亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        地幔氧逸度與俯沖帶深部碳循環(huán)*

        2015-04-13 04:25:28陶仁彪張立飛劉曦
        巖石學(xué)報(bào) 2015年7期
        關(guān)鍵詞:洋殼逸度含碳

        陶仁彪 張立飛 劉曦

        TAO RenBiao,ZHANG LiFei and LIU Xi

        造山帶與地殼演化教育部重點(diǎn)實(shí)驗(yàn)室,北京大學(xué)地球與空間科學(xué)學(xué)院,北京 100871

        Key Laboratory of Orogenic Belts and Crustal Evolution,MOE,School of Earth and Space Science,Peking University,Beijing 100871,China

        2014-09-14 收稿,2014-12-21 改回.

        1 地幔氧逸度意義及研究方法

        地幔物質(zhì)的物理和化學(xué)屬性是現(xiàn)代固體地球科學(xué)研究的重要內(nèi)容。氧逸度作為特殊的成分變量,通過控制地幔礦物中的變價(jià)元素,如:過渡金屬元素(Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn)和揮發(fā)份元素(C、H、O、N、S)的氧化還原狀態(tài),影響地幔的礦物組合,固、液相線,流體交代,元素分配等行為(Arculus,1985)。同時(shí),氧逸度還可以顯著影響地幔巖石的電導(dǎo)率、擴(kuò)散性和變形性等物理傳導(dǎo)性質(zhì)(Ryerson et al.,1989;Dai and Karato,2014)。地幔氧逸度的變化也保存和記錄了核-幔分異過程和早期地球形成演化信息(Wade and Wood,2005;Wood et al.,2006,2008)。因此,不論是研究地球早期起源和演化歷史,還是研究現(xiàn)代固體地幔物質(zhì)組成及物理化學(xué)屬性,地幔氧逸度都是極其重要的研究?jī)?nèi)容。本文重點(diǎn)關(guān)注地幔氧逸度對(duì)揮發(fā)份元素碳(C)的存在形式和遷移屬性的影響。譬如,地幔源區(qū)氧逸度制約幔源巖漿作用釋放含碳?xì)怏w的種類及含量(Ballhaus and Frost,1994;Holloway,1998)。

        地幔氧逸度研究方法主要分為實(shí)驗(yàn)室模擬測(cè)量、氧逸度計(jì)測(cè)量和理論計(jì)算。其中實(shí)驗(yàn)室模擬測(cè)量包括了本征氧逸度測(cè)量(Sato and Wright,1966;Arculus et al.,1984)以及模擬氧逸度測(cè)量(Christie et al.,1986;Wood et al.,1990)。

        對(duì)于地幔高壓樣品,由于高壓測(cè)量過程中樣品倉(cāng)密封性很難得到保證,使得下地幔溫壓條件下樣品的本征氧逸度測(cè)量難以進(jìn)行;而模擬氧逸度測(cè)量則由于無法確定體系中Fe3+/∑Fe 值而使其應(yīng)用受限。Woodland and O’Neill(1997)提出了一種利用惰性貴金屬(如Ir)作為氧化還原傳感器模擬測(cè)量地幔含鐵樣品在高溫高壓條件下氧逸度的方法:在含鐵地幔樣品中加入貴金屬(如Ir)作為氧化還原傳感器,利用高溫高壓裝置模擬地幔溫度、壓力條件。實(shí)驗(yàn)平衡后淬火,通過分析實(shí)驗(yàn)產(chǎn)物中鐵和惰性貴金屬(Fe-Ir)合金成分,利用實(shí)驗(yàn)標(biāo)定的活度模型計(jì)算出體系中對(duì)應(yīng)金屬Fe 的活度,從而得到含鐵地幔樣品在高溫高壓條件下的氧逸度。最近一些高溫高壓實(shí)驗(yàn)成功應(yīng)用此法測(cè)量了地幔氧逸度的變化及其與碳酸鹽穩(wěn)定性的關(guān)系(Stagno and Frost,2010;Rohrbach and Schmidt,2011;Stagno et al.,2011,2013)。這些研究對(duì)測(cè)量地幔氧逸度和深部碳循環(huán)都有重要意義,這種利用惰性貴金屬作為氧化還原傳感器在高溫高壓條件下模擬研究地幔氧逸度的方法值得推廣研究。

        目前應(yīng)用最為廣泛的直接測(cè)量地幔氧逸度的方法是氧逸度計(jì)法。氧逸度計(jì)測(cè)量方法是根據(jù)幔源巖石中礦物間的氧化還原平衡反應(yīng)與氧逸度的依存關(guān)系,基于相應(yīng)礦物成分,活度模型,借助熱力學(xué)計(jì)算地幔氧逸度(Haggerty and Tompkins,1983;Luth et al.,1990)。目前關(guān)于地幔氧化還原性質(zhì)的多數(shù)數(shù)據(jù)都是對(duì)幔源巖石利用不同氧逸度計(jì)計(jì)算所得。

