亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        應(yīng)用表面活性劑強(qiáng)化環(huán)境有機(jī)污染物生物降解的研究進(jìn)展

        2015-04-15 09:17:38潘濤余水靜鄧揚(yáng)悟董偉
        關(guān)鍵詞:生物環(huán)境

        潘濤, 余水靜, 鄧揚(yáng)悟, 董偉

        (江西理工大學(xué)江西省礦冶環(huán)境污染控制重點(diǎn)實(shí)驗(yàn)室,江西 贛州341000)

        應(yīng)用表面活性劑強(qiáng)化環(huán)境有機(jī)污染物生物降解的研究進(jìn)展

        潘濤, 余水靜, 鄧揚(yáng)悟, 董偉

        (江西理工大學(xué)江西省礦冶環(huán)境污染控制重點(diǎn)實(shí)驗(yàn)室,江西 贛州341000)

        環(huán)境有機(jī)污染物難以進(jìn)行生物降解的主要原因包括兩個(gè)方面:一是污染物濃度高,生物毒性較大;二是污染物水溶性較低,微生物難以接觸到,而表面活性劑強(qiáng)化技術(shù)可以有效解決以上問(wèn)題.文章針對(duì)這兩種難降解有機(jī)污染物,系統(tǒng)介紹了表面活性劑的作用機(jī)理.總結(jié)了表面活性劑強(qiáng)化5種主要環(huán)境污染物的微生物降解,包括染料、脂肪烴、單環(huán)芳烴、多環(huán)芳烴和鹵代芳烴.同時(shí),為避免表面活性劑的二次污染問(wèn)題,簡(jiǎn)單闡述了其在環(huán)境中的降解行為.最后,對(duì)表面活性劑在環(huán)境有機(jī)污染物生物降解中進(jìn)一步研究和應(yīng)用前景進(jìn)行展望.

        表面活性劑;生物表面活性劑;生物降解;有機(jī)污染物

        近些年來(lái),人工合成化學(xué)品造成的環(huán)境污染問(wèn)題越來(lái)越嚴(yán)重,也引起了人們的普遍重視.包括染料、脂肪烴、單環(huán)芳烴、多環(huán)芳烴和鹵代芳烴在內(nèi)的五大類(lèi)環(huán)境有機(jī)污染物更是環(huán)境治理的重中之重.相對(duì)于物理化學(xué)處理方法來(lái)說(shuō),采用生物治理的方法具有成本低、效果徹底、環(huán)境友好和無(wú)二次污染等優(yōu)勢(shì).但是生物處理過(guò)程中,污染物的生物降解會(huì)受到污染物生物毒性大、生物利用率低等因素限制.表面活性劑的引入可有效解決這些限制因素.選擇合適的表面活性劑,可減緩降解微生物細(xì)胞毒性、提高污染物的生物利用度,達(dá)到強(qiáng)化環(huán)境污染物微生物降解的目的[1-2].

        1 表面活性劑

        表面活性劑(Surfactant)的分子結(jié)構(gòu)具有兩親性:一端為親水基團(tuán),另一端為疏水基團(tuán).在水溶液中,當(dāng)表面活性劑的濃度超過(guò)一個(gè)臨界值,表面活性劑的分子會(huì)自發(fā)形成膠束,此時(shí)的表面活性劑濃度被稱(chēng)為臨界膠束濃度 (Critical micelle concentration,CMC).當(dāng)表面活性劑水溶液濃度高于CMC時(shí),溶液的表面張力、粘度、吸附性和增溶能力等都會(huì)發(fā)生顯著變化.親水親油平衡值(Hydrophile-lyophile balance,HLB)是一個(gè)衡量表面活性劑極性的重要參數(shù).HLB值越高,表面活性劑在水中的溶解度越大.

        根據(jù)親水基團(tuán)的性質(zhì),表面活性劑可分為陰離子、陽(yáng)離子、兩性和非極性型.環(huán)境中常用的表面活性劑有十二烷基硫酸鈉(Sodium Dodecyl Sulfate,SDS)(陰離子型),苯扎溴銨(陽(yáng)離子型),卵磷脂(兩性型)以及吐溫類(lèi)(Tween)(非離子型)等.在環(huán)境污染物的生物降解方面,非離子型表面活性劑的應(yīng)用最廣泛[3-6].

        近年來(lái),有關(guān)生物表面活性劑在環(huán)境中應(yīng)用的報(bào)道越來(lái)越多[7].很多中微生物都可產(chǎn)生物表面活性劑.生物表面活性劑種類(lèi)繁多,結(jié)構(gòu)多樣,一般可分為:①糖脂;②脂膚;③脂肪酸,中性脂質(zhì),磷脂;④聚合物;⑤微粒.一般來(lái)說(shuō),在工業(yè)化應(yīng)用的時(shí)候,人們普遍認(rèn)為生物表面活性劑更加低毒和環(huán)境友好.然而,在自然界中,微生物分泌生物表面活性劑一般用來(lái)抵抗外部環(huán)境,通過(guò)殺菌作用等以有利于自身在微生物群體中的競(jìng)爭(zhēng)性?xún)?yōu)勢(shì) (例如,偏害共棲).因此,生物表面活性劑在環(huán)境中的原位應(yīng)用,要充分考慮到其對(duì)環(huán)境微生物種群的影響.

