亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        非線性多時(shí)滯脈沖差分方程的振動(dòng)性

        2015-04-18 07:18:42葛禮霞季丹丹劉海明
        關(guān)鍵詞:振動(dòng)

        葛禮霞,季丹丹,劉海明

        (牡丹江師范學(xué)院 理學(xué)院, 黑龍江 牡丹江 157012)

        非線性多時(shí)滯脈沖差分方程的振動(dòng)性

        葛禮霞,季丹丹,劉海明

        (牡丹江師范學(xué)院 理學(xué)院, 黑龍江 牡丹江 157012)

        對(duì)一類(lèi)具有脈沖的多時(shí)滯差分方程進(jìn)行了研究.通過(guò)構(gòu)造輔助函數(shù),借助于反證法、單調(diào)有界原理、求和及確界運(yùn)算等得到了方程振動(dòng)的兩個(gè)充分條件,將已有的某些結(jié)果在脈沖和多時(shí)滯等條件下進(jìn)行了推廣和改進(jìn),使其應(yīng)用更加廣泛.

        脈沖;差分方程;時(shí)滯;振動(dòng)性

        由于差分方程所表示的離散系統(tǒng)在現(xiàn)實(shí)世界中是大量存在的,且通常的離散系統(tǒng)與相應(yīng)的連續(xù)系統(tǒng)具有不同的性質(zhì),因而許多學(xué)者對(duì)差分方程的定性理論進(jìn)行了研究[1-3],文[4-5]研究了一類(lèi)變系數(shù)差分方程

        所有解的振動(dòng)性.文[6-11]研究了帶有脈沖的微分及差分方程的振動(dòng)性,而這一類(lèi)方程在許多實(shí)際問(wèn)題中是普遍存在的.例如,在經(jīng)濟(jì)系統(tǒng)中就會(huì)經(jīng)常遇到帶有脈沖系統(tǒng)的差分方程模型.因此,研究脈沖對(duì)系統(tǒng)的影響是很非常有必要的.

        考慮具有脈沖的非線性變系數(shù)多時(shí)滯差分方程

        (1)

        定義2 方程(1)的解稱為非振動(dòng)的,如果這個(gè)解最終為正或者最終為負(fù),否則稱該解為振動(dòng)的.如果(1)的所有解為振動(dòng)的,則稱方程(1)振動(dòng).

        (2)

        1 幾個(gè)引理

        引理1[4]若存在自然數(shù)K,當(dāng)k>K時(shí),有bk>-1成立,則方程(1)的所有解振動(dòng),當(dāng)且僅當(dāng)方程(2)的所有解振動(dòng).

        2 主要結(jié)果

        (3)

        (4)

        則方程(1)的所有解振動(dòng).

        證明 由引理1可知,只需證方程(2)的所有解振動(dòng)即可.

        fi(y(n-ki))≥y(n-ki)>0

        (5)

        由式(2),當(dāng)n≥n1時(shí)

        從而可知,y(n)是單調(diào)非增的,特別有y(n-ki)≥y(n-k*)≥y(n)>0,i=1,2,…,m.

        由式(2),(5)和上式得

        (6)

        (7)

        對(duì)式(7)的j從n-k*乘到n-1求積得

        n≥n1+2k*.

        n≥n1+2k*.

        n≥n1+2k*

        (8)

        由式(3)和上式可得

        這與定理中的條件(Ⅱ)矛盾,故方程(1)無(wú)最終正解.同理可證得方程(1)無(wú)最終負(fù)解,綜上可知,方程(1)的所有解振動(dòng),證畢.

        (9)

        成立,則方程(1)的所有解振動(dòng).

        證明 由引理1可知,只需證方程(2)的所有解振動(dòng)即可.

        用反證法,不失一般性,不妨設(shè)yn是方程(2)的一個(gè)最終正解,則存在正整數(shù)n1≥N0,使得當(dāng)n≥n1時(shí),有y(n)>0,y(n-ki)>0,從而有

        fi(y(n-ki))≥y(n-ki)>0.

        (10)

        (11)

        由引理2可知

        由式(11)和上式可得

        由引理3可知

        這與已知條件式(9)矛盾,同理可證方程(1)也無(wú)最終負(fù)解,綜上可知,方程(1)的所有解振動(dòng),證畢.

        [1]LadasG,PhilosCG,SficasYG.Sharpconditionfortheoscillationofdelaydifferenceequations[J].ApplMath,1989(2):101-112.

        [2]ZhouY.OscillatoryBehaviorofDelayDifferenceEquations[M].Beijing:SciencePress,2007.

        [3]張慧芬.一階非線性多時(shí)滯微分方程的振動(dòng)性[J].生物數(shù)學(xué)學(xué)報(bào),2013,28(1):159-163.

        [4]TangXH,YuJS.Oscillationandstabilityoflinearimpulsivedelaydifferenceequations[J].MathAppl,2001,14(1):28-32.