        地幔氧逸度的理論計(jì)算包括兩條途徑,途徑一是:在封閉體系中,若體系的成分、溫度、壓力均確定,則體系的氧逸度將有確定的取值。根據(jù)此原理,通過分析幔源流體包裹體成分及研究流體體系狀態(tài)方程,建立的利用流體包裹體計(jì)算源區(qū)氧逸度的方法(Taylor,1990)。理論計(jì)算的另一途徑是:綜合分析來自地幔實(shí)際樣品的氧逸度數(shù)據(jù),結(jié)合整個(gè)地球物質(zhì)組成、性質(zhì)、狀態(tài)、運(yùn)動(dòng)過程及演化歷史的認(rèn)識(shí),建立定量約束地幔氧逸度的模型,根據(jù)熱力學(xué)計(jì)算獲取地幔任何部位的氧逸度值(Blundy et al.,1991)。劉叢強(qiáng)等(2001)對(duì)地幔氧逸度研究方法進(jìn)行了詳細(xì)綜述,在此不予贅述。

        2 地幔氧逸度

        2.1 上地幔

        上地幔是唯一可以通過天然樣品直接測(cè)量和估算氧逸度的地球深部系統(tǒng)。通常情況下,來自大陸巖石圈下的上地幔樣品會(huì)受到部分熔融和交代作用的影響,所以考慮上地幔氧逸度時(shí)應(yīng)當(dāng)結(jié)合部分熔融產(chǎn)生的地幔玄武巖以及殘余地幔橄欖巖綜合對(duì)比來限定上地幔氧化還原狀態(tài)。

        地幔物質(zhì)部分熔融產(chǎn)生的玄武巖(MORB、IAB、OIB)可以一定程度上反映上地幔的氧化還原狀態(tài)。前人通過分析快速冷卻的洋脊擴(kuò)張中心枕狀玄武巖(MORB)淬火玻璃邊的Fe3+/∑Fe 值,獲得全球洋中脊擴(kuò)張中心玄武巖玻璃具有在12 ±2 % 較窄范圍內(nèi)變化的Fe3+/∑Fe 值,并根據(jù)經(jīng)驗(yàn)校準(zhǔn),認(rèn)為全球平均洋中脊玄武巖玻璃的氧逸度在ΔFMQ-0.41(±0.43)較窄的范圍之內(nèi)(Bézos and Humler,2005)。據(jù)此得到的全球MORB 的氧逸度并沒有顯示與源區(qū)屬性,熔融程度具有明顯的相關(guān)性?;诖?,Bézos and Humler (2005)提出“緩沖的地幔熔融過程”來解釋熔融過程中Fe3+的相容性行為,也就是說MORB 熔體中的Fe2O3可能是受到深部地幔橄欖巖平均氧逸度的控制。與之對(duì)比,根據(jù)相同的方法獲得的全球島弧玄武巖(IAB)卻具有比洋中脊玄武巖(MORB)更高的氧逸度,一般在ΔFMQ 到ΔFMQ + 1.5 范圍內(nèi)變化(Ballhaus,1993a,b)。前人認(rèn)為這可能是由于俯沖作用引入的地表氧化物質(zhì)(如H2O)導(dǎo)致島弧玄武巖具有更高的氧逸度(Bézos and Humler,2005;Kelley and Cottrell,2009)。也有人認(rèn)為由于很難確定島弧地幔中Fe 是固有的還是幔源的,所以島弧地幔的氧化還原性質(zhì)是很難根據(jù)島弧玄武巖的Fe3+/∑Fe 含量來間接確定(Mallmann and O’Neill,2009)。在此基礎(chǔ)上,Lee et al. (2010)發(fā)展了用島弧玄武巖的Zn/FeT值作為島弧地幔氧逸度計(jì),并提出島弧地幔的高氧逸度也許并不是由于俯沖氧化性物質(zhì)的加入引起的,而是由于島弧巖漿上涌過程中的分異作用引起的,具體分異過程依然不清楚。