        2 表面活性劑在環(huán)境污染物生物降解中的應(yīng)用

        表面活性劑在環(huán)境污染物降解中的應(yīng)用十分廣泛.根據(jù)目標(biāo)污染物的不同,可分為以下幾大類(lèi).

        2.1 染 料

        染料廢水的環(huán)境污染問(wèn)題一直受到人們的普遍關(guān)注.其廢水中含有大量的有機(jī)物和鹽份,具有化學(xué)需氧量(Chemical Oxygen Demand,COD)高,色澤深,酸堿性強(qiáng)等特點(diǎn),一直是廢水處理中的難題.Saxena等研究了曲拉通X-100(Triton X-100,TX-100)、吐溫80(Tween 80)和SDS對(duì)白腐真菌去除紙漿廢水中顏色、木質(zhì)素以及COD的作用,發(fā)現(xiàn)Tween 80的作用效果最顯著.添加100 mg/L的Tween 80可將顏色、COD和木質(zhì)素的去除率分別從34.49%、40.74%和16.38%提高到81.29%、75.35%和65.84%[8],效果顯著.Hadibarata等也發(fā)現(xiàn),Tween 80可有效提高白腐真菌 Pleurotus eryngii F032對(duì)偶氮染料活性黑5(Reactive Black 5,RB5)的脫色效率[9].Avramova等詳細(xì)對(duì)比了非離子表面活性劑TX-100、陽(yáng)離子表面活性劑CTAB及陰離子表面活性劑月桂酰肌氨酸鈉(SLS)對(duì)微生物脫色酸性橙Ⅱ(Acid orange 7,AO7)的效果.結(jié)果發(fā)現(xiàn),TX-100和SLS會(huì)抑制染料的脫色,但陽(yáng)離子型的表面活性劑十六烷基三甲基溴化銨(Hexadecyl trimethyl ammonium Bromide,CTAB)可顯著提高染料脫色率[10].作者認(rèn)為這可能與陽(yáng)離子型表面活性劑與細(xì)胞帶不同電荷有關(guān).CTAB可將染料牢固地結(jié)合在微生物細(xì)胞上,加快了底物傳遞作用,提高了染料的生物利用度.Gül等也發(fā)現(xiàn),陰離子型表面活性劑十二烷基苯磺酸鹽(DBS)會(huì)抑制雷瑪唑亮藍(lán)(Remazol Blue)的生物脫色,而陽(yáng)離子型表面活性劑十二烷基三甲基溴化銨(DTAB)可顯著增強(qiáng)微生物的染料脫色作用[3].

        本研究團(tuán)隊(duì)嘗試將由非離子表面活性劑水溶液形成的濁點(diǎn)系統(tǒng)應(yīng)用在三苯基甲烷染料微生物脫色中[11].研究發(fā)現(xiàn)由聚乙二醇三甲基壬基醚3 (Tergitol TMN-3)和聚氧乙烯脂肪醇醚30(Brij 30)水溶液組成的濁點(diǎn)系統(tǒng),不僅具有良好的生物相容性,同時(shí)可以調(diào)節(jié)染料的生物利用度,提高其降解效率[11].

        2.2 脂肪烴

        在石油工業(yè)天然氣工業(yè)區(qū)附近的土壤及水體中,一般存在嚴(yán)重的脂肪烴污染.脂肪烴不溶于環(huán)境中的水環(huán)境,形成非水相,生物利用度低.表面活性劑的加入可將脂肪烴乳化,提高其生物利用度.在水溶液中添加300 mg/L的鼠李糖脂,十八烷在水中的分散濃度提高了4個(gè)數(shù)量級(jí).1500 mg/L的十八烷84 h后降解了20%,而未添加表面活性劑的對(duì)照樣品只有5%被降解[12].Churchill等發(fā)現(xiàn),表面活性劑增強(qiáng)的生物降解作用似乎與降解微生物的細(xì)胞疏水性有關(guān).添加TX-100和Tween 80,親水的綠膿假單胞菌ATCC 9027和紅平紅球菌的十八烷降解速率增強(qiáng),而對(duì)于疏水的對(duì)不動(dòng)桿菌的十八烷生物降解不起作用[13].Owsianiak等的研究成果卻得到了不同的結(jié)論.他們發(fā)現(xiàn),離子型的表面活性劑鼠李糖脂和非離子型表面活性劑TX-100對(duì)微生物降解柴油的影響似乎只與菌種特異性有關(guān),與細(xì)胞表面疏水性和表面活性劑類(lèi)型無(wú)關(guān)[14].因此,表面活性劑類(lèi)型與細(xì)胞疏水性是否影響到脂肪烴的生物降解,還需研究者進(jìn)一步探索.

        2.3 單環(huán)芳烴

        單環(huán)芳烴污染物一般包括苯酚,甲苯和二甲苯等,主要存在于焦化廢水和工業(yè)廢氣當(dāng)中,可污染地下水、河流和大氣.丁瑩等通過(guò)添加TX-100、CTAB,Tween 80和鼠李糖脂強(qiáng)化熱帶假絲酵母CICC 1463降解苯酚,結(jié)果發(fā)現(xiàn)CTAB具有生物毒性抑制了苯酚的降解.低濃度的Tween 80,TX-100和鼠李糖脂可促進(jìn)苯酚降解,并且微生物可利用鼠李糖脂作為輔底物[15-16].Chan等研究了Brij 30和Brij 35在生物滴濾池中對(duì)甲苯生物降解的作用,發(fā)現(xiàn)表面活性劑的加入增強(qiáng)了甲苯在水中的溶解,卻抑制了甲苯的生物降解[17-18].Inakollu等則通過(guò)加入兩種鼠李糖脂生物表面活性劑,將苯和甲苯的降解速率常數(shù)分別提高了近25%和27%[19].

