soil behavior [J]. Soils and Foundations,2000,40(2):99-110.
[16] Asaoka A,Nakano M,Noda T,et al. Delayed compression/consolidation of naturally clay due to degradation of soil structure [J].Soils and Foundations,2000,40(3):75-85.
[17] Yamakawa Y,Hashiguchi K,Ikeda K. Implicit stress-update algorithm for isotropic Cam-clay model based on the subloading surface concept at finite strains [J]. International Journal of Plasticity,2010,26(5):634-658.
[18] Hashiguchi K. Plastic constitutive equations of granular material [C]//US-Japan Seminar on Continuum Mechanics and Statistical Approaches in the Mechanics of Granular Materials. Sendai,JSSMFE,1978:321-329.
[19] Asaoka A,Nakano M,Noda T. Soil-water coupled behavior of heavily overconsolidated clay near/at critical state [J]. Soils and Foundations,1997,37(1):13-28.
[20] 黃雨,周子舟. 下負(fù)荷面劍橋模型在ABAQUS中的開(kāi)發(fā)實(shí)現(xiàn)[J].巖土工程學(xué)報(bào),2010,32(1):115-119.
Huang Y,Zhou Z Z. Numerical implementation for subloading Cam-Clay model in ABAQUS [J].Chinese Journal of Geotechnical Engineering,2010,32(1):115-119.(in Chinese)
[21] Borjar I,Lee S R. Cam-clay plasticity,Part 1:implicit integration of elasto-plastic constitutive relations [J]. Computers Methods in Applied Mechanics and Engineering,1990,78:49-72.
[22] Sheng D,Sloan S W,Yu H S. Aspects of finite element implementation of critical state models [J]. Computational Mechanics,2000,(6):185-196.
[23] Zhu H H,Ye B,Cai Y C,et al. An elastoviscoplastic model for soft rock around tunnels considering overconsolidation and structure effects [J]. Computers and Geotechnics,2013,50:6-16.
[24] 范慶來(lái),欒茂田,倪宏革. 循環(huán)荷載作用下軟基上大圓筒結(jié)構(gòu)彈塑有效應(yīng)力分析[J]. 水利學(xué)報(bào),2008,39(7):836-842.
Fan Q L,Luan M T,Ni H G. Elastoplastic effective stress analysis of soft soil foundation of large-diameter cylindrical structure subjected to cyclic loading [J]. Journal of Hydraulic Engineering,2008,39(7):836-842.(in Chinese)
[25] Nakai T,Hinokio M. A simple elastoplastic model for normally and overconsolidated soils with unified materical parameters [J]. Soils and Foundations,2004,44(2):53-70.
[26] 姚仰平,侯偉,羅汀. 土的統(tǒng)一硬化模型[J]. 巖石力學(xué)與工程學(xué)報(bào),2009,28(10):2135-2151.
Yao Y P,Hou W,Luo D. Unified hardening model for soils [J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(10):2135-2151.(in Chinese)
(編輯 胡 玲)
Numerical implementation and applications on subloading surface model with improved overconsolidation state variable
MaShao-kun1,ZhaoNai-feng1,2,PanBai-yu1,ZhouDong1,JiangJie1
(1. College of Civil Engineering and Architecture;Key Laboratory of Disaster Prevention and Structural Safety,Guangxi University,Nanning 530004,P.R.China;2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,P.R.China)
To describe the complex behavior of overconsolidated soil,an improved overconsolidation state variable subloading surface model was presented. The multiple impact of plastic volumetric and shear strain on overconsolidation state variable R was considered in hardening equation. The stress-update algorithm and the procedure of numerical implementation were introduced. The the model was applied by compiling the interface subroutine in finite element software ABAQUS. The rationality of the subroutine was verified by numerical simulations in different working conditions and load types. At last,F(xiàn)ujinomori Clay was simulated by the model in compression test,and the results were compared with those of UH model and experimentation data. The subroutine was precise and steady andthe model proposed can describe the properties of overconsolidation accurately.
subloading surface model; overconsolidation soils; ABAQUS; subroutine
10.11835/j.issn.1674-4764.2015.02.003
2014-09-15 基金項(xiàng)目:國(guó)家自然科學(xué)基金資助(51068002;41362016);廣西巖土力學(xué)與工程重點(diǎn)實(shí)驗(yàn)室資助課題(13-KF-02);上海市青年科技啟明星計(jì)劃項(xiàng)目(13QB1404300)
馬少坤(1972-),男,博士,教授,主要從事地下工程研究工作,(E-mail)mashaokun@sina.com 江 杰(通信作者),男,博士,高工,(E-mail) jie_jiang001@126.com。
Foundation item:National Natural Science Foundation of China(No.51068002;No.41362016);The Project Was Funded by Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering(No.13-KF-02);Sponsored by Shanghai Rising-Star Program(No.13QB1404300)
TU470
A
1674-4764(2015)02-0016-07
Received:2014-09-15
Author brief:Ma Shao kun(1972-), professor, main research interest: underground engineering,(E-mail)mashaokun@sina.com. Jiang Jie(corresponding author),PhD,seniorengineer,(E-mail) jie_jiang001@126.com