        上地幔的氧逸度還可以用尖晶石橄欖巖和石榴石橄欖巖氧逸度計(jì)來直接限定。對(duì)來自上地幔30 ~50km 的尖晶石橄 欖 巖,可 根 據(jù) 平 衡 反 應(yīng):6Fe2SiO4(橄欖石)+ O2=3Fe2Si2O6(輝石)+2Fe3O4(尖晶石)以及相應(yīng)礦物成分和活度模型進(jìn)行尖晶石橄欖巖的氧逸度計(jì)算(O’Neill and Wall,1987;Ballhaus et al.,1991)。前人對(duì)大量來自不同構(gòu)造背景下尖晶石橄欖巖進(jìn)行氧逸度計(jì)算并得到從ΔFMQ-3.4 到ΔFMQ+1.5 較大區(qū)間變化的氧逸度,這說明軟流圈地幔氧逸度在水平空間上具有不均一性(Ballhaus et al.,1991;Ballhaus,1993b;Foley,2010)。地幔石榴石橄欖巖具有比尖晶石橄欖巖更深的來源(50 ~220km)以及相似的全巖Fe2O3含量。然而石榴橄欖巖中石榴石卻表現(xiàn)出隨壓力(來源深度)增加,其Fe3+/∑Fe 值從2%到14% 較大范圍的變化(Luth et al.,1990;Canil and O’Neill,1996)。石榴橄欖巖的氧逸度可以根據(jù)氧化還原反應(yīng):2Fe3Fe32+Si3O12(石榴石)=4Fe2SiO4(橄欖石)+2FeSiO3(斜方輝石)+O2以及相應(yīng)的礦物成分和活度模型進(jìn)行計(jì)算(Gudmundsson and Wood,1995)。此氧逸度計(jì)已經(jīng)廣泛用于限定來自克拉通地幔石榴石橄欖巖的氧逸度。前人通過此氧逸度計(jì)計(jì)算了大量來自不同地質(zhì)背景下石榴橄欖巖的氧逸度,發(fā)現(xiàn)其具有從ΔFMQ-4.2 到ΔFMQ 的非常大的變化區(qū)間(Frost and McCammon,2008)。對(duì)于確定成分的石榴橄欖巖,其氧逸度是隨著來源深度的增加而降低的(圖1曲線1),直到在大于250km 時(shí)和鎳沉淀氧逸度曲線(NiPC)相交(圖1 曲線2)(Frost and McCammon,2008)。上述通過玄武巖和地幔橄欖巖氧逸度計(jì)獲得的上地幔氧逸度存在明顯差異,這可能是由于玄武巖是地幔巖石不同程度熔融作用的產(chǎn)物,并不能直接反應(yīng)地幔氧化還原屬性。故常用的地幔氧逸度數(shù)據(jù)都是基于尖晶石橄欖巖和石榴石橄欖巖氧逸度計(jì)直接限定所得(Frost and McCammon,2008)。但是,玄武巖氧逸度對(duì)上地幔氧化還原屬性也具有一定的指示意義。

        圖1 假設(shè)富集地幔Fe3+ /∑Fe 為2% 時(shí),在克拉通地?zé)崽荻认掠?jì)算的石榴橄欖巖相對(duì)于IW 緩沖劑氧逸度曲線(據(jù)Frost and McCammon,2008)Ni 沉淀曲線(NiPC)氧逸度是根據(jù)平衡反應(yīng)Ni2SiO4(橄欖石)=2Ni(金屬)+ SiO2(石英) + O2 計(jì) 算 而 來. 線1 代 表 平 衡 反 應(yīng)2Fe3Fe3+2 Si3O12(石榴石)=4Fe2SiO4(橄欖石)+2FeSiO3(輝石)+ O2 計(jì)算的石榴橄欖巖的氧逸度曲線;線2 代表石榴橄欖巖氧逸度曲線與NiPC 相交之后的受控于Ni 沉淀曲線的氧逸度變化曲線;線3 代表線1 向金屬穩(wěn)定域的亞穩(wěn)定延伸線. EMOG/D 氧逸度緩 沖 曲 線 根 據(jù) 反 應(yīng) MgSiO3(輝石) + MgCO3(菱鎂礦) =Mg2SiO4(橄欖石)+C(石墨/金剛石)+O2 計(jì)算Fig.1 The oxygen fugacity calculated for a garnet peridotite assemblage assuming a Fe3+ /∑Fe ratio of 2% shown along a cratonic geotherm relative to the IW buffer (after Frost and McCammon,2008)