        2.4 多環(huán)芳烴

        環(huán)境中的多環(huán)芳烴 (Polycyclic aromatic hydrocarbons,PAHs)主要來(lái)源于煤和石油的燃燒,大多吸附在大氣和水中的微小顆粒物上.大氣中的多環(huán)芳烴又可通過(guò)沉降和降水沖洗作用而污染土壤和地面水.通常情況下,多環(huán)芳烴的環(huán)越多越難生物降解.目前,對(duì)表面活性劑影響多環(huán)芳烴微生物降解的研究比較多.1995年,大多數(shù)研究者們?cè)谔剿鞅砻婊钚詣┰诙喹h(huán)芳烴生物降解過(guò)程中是否會(huì)產(chǎn)生積極的作用.Deschenes等發(fā)現(xiàn)陰離子表面活性劑SDS可以增溶四環(huán)以下的多環(huán)芳烴,卻抑制了其生物降解[20].Liu等發(fā)現(xiàn)在萘微生物降解過(guò)程中,添加非離子表面活性劑Brij 30和TX-100不會(huì)抑制菌的生長(zhǎng)和萘的降解[21].Tsomides等測(cè)試了15種表面活性劑對(duì)菲生物降解的影響,發(fā)現(xiàn)除TX-100外,其他表面活性劑都對(duì)多環(huán)芳烴降解菌有毒性作用[22].由于表面活性劑在多環(huán)芳烴生物降解中的不確定性,1996年Grimberg,S等建立了菲在非離子表面活性劑壬基酚聚氧乙烯醚10 (Tergitol NP-10)中的增溶及生物降解模型,采用的菌種為施氏假單胞菌P16[5].作者發(fā)現(xiàn),雖然增溶在膠束中心的菲生物利用度為0,但這種增溶作用加快了菲在膠束和水溶液間的傳質(zhì)速率,因此強(qiáng)化了其生物降解.此模型對(duì)多環(huán)芳烴在表面活性劑膠束水溶液中的生物利用度有一定的指導(dǎo)作用.隨后,表面活性劑增強(qiáng)多環(huán)芳烴生物降解的報(bào)道越來(lái)越多,多采用非離子型表面活性劑[23],如Triton X-100[2,24-28],Tergitol NP-10[29],Igepal系列[29],Tween系列[1,24,30-33],Brij系列[34-38]及生物表面活性劑鼠李糖脂[39-40]等.

        2.5 鹵代芳烴

        滴滴涕(Dichlorodiphenyltrichloroethane,DDT)是一種有機(jī)氯殺蟲(chóng)劑,屬神經(jīng)及實(shí)質(zhì)臟器毒物,對(duì)人和大多數(shù)其它生物體具有中等強(qiáng)度的急性毒性.從1989年至今,表面活性劑TX-100,TX-114,TX-405,Brij 35,SDS和CTAB等對(duì)DDT的增溶研究都是一個(gè)熱門(mén)話(huà)題[41-42].1996年,You等發(fā)現(xiàn)表面活性劑可增強(qiáng)DDT的厭氧生物轉(zhuǎn)化[43].隨后,Aislabie等詳細(xì)總結(jié)了DDT的微生物轉(zhuǎn)化及表面活性劑的作用[44].他指出,由于DDT在土壤中的生物利用度很低,用表面活性劑預(yù)處理污染土壤是必須的步驟[44].用表面活性劑處理后,DDT增溶在表面活性劑的膠束當(dāng)中,提高了DDT的表觀溶解度,同時(shí)提高了DDT的生物利用度[45].Baczynski等加入0.5 mmol/L Tween 80可將DDT的轉(zhuǎn)化率提高2倍[4].升高表面活性劑濃度到1.25 mmol/L,DDT的轉(zhuǎn)化效率卻下降到對(duì)照樣品同等水平,并且不利用產(chǎn)物4,4-二氯二苯甲酮(4,4’-dichlorobenzophenone,DBP)的形成[4].這主要是由于表面活性劑過(guò)高會(huì)影響DDT從膠束向水中的傳質(zhì)過(guò)程,最終影響其生物利用度[46].