        [5]劉一龍,楊甲山.一類(lèi)變系數(shù)差分方程解的振動(dòng)性[J].邵陽(yáng)學(xué)院學(xué)報(bào):自然科學(xué)版,2004,1(4):22-24.

        [6]申建華,庾建設(shè).具有脈沖擾動(dòng)的非線性時(shí)滯微分方程[J].應(yīng)用數(shù)學(xué),1996,9(3):272-277.

        [7]燕居讓.非線性脈沖時(shí)滯微分方程的全局吸引性[J].山西大學(xué)學(xué)報(bào):自然科學(xué)版,2007,30(2):129-132.

        [8]WeiGP,ShenJH.OscillationofsolutionsofimpulsivedifferenceequationswithcontinuousVariable[J].2005,MathAppl,2005,18(2):293-296.

        [9]楊甲山.變系數(shù)多時(shí)滯差分方程解的振動(dòng)性[J].中央民族大學(xué)學(xué)報(bào):自然科學(xué)版,2004,13(2):123-126.

        [10]葛禮霞,劉海明,姬春秋.一類(lèi)具有正負(fù)系數(shù)的脈沖時(shí)滯差分方程的振動(dòng)性[J].數(shù)學(xué)的實(shí)踐與認(rèn)識(shí),2011,41(22):242-246.

        [11]魏耿平,申建華.具連續(xù)變量差分方程非振動(dòng)解在脈沖擾動(dòng)下的保持性[J].數(shù)學(xué)物理學(xué)報(bào),2006,26A(4):595-600.

        (編輯:姚佳良)

        Oscillation of nonlinear several delays difference equations with impulses

        GE Li-xia, JI Dan-dan, LIU Hai-ming

        (College of Sciences, Mudanjiang University, Mudanjiang 157012,China)

        We studied the impulsive multi-delay difference equation by constructing auxiliary function, and with the help of the absurdity,monotone of function,sum,supremum and infimum.Two sufficient conditions were obtained for ocillation of all solutions,and some results under the condition of impulse and multify delays in the literatures were improved and promoted.The results can be more widely available.

        impulse;difference equation;delay;oscillation

        2015-02-08

        黑龍江省教育廳科技項(xiàng)目(12541837); 牡丹江師范學(xué)院省級(jí)重點(diǎn)預(yù)研項(xiàng)目(SY201323)

        葛禮霞,女,gelixia99@sina.com

        1672-6197(2015)06-0036-03

        O175.7

        A

        猜你喜歡
        振動(dòng)
        振動(dòng)的思考
        某調(diào)相機(jī)振動(dòng)異常診斷分析與處理
        振動(dòng)與頻率
        This “Singing Highway”plays music
        具非線性中立項(xiàng)的廣義Emden-Fowler微分方程的振動(dòng)性
        中立型Emden-Fowler微分方程的振動(dòng)性
        基于ANSYS的高速艇艉軸架軸系振動(dòng)響應(yīng)分析
        船海工程(2015年4期)2016-01-05 15:53:26
        主回路泵致聲振動(dòng)分析
        UF6振動(dòng)激發(fā)態(tài)分子的振動(dòng)-振動(dòng)馳豫
        帶有強(qiáng)迫項(xiàng)的高階差分方程解的振動(dòng)性
        国产v综合v亚洲欧美大天堂 | 福利视频自拍偷拍视频| 久久色悠悠亚洲综合网| 亚洲熟女一区二区三区不卡| 白色白色白色在线观看视频| 亚洲精品中文字幕乱码| 亚洲美女性生活一级片| 美女草逼视频免费播放| 在线观看一区二区蜜桃| 手机看片久久第一人妻| 伊人久久精品无码av一区| 欲香欲色天天综合和网| 精品无码国产一区二区三区av| 免费观看激色视频网站| 国产95在线 | 欧美| 欧美日韩另类视频| 男人的天堂av网站一区二区| 国内精品人人妻少妇视频| 国产一区二区白浆在线观看| 国产亚洲精品90在线视频| 亚洲色偷偷综合亚洲avyp| av香港经典三级级 在线| 国产nv精品你懂得| 中文字幕在线人妻视频| 国产在线一区二区三精品乱码| 日本va欧美va精品发布| 亚洲色无码国产精品网站可下载| 嫩草影院未满十八岁禁止入内| 热久久网站| 无码啪啪人妻| 国产网友自拍视频在线观看| 青青草小视频在线观看| 亚洲成av人片天堂网无码| 偷偷色噜狠狠狠狠的777米奇| 久久精品亚洲牛牛影视| 亚洲综合网中文字幕在线| 亚洲av福利天堂一区二区三 | 女人高潮久久久叫人喷水| 性欧美牲交xxxxx视频欧美 | 亚洲愉拍自拍视频一区| 少妇人妻无奈的跪趴翘起 |