        2.2 上地幔底部和轉(zhuǎn)換帶

        由于幾乎沒有來自上地幔深部和轉(zhuǎn)換帶的天然樣品用于直接計(jì)算氧逸度,所以只有通過理論計(jì)算(Ballhaus,1995)和高溫高壓實(shí)驗(yàn)(Frost et al.,2004;Rohrbach et al.,2007,2011)去限定上地幔下部和轉(zhuǎn)換帶的氧化還原性質(zhì)。假設(shè)全地幔的Fe2O3含量在深度上變化不大,隨著壓力的增加,石榴石橄欖巖控制氧逸度的反應(yīng):2Fe3Fe3+2Si3O12(石榴石)=4Fe2SiO4(橄欖石)+2FeSiO3(輝石)+O2會(huì)使促進(jìn)更多的Fe3+分配進(jìn)入石榴石礦物相中,使下地幔底部氧逸度隨著深度的增加而持續(xù)降低。直到250km 左右,石榴橄欖巖氧逸度曲線和鎳沉淀氧逸度曲線(NiPC)相交。這時(shí)橄欖石中的NiO 會(huì)以金屬Ni 通過反應(yīng):Ni2SiO4(橄欖石)=2Ni(金屬)+SiO2+O2沉淀出來,此時(shí)深部地幔氧逸度則主要受控于鎳沉淀氧逸度曲線(NiPC)(圖1)(O’Neill and Wall,1987;Woodland and Koch,2003)。隨著壓力繼續(xù)升高,金屬鐵也會(huì)從橄欖石中沉淀出來,這時(shí)深部地幔氧逸度則主要通過金屬(Fe,Ni)沉淀反應(yīng)(Ni,F(xiàn)e)2SiO4(橄欖石)=2(Ni,F(xiàn)e)(金屬)+SiO2+O2來控制。這與天然金剛石包體中發(fā)現(xiàn)的金屬鐵和FexC 碳化物的巖石學(xué)觀察是一致的(Stachel et al.,1988;Jacob et al.,2004)。這時(shí)地幔氧逸度一般低于FMQ 約5 個(gè)對(duì)數(shù)單位。隨著Ni 和Fe 金屬持續(xù)析出,氧逸度應(yīng)該沿著NiPC 曲線緩慢降低(圖1)。從250km 金屬Fe 和Ni 析出一直到440km的地幔過渡帶,氧逸度只降低0.5 對(duì)數(shù)單位左右(圖1)(Frost and McCammon,2008)。在地幔轉(zhuǎn)換帶中,橄欖石相變成瓦德利石(Wadsleyite)和林伍德石(Ringwoodite)使地幔橄欖石含量降低,驅(qū)使石榴橄欖巖氧逸度曲線2Fe3Fe3+2Si3O12=4Fe2SiO4+2FeSiO3+O2向右進(jìn)行,可能會(huì)增加轉(zhuǎn)換帶計(jì)算的氧逸度。然而,Ballhaus (1995)認(rèn)為在地幔過渡帶中,石榴石、瓦德利石以及林伍德石中都具有很強(qiáng)的Fe3+容納能力,而Fe3Fe3+2Si3O12的活度會(huì)由于部分Fe2O3進(jìn)入瓦德利石和林伍德石(約2%)而導(dǎo)致計(jì)算的轉(zhuǎn)換帶氧逸度降低。從上述討論可知,轉(zhuǎn)換帶氧逸度的限定取決于Fe3+在石榴石與瓦德利石、林伍德石中容納能力的差異,這需要更進(jìn)一步的實(shí)驗(yàn)?zāi)M研究來限定?;诘蒯?duì)流理論,Ballhaus (1995)假定轉(zhuǎn)換帶與軟流圈具有相同的Fe3+含量,并通過熱力學(xué)計(jì)算得出從軟流圈到過渡帶的氧逸度是持續(xù)降低的。也就是說過渡帶氧逸度隨深度的變化依然受控于Fe,Ni 沉淀氧逸度曲線并隨深度持續(xù)降低。

        2.3 下地幔

        下地幔(>660km)礦物組合比較均一,主要為鈣鈦礦型(Mg,F(xiàn)e)(Al,Si)O3、鈣鈦礦型CaSiO3和(Mg,F(xiàn)e)O 方鎂石(Fei et al.,1999)。值得注意的是,下地幔主要礦物:鈣鈦礦型MgSiO3最近首次在天然沖擊隕石中被發(fā)現(xiàn),并命名為布里奇曼石(Bridgmanite)(Tschauner et al.,2014)。下地幔MgSiO3鈣鈦礦結(jié)構(gòu)直到2700km 會(huì)轉(zhuǎn)變?yōu)楹筲}鈦礦結(jié)構(gòu)(Murakami et al.,2004)。假設(shè)下地幔頂部和轉(zhuǎn)換帶具有相似全氧含量,就可以根據(jù)與金屬鐵平衡的鈣鈦礦(布里奇曼石)中Fe3+/∑Fe 最大值來估算下地幔氧逸度區(qū)間。Frost et al. (2004)通過高溫高壓實(shí)驗(yàn)得到下地幔鈣鈦礦結(jié)構(gòu)可以容納大量的Fe3+(Fe3+/∑Fe 高達(dá)0.6),并促使更多的下地幔FeO 通過歧化反應(yīng)3FeO =Fe +Fe2O3以金屬Fe 沉淀出來(Mao and Bell,1977;Frost et al.,2004;Zhang et al.,2014)。如果下地幔全巖的氧含量和上地幔底部基本相同,那么下地幔應(yīng)該含有1% 的由FeO 歧化形成的金屬Fe(Frost and McCammon,2008)。Frost et al. (2004)利用共生的金屬Fe 和方鎂石成分,得到下地幔氧逸度低于IW 緩沖反應(yīng)約1.4 對(duì)數(shù)單位。直到核幔邊界,下地幔金屬鐵、鎳為熔融成液態(tài),并在重力作用下趨向與硅酸鹽分離進(jìn)入地核(Wood et al.,2006)。

        3 地幔氧逸度的時(shí)空演化

        從時(shí)間演化尺度來講,地球形成初期45 億年以前,整個(gè)地幔氧逸度都受控于地幔中飽和的金屬鐵、鎳(接近IW 緩沖劑),原始上地幔氧逸度應(yīng)當(dāng)?shù)陀贔MQ 約4.5 個(gè)對(duì)數(shù)單位。前人研究表明上地幔的氧化還原狀態(tài)在過去的35 億年以來就一直保持在FMQ 附近(Canil,2002;Li and Lee,2004)。也就是說現(xiàn)今上地幔相對(duì)較高的氧逸度應(yīng)該是在地球形成之后10 億年演化過程中被逐步升高的(Frost and McCammon,2008)。早期地幔鐵、鎳金屬飽和體系的低氧逸度對(duì)一些重要的地球化學(xué)屬性具有重要影響,譬如地幔中FeO 和親鐵微量元素的含量,大氣中揮發(fā)份組分以及有機(jī)化學(xué)鍵的合成條件等問題(Righter and Ghiorso,2012)。金伯利巖中地幔金剛石包體中經(jīng)常包裹有CH4和H2流體包體,而這些金剛石中硫化物鉛模式年齡一般要比金伯利巖的年齡要老,這也從一方面證實(shí)地幔氧逸度是隨著時(shí)間逐步氧化的。