        多氯聯(lián)苯(PCB)是典型的鹵代芳烴污染物.多氯聯(lián)苯極難溶于水而易溶于脂肪和有機(jī)溶劑,并且極難分解,因而能夠在生物體脂肪中大量富集,有很強(qiáng)的生物毒害作用.多氯聯(lián)苯的化學(xué)性質(zhì)非常穩(wěn)定,很難在自然界分解,屬于持久性有機(jī)污染物的一類(lèi).1998年,F(xiàn)ava等研究了多氯聯(lián)苯污染土壤異位生物修復(fù)過(guò)程中,表面活性劑的作用.他們發(fā)現(xiàn)在泥漿狀態(tài)時(shí),TX-100抑制了多氯聯(lián)苯的生物利用度而皂樹(shù)(Quillaya Saponin)可輕微地增強(qiáng)多氯聯(lián)苯的生物降解;在固定床反應(yīng)器中,TX-100不會(huì)抑制微生物活性并輕微地增強(qiáng)了多氯聯(lián)苯的生物降解,而皂樹(shù)對(duì)多氯聯(lián)苯的生物降解沒(méi)有影響[6]. Rojas-Avelizapa等分析了3種非離子表面活性劑Tween 80,Tergitol NP 10和TX-100對(duì)多氯聯(lián)苯生物降解的影響,Tween 80效果最佳,多氯聯(lián)苯的降解率達(dá)到39%~60%[47].一些生物表面活性劑不僅能夠增溶多氯聯(lián)苯,還可作為降解菌的碳源被生物利用,可避免表面活性劑的二次污染[48-49].Singer等利用三油酸山梨坦(sorbitan trioleate)作為表面活性劑和降解菌的唯一碳源,增強(qiáng)二氯聯(lián)苯的降解[50].

        多溴聯(lián)苯醚(Poly Brominated Diphenyl Ethers,PBDES)是一類(lèi)環(huán)境中廣泛存在的全球性有機(jī)污染物.由于其具有環(huán)境持久性、遠(yuǎn)距離傳輸、生物可累積性及對(duì)生物和人體具有毒害效應(yīng)等特性,對(duì)其環(huán)境問(wèn)題的研究已成為當(dāng)前環(huán)境科學(xué)的一大熱點(diǎn)[51-52].PBDES的微生物降解在處在起始階段,相關(guān)報(bào)道不多[53].其中表面活性劑對(duì)PBDES微生物降解的強(qiáng)化作用只有國(guó)內(nèi)南京大學(xué)的高士祥教授團(tuán)隊(duì)做了相關(guān)研究,發(fā)現(xiàn)Tween 80和β-環(huán)糊精可增強(qiáng)十溴聯(lián)苯醚BDE-209的好氧生物降解,處于國(guó)際領(lǐng)先水平[54-55].

        3 表面活性劑強(qiáng)化環(huán)境污染物生物降解的機(jī)理分析

        不同性質(zhì)的環(huán)境有機(jī)污染物,表面活性劑的作用機(jī)理也有所不同.

        3.1 對(duì)溶解度高、毒性大污染物的強(qiáng)化機(jī)理

        對(duì)于染料廢水,含酚廢水等含有親水性污染物的環(huán)境污染源,表面活性劑的加入主要是解除污染物對(duì)微生物的底物抑制及生物毒性作用.在傳統(tǒng)的微生物處理系統(tǒng)中,由于廢水中有機(jī)物濃度非常高,降解微生物的細(xì)胞及酶活性受到抑制甚至導(dǎo)致細(xì)胞凋亡.添加表面活性劑后,污染物會(huì)被細(xì)胞增溶到表面活性劑的膠束當(dāng)中,降低了水溶液中污染物的含量.研究表明,膠束內(nèi)底物的生物利用率為0[56].這樣一來(lái),雖然微生物處理系統(tǒng)中污染物總量沒(méi)變,但是可生物利用的毒性污染物濃度降低,解除了其微生物的底物抑制及毒性作用,從而加強(qiáng)了污染物的生物降解.隨著水溶液中污染物的減少,膠束中的污染物也會(huì)進(jìn)一步分配到水相當(dāng)中,可進(jìn)一步被微生物降解[8-10].

        3.2 對(duì)輸水性強(qiáng)、難利用污染物的強(qiáng)化機(jī)理

        對(duì)于疏水性有機(jī)物污染的污染源,如石油烴、PAHs或鹵代芳烴污染的土壤,表面活性劑主要起乳化和增溶作用.在土壤中,污染物濃度較低,并且牢固地吸附在土壤顆粒表面和內(nèi)部,難溶于土壤內(nèi)部的水環(huán)境.這直接限制了污染物的生物利用度.在污染土壤中添加表面活性劑,通過(guò)乳化和增溶作用,可提高污染物在土壤水環(huán)境中的溶解度,加快污染物在土壤顆粒、表面活性劑膠束和水環(huán)境之間的傳質(zhì)作用[41-42].雖然增溶在膠束中心的污染物生物利用度為0,但這種增溶作用加快了污染物在膠束和水溶液間的傳質(zhì)速率,因此強(qiáng)化了其生物降解[5,56].

        3.3 生物相容性

        另外,表面活性劑對(duì)降解微生物的生物活性也有影響.微生物的細(xì)胞膜是由磷脂雙分子層組成,具有兩親性.在水溶液中加入表面活性劑,微生物細(xì)胞膜受到表面活性劑的吸附作用,其通透性及流動(dòng)性增強(qiáng).污染物更容易跨膜進(jìn)入微生物細(xì)胞內(nèi),有利于提高污染物降解速率.部分研究發(fā)現(xiàn)表面活性劑的加入,不僅沒(méi)有提高污染物的降解效率,反而抑制的微生物的降解能力,這主要是因?yàn)楸砻婊钚詣?duì)降解微生物的生物相容性較差,影響了微生物細(xì)胞的生理活性[15-18].Wang等研究表明,生物相容性與表面活性劑類(lèi)型、濃度及菌種相關(guān)[57].因此,應(yīng)用表面活性劑強(qiáng)化環(huán)境污染物的生物降解,生物相容性也是很重要的考慮因素.