        從空間尺度來講,Wood et al. (1990)通過對(duì)比不同大地構(gòu)造背景下橄欖巖包體及玄武巖玻璃所記錄的氧逸度后得到了以下地幔氧逸度空間分布規(guī)律:1)俯沖板塊附近的地幔具有最高的氧逸度;2)大洋地幔具有比大陸地幔有更高的氧逸度;3)地幔非熔融區(qū)比熔融區(qū)域具有更高的氧逸度,且隨著部分熔融程度的增加氧逸度減小;4)同深度的地幔柱比地幔其它部位具有更低的氧逸度。并由此認(rèn)為上地幔氧逸度從地球形成以來逐步氧化的過程有如下幾種可能:1)原始上地幔H2O 被地幔飽和金屬還原成H2、CH4釋放,使上地幔地幔逐步氧化(O’Neill,1991)。2)隨著地球逐步變冷,板塊俯沖作用開始,俯沖洋殼帶入的H2O 和CO2導(dǎo)致上地幔氧化(O’Neill and Wall,1987;Wood et al.,1990;Kasting et al.,1993)。3)地核形成過程中Fe、Ni 金屬沉淀,導(dǎo)致下地幔富氧,在大規(guī)模地幔對(duì)流過程中,形成上地幔的氧化環(huán)境(Frost et al.,2004;Galimov,2005;Wood et al.,2008;Rubie et al.,2011)。然而,最近Righter and Ghiorso (2012)計(jì)算了氧化平衡反應(yīng)2Fe+SiO2+O2=Fe2SiO4絕對(duì)氧逸度,考慮到溫度和壓力對(duì)氧逸度的影響,認(rèn)為地核增生可能導(dǎo)致地球氧逸度從高到低變化。地幔氧逸度隨時(shí)間和空間的演化規(guī)律還需要更多的研究來限定。

        4 俯沖帶深部碳循環(huán)與地幔氧逸度

        俯沖帶作為聯(lián)系地表和地球深部系統(tǒng)的重要環(huán)節(jié),其對(duì)研究深部物質(zhì)(碳)循環(huán)乃至能量交換都有重要意義。俯沖帶是推動(dòng)板塊構(gòu)造的主要?jiǎng)恿碓?,地震學(xué)研究已經(jīng)證實(shí)俯沖洋殼可以進(jìn)入下地幔深度(Fukao et al.,2009)。地球化學(xué)研究亦表明俯沖洋殼可進(jìn)入深部地幔并通過地幔柱作用循環(huán)至地表(Hofmann and White,1982;Sobolev et al.,2000)。巴西金伯利巖筒中發(fā)現(xiàn)的具有地表碳同位素特征的金剛石及其包裹的深俯沖洋殼物質(zhì)高壓相,從巖石學(xué)角度證明了地表碳可隨俯沖洋殼進(jìn)入下地幔深度(>900km),并通過地幔柱巖漿作用循環(huán)返回地表(Walter et al.,2011)。在此循環(huán)過程中,低氧逸度的地幔還原環(huán)境可將俯沖進(jìn)入深部地幔的地表碳酸鹽還原成金剛石,而深部地幔金剛石也可以在地幔物質(zhì)減壓上涌過程中氧化成碳酸巖或者CO2,之后通過地幔柱巖漿作用或者洋中脊巖漿作用循環(huán)帶出地表(Rohrbach and Schmidt,2011;Stagno et al.,2013)。由此可見,地幔氧逸度對(duì)俯沖帶深部碳循環(huán)具有非常重要的影響。以下我們將結(jié)合洋殼形成、水化和碳酸鹽化、俯沖脫水脫碳、深俯沖洋殼熔融以及俯沖洋殼通過巖漿作用帶出地表的完整循環(huán)過程,探討俯沖帶深部碳循環(huán)過程中,由于氧逸度的變化導(dǎo)致含碳相表現(xiàn)出不同的存在形式和遷移能力,從而影響深部碳循環(huán)過程。

        4.1 洋殼形成與地幔碳抽取

        軟流圈地幔減壓熔融產(chǎn)生玄武巖巖漿在洋中脊噴發(fā),形成新生洋殼。地球物理觀察表明洋中脊下的熔體可能產(chǎn)生于300km 左右的深度,但是引起熔融的原因還不是很清楚(Team,1998;Gu et al.,2005)。Dasgupta and Hirschmann(2006)通過高溫高壓實(shí)驗(yàn)確定了無水碳酸鹽(菱鎂礦)化橄欖巖的固相線,認(rèn)為洋中脊地幔深部300km 的熔體可能是由于地幔中CO2交代引起的。Stagno and Frost (2010)通過高溫高壓實(shí)驗(yàn)重新確定了地幔中碳酸鹽熔體和金剛石(石墨)共存的氧化還原條件,并認(rèn)為地幔中氧逸度在100 ~150km時(shí),就可以讓碳酸鹽還原成金剛石/石墨穩(wěn)定存在(圖2a)。也就是說,只有在高于150km 的軟流圈地幔中,地幔硅酸鹽中的Fe3+才可以和石墨(金剛石)通過氧化還原反應(yīng)形成富碳酸鹽的熔體,而非Dasgupta and Hirschmann (2006)在未全面考慮地幔氧逸度對(duì)含碳相的影響的情況下認(rèn)為的300km。那么地球物理觀察到的洋中脊下300km 部分熔融可能需要其它的解釋,當(dāng)然也有可能是并不是所有的地幔碳酸巖在150km 時(shí)就可以被還原成石墨,或者金剛石并引發(fā)碳酸鹽化地幔巖石的熔融。譬如在具有高氧逸度的俯沖板片中的碳酸巖可能在300km 時(shí)并未完全還原成金剛石,依然可以交代地幔產(chǎn)生熔體。最近,Stagno et al. (2013)通過高溫高壓實(shí)驗(yàn)提出了更好的確定石榴石橄欖巖氧逸度的平衡反應(yīng):2Ca3Fe2Si3O12(石榴石)+ 2Mg3Al2Si3O12(石榴石)+ 4FeSiO3(單斜輝石)=2Ca3Al2Si3O12(石榴石)+4Fe2SiO4(橄欖石)+6MgSiO3(單斜輝石)+O2,并指出洋中脊地幔石榴石橄欖巖氧逸度在絕熱減壓過程中會(huì)持續(xù)升高(圖2a)。也就是說在軟流圈減壓上涌形成洋脊玄武巖巖漿的過程中,這些深部地幔(>150km)的石墨、金剛石將被軟流圈上部硅酸鹽中Fe3+氧化成碳酸巖并被帶出地表。此過程也說明在新生洋殼形成過程中,地球深部還原性碳(石墨,金剛石)可通過氧化作用從地幔中以CO2抽取并以氧化性的碳酸巖、CO2在洋中脊噴發(fā)出地表,形成新生洋殼(圖2b)。

        圖2 絕熱上涌洋中脊地幔中含碳相物相變化(據(jù)Stagno et al.,2013 修改)(a)硅酸鹽地幔氧逸度估算以及不同含碳相穩(wěn)定域. 灰色直線代表不同F(xiàn)e3+ /∑Fe 天然石榴石橄欖巖控制的氧逸度演化曲線. 其中黑線代表石金剛石(石墨)和碳酸鹽熔體共生時(shí)的氧逸度曲線,低壓時(shí)該曲線降低是由于硅酸鹽熔體的出現(xiàn)(Stagno and Frost,2010). 綠色區(qū)域代表MORB 氧逸度區(qū)間.藍(lán)色箭頭代表在金剛石穩(wěn)定域中含有4%的Fe3+ /∑Fe 的深部地幔向碳酸鹽熔體穩(wěn)定域減壓上涌時(shí)Fe3+ /∑Fe變化導(dǎo)致的氧逸度變化. 在150km 處,富含金剛石的深部地幔通過氧化熔融作用(Fe2O3 +C =FeO +CO2),消耗硅酸鹽中Fe3+,氧化金剛石并產(chǎn)生碳酸鹽熔體,而后碳酸鹽熔體隨洋中脊減壓熔融的硅酸鹽熔體帶出地表. (b)沿著a 中藍(lán)色演化曲線在洋中脊地幔發(fā)生的氧化還原熔體產(chǎn)生過程.氧化還原作用可以先于碳酸鹽化橄欖巖固相線(300km)在150km 產(chǎn)生碳酸鹽熔體Fig.2 Speciation of carbon in adiabatically upwelling mantle (after Stagno et al.,2013)