        4 表面活性劑的生物降解

        盡管表面活性劑在環(huán)境污染物生物降解中的作用顯著,但其是否會(huì)帶來(lái)二次污染也是其規(guī)模應(yīng)用所必須考慮的問(wèn)題[58].一些好氧和厭氧的實(shí)驗(yàn)表明,環(huán)境常用的表面活性劑如SDS,Tween 80和TX-100等,可以在自然環(huán)境中快速的降解[59-61].而且,對(duì)于乙氧基非離子表面活性劑,降低親水基團(tuán)中氧乙烯單位的數(shù)量和增加疏水基團(tuán)的線(xiàn)性度都會(huì)強(qiáng)化其生物降解[62].

        有些表面活性劑及其代謝產(chǎn)物是有毒的,這類(lèi)表面活性劑通常情況下應(yīng)避免在環(huán)境中使用.如烷基酚羥乙基物表面活性劑在美國(guó)和幾個(gè)其他國(guó)家被禁止使用,因?yàn)檫@些聚合物長(zhǎng)鏈切斷以后會(huì)增加疏水性和毒性[62].而且,烷基酚羥乙基物被報(bào)道會(huì)降解成頑固代謝產(chǎn)物,這種產(chǎn)物表現(xiàn)出微弱的女性雌激素的生物活性.高劑量攝入可能會(huì)導(dǎo)致癌癥或者其他健康問(wèn)題[62].

        生物表面活性劑,如環(huán)糊精和鼠李糖脂等,相對(duì)于商業(yè)合成表面活性劑更容易降解,不會(huì)產(chǎn)生二次污染.盡管生物表面活性劑或者改良環(huán)糊精對(duì)于環(huán)境污染物的修復(fù)前途廣闊,但是表面活性劑的生物合成還屬于新興技術(shù)[7].其規(guī)?;I(yè)應(yīng)用受到成本的限制,還有很長(zhǎng)的一段路要走.

        5 展 望

        表面活性劑在環(huán)境污染物生物修復(fù)中的應(yīng)用日趨成熟,無(wú)論是原位修復(fù)(in-situ)還是異位修復(fù)(ex-situ)都有規(guī)?;瘧?yīng)用的先例.但是不同污染物在表面活性劑中的增溶方式和原理,膠束內(nèi)污染物的生物利用度,微生物細(xì)胞活性的影響機(jī)理都還是存在爭(zhēng)議的問(wèn)題,研究者有必要做進(jìn)一步的探索.生物表面活性劑在環(huán)境中規(guī)?;瘧?yīng)用還需解決成本問(wèn)題,表面活性劑性質(zhì)均一程度問(wèn)題等.

        非離子表面活性劑在一定溫度或添加物存在下,可以形成濁點(diǎn)系統(tǒng)[57].目前,濁點(diǎn)系統(tǒng)作為一種優(yōu)秀的新型兩相分配系統(tǒng),在微生物生物轉(zhuǎn)化方面應(yīng)用廣泛[63].本項(xiàng)目團(tuán)隊(duì)率先嘗試了濁點(diǎn)系統(tǒng)在染料微生物脫色中的應(yīng)用,并取得初步成功[11]. Pantsyrnaya等研究了菲在Brij30形成的濁點(diǎn)系統(tǒng)中的生物降解行為,發(fā)現(xiàn)濁點(diǎn)系統(tǒng)可以強(qiáng)化PAHs的生物降解[64].因此,濁點(diǎn)系統(tǒng)在環(huán)境有機(jī)污染物生物降解方面同樣具有廣闊的應(yīng)用潛力.

        [1]Sarma S J,Pakshirajan K.Surfactant aided biodegradation of pyrene using immobilized cells of Mycobacterium frederiksbergense[J]. International Biodeterioration and Biodegradation,2011,65(1):73-77.

        [2]Zhou Y,Zhang J,Su E,et al.Phenanthrene biodegradation by an indigenous Pseudomonas sp.ZJF08 with TX100 as surfactant[J]. Annals of Microbiology,2008,58(3):439-442.

        [3]Gül üD,D?nmez G.Effect of surfactants on remazol blue bioremoval capacity of Rhizopus arrhizus strain growing in molasses medium[J].Fresenius Environmental Bulletin,2011,20 (10A):2677-2683.

        [4]BaczynskiT P,PleissnerD.Bioremediation ofchlorinated pesticide-Contaminated soilusing anaerobic sludges and surfactant addition[J].Journal of Environmental Science and Health-Part B Pesticides,F(xiàn)ood Contaminants,and Agricultural Wastes,2010,45(1):82-88.

        [5]Grimberg S J,Stringfellow W T,Aitken M D.Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant[J]. Applied and Environmental Microbiology,1996,62(7):2387-2392.

        [6]Fava F,Di Gioia D.Effects of Triton X-100 and Quillaya Saponin on the ex situ bioremediation of a chronically polychlorobiphenylcontaminated soil[J].Applied Microbiology and Biotechnology,1998,50(5):623-630.

        [7]Catherine N M.Environmental applications for biosurfactants[J]. Environmental Pollution,2005,133(2):183-198.

        [8]Saxena N,Gupta R K.Decolourization and delignification of pulp and paper mill effluent by white rot fungi[J].Indian Journal of Experimental Biology,1998,36(10):1049-1051.

        [9]Hadibarata T,Adnan L A,Yusoff ARM,et al.Microbial decolorization of an azo dye reactive black 5 using white-rot fungus pleurotus eryngii F032[J].Water Air and Soil Pollution,2013,224(6):1-9.

        [10]Avramova T,Stefanova L,Angelova B,etal.Bacterial decolorization of acid orange 7 in the presence of ionic and non-ionic surfactants[J].Zeitschrift fur Naturforschung-Section C Journal of Biosciences,2007,62(1/2):87-92.

        [11]Pan T,Ren S,Xu M,et al.Extractive biodecolorization of triphenylmethane dyes in cloud point system by Aeromonas hydrophila DN322p[J].Applied Microbiology and Biotechnology,2013,97(13):6051-6055.

        [12]Zhang Y,Miller R M.Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant)[J].Applied and EnvironmentalMicrobiology,1992,58(10):3276-3282.

        [13]Churchill P F,Churchill SA.Surfactant-enhanced biodegradation of solid alkanes[J].Journal of Environmental Science and Health-Part A,1997,32(1):293-306.

        [14]Owsianiak M,Szulc A,Chrzanowskit ?,et al.Biodegradation and surfactant-mediated biodegradation ofdieselfuelby 218 microbial consortia are not correlated to cell surface hydrophobicity[J].Applied Microbiology and Biotechnology,2009,84(3):545-553.

        [15]Liu Z F,Zeng G M,Wang J,et al.Effects of monorhamnolipid and Tween 80 on the degradation of phenol by Candida tropicalis[J]. Process Biochemistry,2010,45(5):805-809.

        [16]丁瑩,袁興中,曾光明,等.表面活性劑對(duì)熱帶假絲酵母降解苯酚的影響[J].環(huán)境科學(xué),2010,31(4):1047-1052.

        [17]Chan W C,You H Z.Nonionic surfactant Brij35 effects on toluene biodegradation in a composite bead biofilter[J].African Journal of Biotechnology,2009,8(20):5406-5414.

        [18]Chan W C,You H Y.The influence of nonionic surfactant Brij 30 on biodegradation of toluene in a biofilter[J].African Journal of Biotechnology,2010,9(36):5914-5921.

        [19]Inakollu S,Hung H C,Shreve G S.Biosurfactant enhancement of microbial degradation of various structural classes of hydrocarbon in mixed waste systems[J].Environmental Engineering Science,2004,21(4):463-469.

        [20]Deschenes L,Lafrance P,Villeneuve J P,et al.The effect of an anionic surfactant on the mobilization and biodegradation of PAHs in a creosote-contaminated soil[J].Hydrological Sciences Journal,1995,40(4):471-484.

        [21]Liu Z,Jacobson A M,Luthy R G.Biodegradation of naphthalene in aqueous nonionic surfactant systems[J].Applied and Environmental Microbiology,1995,61(1):145-151.

        [22]Tsomides H J,Hughes J B,Thomas J M,et al.Effect of surfactant addition on phenanthrene biodegradation in sediments[J]. Environmental Toxicology and Chemistry,1995,14(6):953-959.

        [23]Iglesias O,Angeles Sanroman M,Pazos M.Surfactant-enhanced solubilization and simultaneous degradation of phenanthrene in marine sediment by electro-Fenton treatment[J].Industrial& Engineering Chemistry Research,2014,53(8):2917-2923.

        [24]Yang J G,Liu X,Long T,et al.Influence of nonionic surfactant on the solubilization and biodegradation of phenanthrene[J]. Journal of Environmental Sciences,2003,15(6):859-862.

        [25]Rodriguez S,Bishop P L.Enhancing the biodegradation of polycyclic aromatic hydrocarbons:Effects of nonionic surfactant addition on biofilm function and structure[J].Journalof Environmental Engineering,2008,134(7):505-512.

        [26]Lakshmi M B,Perumal V,Anandaraj,et al.Bioremediation of phenanthrene by mycoplana sp MVMB2 isolated from contaminated soil[J].Clean-Soil Air Water,2013,41(1):86-93.

        [27]Jin H,Zhou W,Zhu L.Utilizing surfactants to control the sorption,desorption,and biodegradation of phenanthrene in soilwater system[J].Journal of Environmental Sciences-China,2013,25(7):1355-1361.

        [28]Dave B P,Ghevariya C M,Bhatt J K,et al.Enhanced biodegradation of total polycyclic aromatic hydrocarbons (TPAHs)by marine halotolerant Achromobacter xylosoxidans using Triton X-100 and beta-cyclodextrin-A microcosm approach[J].Marine Pollution Bulletin,2014,79(1/2):123-129.

        [29]Boonchan S,Britz M L,Stanley G A.Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by stenotrophomonas maltophilia[J].Biotechnology and Bioengineering,1998,59(4):482-494.

        [30]楊建剛,劉翔,余剛,等.非離子表面活性劑Tween20對(duì)菲生物降解的影響[J].環(huán)境科學(xué),2004,25(1):53-56.

        [31]臧淑艷,李培軍,楊艷杰,等.Tween80作用下苯并(a)芘的微生物降解研究[J].遼寧工程技術(shù)大學(xué)學(xué)報(bào),2007,26(3):467-469.

        [32]Zhang D,Zhu L.Effects of Tween 80 on the removal,sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1[J]. Environmental Pollution,2012,164:169-174.