        4.2 新生洋殼水化和碳酸鹽化

        新生洋殼在洋中脊形成后被海水水化和碳酸鹽化(Tatsumi and Eggins,1995;Maruyama and Okamoto,2007)。在洋殼新生過程中,海水沿著深部構(gòu)造裂隙貫入與洋殼超基性巖和基性巖發(fā)生一系列水-巖反應(yīng)形成蝕變洋殼。期間大量的海水以含水礦物(蛇紋石、角閃石、綠簾石、綠泥石以及粘土礦物)保存在于蝕變洋殼中(Tatsumi,1989;Tatsumi and Eggins,1995)。在洋殼超基性巖蝕變過程中還會(huì)釋放還原性氣體(H2),而其中的橄欖石、輝石等礦物中的FeO 則被氧化成磁鐵礦殘留在新生蛇紋巖中,使水化的洋殼超基性巖氧逸度明顯增加(Berndt et al.,1996;Sleep et al.,2004;黃瑞芳等,2013)。海水中的溶解的CO2可以與洋殼超基性巖蛇紋巖化過程中產(chǎn)生的H2結(jié)合,通過費(fèi)-托合成反應(yīng)形成無機(jī)甲烷(CH4)以及其它的無機(jī)碳?xì)浠衔?McCollom and Seewald,2001;Proskurowski et al.,2008;黃瑞芳等,2013;McCollom,2013)。譬如前人證實(shí)土耳其Tekirova 蛇綠巖每年大約釋放了150 ~190t 的無機(jī)CH4氣體(Etiope et al.,2011)。洋殼基性巖和超基性巖通過水巖反應(yīng)形成的Ca2+、Mg2+、Fe2+等離子也可以和海水中碳酸根離子在蝕變洋殼中沉淀出碳酸鹽,使海水中CO2以碳酸鹽形式沉淀在蝕變洋殼的玄武巖和超基性巖中(Alt and Teagle,1999;Sleep and Zahnle,2001;Kelley et al.,2005;Slagle and Goldberg,2011;Rosenbauer et al.,2012)。洋殼的碳酸鹽化蝕變作用可能是一個(gè)潛在的固定海水和大氣中CO2的地質(zhì)碳儲(chǔ)庫(kù)(Kelemen and Matter,2008;Kelemen et al.,2011)。新生洋殼繼續(xù)擴(kuò)張,由于陸殼來源的碳酸鹽沉淀作用以及部分生物作用,可以在蝕變洋殼上部沉淀出含有大量碳酸鹽的沉積物乃至大理巖層,使更多的地表CO2以碳酸鹽形式固定在洋殼中(Plank and Langmuir,1998)。因此,新生洋殼的水化和碳酸鹽化過程可以使大量的碳以碳酸鹽形式沉淀在洋殼沉積巖、玄武巖以及超基性巖中。Dasgupta (2013)通過綜合前人巖石學(xué)研究估算,認(rèn)為每年大約有5.4 ×1013~8.8 ×1013g 的地表碳通過碳酸鹽化作用進(jìn)入新生洋殼。在洋殼蝕變過程中形成的大量含水礦物中的結(jié)晶水、蛇紋巖中磁鐵礦以及沉積碳酸鹽都是相對(duì)氧化性的物質(zhì),若是它們伴隨俯沖作用進(jìn)入深部地幔楔,就可能成為形成地幔楔較高氧逸度的俯沖氧化性物質(zhì)(O’Neill and Wall,1987;Wood et al.,1990;Kasting et al.,1993)。而這些氧化性碳酸巖伴隨俯沖作用進(jìn)入地幔時(shí),可能不會(huì)在150km 處完全還原成金剛石或者石墨,而會(huì)隨著俯沖洋殼進(jìn)入更深地幔并交代地幔橄欖巖形成碳酸鹽化熔體(Dasgupta and Hirschmann,2006)。

        4.3 俯沖脫水和脫碳作用

        在洋殼俯沖過程中,蝕變洋殼中的水和碳以含水礦物以及碳酸鹽礦物形式伴隨俯沖板片進(jìn)入地幔(Poli et al.,2009;Schmidt and Poli,2013)(圖3)。在淺層地殼分布最廣的鈣質(zhì)碳酸鹽(方解石、文石和白云石)在俯沖進(jìn)變質(zhì)過程中往往通過流體溶解作用脫出板片(Frezzotti et al.,2011;Manning et al.,2013)。高溫高壓實(shí)驗(yàn)和深部地球巖石樣品中僅存的菱鎂礦包體都證明只有菱鎂礦-菱鐵礦等鐵鎂碳酸鹽礦物可以穩(wěn)定存在到地幔深度(Irving and Wyllie,1975;Biellmann et al.,1993;Yang et al.,1993;Zhang and Liou,1994;Wang et al.,1996;Fiquet et al.,2002;Isshiki et al.,2004;Brenker et al.,2007;Tao et al.,2013)。前人通過熱力學(xué)模擬計(jì)算和巖石地球化學(xué)研究都指出俯沖帶脫碳過程主要通過俯沖含水礦物脫水過程中形成的化學(xué)性流體溶解洋殼碳酸巖而脫出俯沖板片(Kerrick and Connolly,1998,2001a,b;Gorman et al.,2006;Marín-Cerón et al.,2010)。最近,Ague and Nicolescu (2014)通過碳氧同位素、巖石地球化學(xué)、流體包裹體等手段綜合分析了Cycladic 俯沖帶折返大理巖中流體通道特征,發(fā)現(xiàn)鈣質(zhì)碳酸鹽在靠近流體通道的位置明顯降低,質(zhì)量平衡計(jì)算表明有高達(dá)60% ~90%的碳伴隨流體作用脫出。俯沖脫水溶解碳酸鹽形成的C-O-H 流體隨后交代地幔楔,以島弧巖漿作用噴發(fā)返回地表(Sleep and Zahnle,2001;Poli and Schmidt,2002)。部分經(jīng)歷高壓超高壓變質(zhì)的深俯沖碳酸鹽可以通過構(gòu)造折返作用帶出地表,以碳酸鹽化榴輝巖和碳酸鹽化泥質(zhì)變質(zhì)巖出露于高壓超高壓變質(zhì)帶中,成為研究深部碳循環(huán)的理想天然樣品(Zhang and Liou,1994,1996;Omori et al.,1998;Messiga et al.,1999;Zhang et al.,2002,2003a;Zhu and Ogasawara,2002;朱永峰,2005;劉福來等,2006;Zhu et al.,2009;Proyer et al.,2013)。最近一些研究也顯示,俯沖帶折返退變質(zhì)過程也可能是個(gè)重要脫碳過程,研究退變質(zhì)作用可以幫助理解退變質(zhì)流體是否將大量的CO2從深部地幔帶入淺層水圈或者大氣圈(Hazen and Schiffries,2013)。伴隨俯沖作用進(jìn)入深部地幔的碳酸鹽化洋殼,成為地表和地球深部碳循環(huán)的重要連接點(diǎn),同時(shí)也是改變地幔氧逸度,地球化學(xué)等屬性的重要介質(zhì)(Hofmann and White,1982;Wood et al.,1990;Kelley and Cottrell,2009)。