        [33]Aryal M,Liakopoulou-Kyriakides M.Biodegradation and kinetics ofphenanthrene and pyrene in the presence ofnonionic surfactants by Arthrobacter strain sphe3[J].Water Air and Soil Pollution,2013,224(2):1-10.

        [34]Kim I S,Park J S,Kim K W.Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry[J].Applied Geochemistry,2001,16(11):1419-1428.

        [35]Bernardez L A.A rotating disk apparatus for assessing the biodegradation of polycyclic aromatic hydrocarbons transferring from a non-aqueous phase liquid to solutions of surfactant Brij 35[J].Bioprocess and Biosystems Engineering,2009,32(3):415-424.

        [36]Bueno-Montes M,Springael D,Ortega-Calvo J J.Effect of a nonionic surfactant on biodegradation of slowly desorbing PAHs in contaminated soils[J].Environmental Science and Technology,2011,45(7):3019-3026.

        [37]Zhu H,Aitken M D.Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil[J].Environmental Science and Technology,2010,44(19):7260-7265.

        [38]Pantsyrnaya T,Delaunay S,Goergen J L,et al.Biodegradation of phenanthrene by pseudomonas putida and a bacterial consortium in the presence and in the absence of a surfactant[J].Indian Journal of Microbiology,2012,52(3):420-426.

        [39]Shin K H,Ahn Y,Kim K W.Toxic effect of biosurfactant addition on the biodegradation of phenanthrene[J].Environmental Toxicology and Chemistry,2005,24(11):2768-2774.

        [40]Jorfi S,Rezaee A,Mobeh-Ali G-A,et al.Application of Biosurfactants produced by Pseudomonas aeruginosa SP4 for bioremediation of soils contaminated by pyrene[J].Soil& Sediment Contamination,2013,22(8):890-911.

        [41]Kile D E,Chiou C T.Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration[J].Environmental Science and Technology,1989,23(7):832-838.

        [42]Wen X,Wang T T,Chen W W,et al.Adsorption of DDT in soil using a single and combined effect of cadmium and Tween80[J]. Chemistry and Ecology,2013,29(4):340-352.

        [43]You G,Sayles G D,Kupferle M J,et al.Anaerobic DDT biotransformation:Enhancement by application of surfactants and low oxidation reduction potential[J].Chemosphere,1996,32(11): 2269-2284.

        [44]Aislabie J M,Richards N K,Boul H L.Microbial degradation of DDT and its residues a review[J].New Zealand Journal of Agricultural Research,1997,40(2):269-282.

        [45]Silva E J,Silva NMPRe,Rufino R D,et al.Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence ofindustrialwastes and its application in the biodegradation of hydrophobic compounds in soil[J].Colloids and Surfaces B-Biointerfaces,2014,117:36-41.

        [46]Yang S C,Lei M,Chen T B.Effect of surfactant Tween 80 on the anaerobic degradation and desorption of HCHs and DDX in aged soil under saturated condition with low liquid/solid ratio[J].Soil &Sediment Contamination,2014,23(7):715-724.

        [47]Rojas-Avelizapa NG,Rodríguez-Vázquez R,Saval-Bohorquez S,etal.EffectofC/N/P ratioand nonionic surfactantson polychlorinated biphenyl biodegradation[J].World Journal of Microbiology and Biotechnology,2000,16(4):319-324.

        [48]Viisimaa M,Karpenko O,Novikov V,et al.Influence of biosurfactant on combined chemical-biological treatment of PCB-contaminated soil[J].Chemical Engineering Journal,2013,220:352-359.

        [49]G anesh-Kumar S,Kalimuthu K,Jebakumar S R.A novel bacterium that degrades Aroclor-1254 and its bphC gene encodes an extradiolaromatic ring cleavage dioxygenase (EARCD)[J].Water Air and Soil Pollution,2013,224(6):1-12.

        [50]Singer A C,Gilbert E S,Luepromchai E,et al.Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria [J].Applied Microbiology and Biotechnology,2000,54(6):838-843.

        [51]Xia C,Lam JCW,Wu X,et al.Levels and distribution of polybrominated diphenyl ethers (PBDEs)in marine fishes from Chinese coastal waters[J].Chemosphere,2011,82(1):18-24.

        [52]Huang Y,Chen L,Peng X,et al.PBDEs in indoor dust in South-Central China:Characteristics and implications[J].Chemosphere,2010,78(2):169-174.

        [53]Deng D,Guo J,Sun G,et al.Aerobic debromination of deca-BDE:Isolation and characterization of an indigenous isolate from a PBDE contaminated sediment[J].International Biodeterioration and Biodegradation,2011,65(3):465-469.

        [54]Zhou J,Jiang W,Ding J,et al.Effect of Tween 80 and βcyclodextrin on degradation of decabromodiphenyl ether(BDE-209)by White Rot Fungi[J].Chemosphere,2007,70(2):172-177.

        [55]丁娟,周娟,姜瑋穎,等.多溴聯(lián)苯醚好氧生物降解研究[J].環(huán)境科學(xué),2008,29(11):3179-3184.

        [56]Wang Z.Bioavailability of organic compounds solubilized in nonionic surfactantmicelles[J].Applied Microbiology and Biotechnology,2011,89(3):523-534.

        [57]Wang Z.Extractive whole cell biotransformation in cloud point system,in Non-Ionic Surfactants[M].New York:Nova Science Publishers,2010:83-136.

        [58]Rebello S,Asok A K,Mundayoor S,et al.Surfactants:toxicity,remediation and green surfactants[J].Environmental Chemistry Letters,2014,12(2):275-287.

        [59]Scott M J,Jones M N.The biodegradation of surfactants in the environment[J].Biochimica et Biophysica Acta-Biomembranes,2000,1508(1/2):235-251.

        [60]Upadhye S S,Sonde R R.Degradation of sodium dodecyl sulfate by the bacterial isolates obtained from polluted aquatic bodies[J]. Journal of Pure and Applied Microbiology,2012,6(1):303-308.

        [61]Ambily P S,Jisha M S.Biodegradation of anionic surfactant,sodium dodecyl sulphate by Pseudomonas aeruginosa MTCC 10311[J].Journal of Environmental Biology,2012,33(4):717-720.

        [62]Saichek R E,Reddy K R.Electrokinetically enhanced remediation of hydrophobic organic compounds in soils:A review [J].Critical Reviews in Environmental Science and Technology,2005,35(2):115-192.

        [63]WangZL,XuJH,ChenD J.Wholecellmicrobial transformation in cloud point system[J].Journal of Industrial Microbiology&Biotechnology,2008,35(7):645-656.

        [64]Pantsyrnaya T,Delaunay S,Goergen J L,et al.Solubilization of phenanthrene above cloud point of Brij 30:A new application in biodegradation[J].Chemosphere,2013,92(2):192-195.

        Advances in biodegradation research on environmental organic pollutants by surfactants

        PAN Tao,YU Shuijing,DENG Yangwu,DONG Wei
        (Jiangxi Key Laboratory of Mining&Metallurgy Environmental Pollution Control,Jiangxi University of Science and Technology,Ganzhou 341000,China)

        The main reason that biological treatment of environmental organic pollutants is severely constrained mainly includes two aspects:first is high concentrations of pollutants with high biological toxicity;the second,pollutants are difficult in hydrophobic and to be absorbed by microbes.These problems can be solved by surfactant enhanced technology.In this paper,biodegradation mechanisms with surfactants were applied to two environmentalorganic pollutants.We summarized five majorsurfactant-enhanced biodegradation of environmental organic pollutants,including dyes,aliphatic hydrocarbons,single-ring aromatic hydrocarbons,polycyclic aromatic hydrocarbons,and halogenated aromatics.At the same time,to avoid the secondary pollution of surfactants,its degradation in the environment was also described.Finally,further research and application of surfactants in biodegradation of environmental organic pollutants were discussed and proposed.

        surfactants;biosurfactants;biodegradation;organic pollutants

        潘濤(1984- ),男,博士,講師,主要從事疏水性有機(jī)污染物的萃取微生物降解等方面的研究,E-mail:t.pan@mail.jxust.edu.cn.

        2095-3046(2015)01-0001-06

        10.13265/j.cnki.jxlgdxxb.2015.01.001

        X592

        A

        2014-09-25

        國(guó)家自然科學(xué)基金資助項(xiàng)目(21407070);江西理工大學(xué)博士啟動(dòng)基金(jxxjbs 13018);江西理工大學(xué)校級(jí)課題(NSFJ2014-G02)

        猜你喜歡
        生物環(huán)境
        生物多樣性
        生物多樣性
        上上生物
        長(zhǎng)期鍛煉創(chuàng)造體內(nèi)抑癌環(huán)境
        發(fā)現(xiàn)不明生物
        一種用于自主學(xué)習(xí)的虛擬仿真環(huán)境
        史上“最黑暗”的生物
        軍事文摘(2020年20期)2020-11-28 11:42:50
        孕期遠(yuǎn)離容易致畸的環(huán)境
        第12話(huà) 完美生物
        航空世界(2020年10期)2020-01-19 14:36:20
        不能改變環(huán)境,那就改變心境
        国产自拍偷拍视频免费在线观看| 久久精品国产亚洲AV香蕉吃奶| 成人做受视频试看60秒| 大肉大捧一进一出视频| 亚洲国产韩国欧美在线| 亚洲av片不卡无码久久| 国产亚洲蜜芽精品久久| 无码不卡免费一级毛片视频| 国产精品成人av电影不卡| 日本一二三区在线不卡| 国产精品国产自产自拍高清av| 性色欲情网站| 亚洲av成人无码精品电影在线| 国产激情精品一区二区三区| 亚洲AV永久无码制服河南实里 | av天堂久久天堂av色综合| 国内少妇人妻丰满av| 国产精品99久久久久久98AV| 日韩免费高清视频网站| 青青草手机成人自拍视频| 日本成人精品一区二区三区| 亚洲中文字幕在线一区| 久久99精品久久久久婷婷| 狠狠躁夜夜躁人人躁婷婷视频| 精品人妻伦九区久久aaa片69| 人妻精品丝袜一区二区无码AV | 吃奶摸下高潮60分钟免费视频| 免费a级毛片18以上观看精品| 久久久久久人妻一区二区三区| 免费一级毛片麻豆精品| 欧洲AV秘 无码一区二区三| 内射中出后入内射极品女神视频| 久久精见国产亚洲av高清热| 日本一区二区三区视频国产| 色爱av综合网站| 射死你天天日| 欧美成人精品福利在线视频| 亚洲最黄视频一区二区| av网站在线观看入口| 宅男666在线永久免费观看| 孩交精品xxxx视频视频|