        4.4 俯沖流體交代地幔楔

        圖3 伴隨俯沖洋殼高壓變質(zhì)作用過程的脫揮發(fā)份(碳和水)作用示意圖(據(jù)Poli et al.,2009 修改)Fig.3 Schematic illustration showing the complexities in fluid speciation,from ocean floor metamorphism to volatile release at high pressure (after Poli et al.,2009)

        俯沖板片中含水礦物分解產(chǎn)生流體溶解碳酸鹽,形成CO-H 流體交代地幔楔,產(chǎn)生島弧巖漿噴出地表(圖3)。俯沖進(jìn)入地幔楔的碳和水主要以H2O 和CO2的形式伴隨島弧巖漿作用循環(huán)出地表,形成俯沖-島弧系統(tǒng)短周期碳循環(huán)過程(Tatsumi and Eggins,1995;Tatsumi,2005)?;趰u弧巖漿中常見的氧化性的CO2-H2O 流體事實(shí)以及島弧巖漿流體主要來自俯沖脫水流體的假設(shè),前人一直以來認(rèn)為俯沖帶C-OH 流體是以H2O 和CO2主要的氧化性流體(Wood et al.,1990;Parkinson and Arculus,1999)。然而,近來在西南天山俯沖帶榴輝巖和泥質(zhì)片巖中發(fā)現(xiàn)了普遍存在的石墨(Lü et al.,2008,2009,2013)和一些碳?xì)浠衔锪黧w包體(Tao et al.,2015)都說明俯沖帶C-O-H 流體并不一定都是前人所認(rèn)為的氧化性的。Song et al. (2009)在造山帶方輝橄欖巖包體中發(fā)現(xiàn)了共生的CH4+H2+C 包裹體,并通過碳和稀有氣體同位素證實(shí)這些還原性流體可能是俯沖洋殼脫水脫碳形成的流體。這種俯沖脫水脫碳產(chǎn)生的還原性流體,與前人認(rèn)為的俯沖帶氧化性富CO2流體的性質(zhì)是很不一致的:假如俯沖帶具有偏低的氧逸度(如西南天山),可能會(huì)將部分碳酸鹽還原成石墨/金剛石穩(wěn)定在俯沖帶中,并不會(huì)隨熔融或者流體作用帶出俯沖板片,使較多的碳通過俯沖作用進(jìn)入深部地幔。如果俯沖帶氧逸度低到可以將部分俯沖含碳相還原成CH4等易遷移的還原性流體,則如同氧化的CO2流體一樣,其會(huì)通過流體作用脫出俯沖板片,交代地幔楔并通過島弧巖漿作用循環(huán)出地表。少數(shù)島弧中發(fā)現(xiàn)的CH4等還原性氣體也許就是來自俯沖帶還原性流體(Fiebig et al.,2004)。在俯沖起始階段,俯沖帶流體也可以交代地幔楔橄欖巖,產(chǎn)生蛇紋巖和大量還原性碳?xì)浠衔?。部分地幔石榴橄欖巖也可能被來自俯沖帶的低溫流體交代形成碳酸鹽礦物(Yang et al.,1993)。關(guān)于俯沖帶流體的氧化還原性質(zhì),及其對(duì)地幔楔的交代作用都需要進(jìn)一步深入研究。

        4.5 俯沖碳酸鹽在深部地幔的氧化還原作用

        圖4 地幔氧化還原環(huán)境引起的碳酸巖(熔體)的氧化還原凍結(jié)和熔融作用(據(jù)Rohrbach and Schmidt,2011 修改)俯沖碳酸鹽(熔體)在250km 金屬飽和氧逸度條件下還原成穩(wěn)定的金剛石固定下來;而深部地幔的金剛石也可以通過減壓上涌的氧化作用形成易遷移的碳酸鹽熔體循環(huán)出地表Fig.4 Carbonatitic redox freezing and redox melting caused by redox capacity changes in Earth’s mantle (after Rohrbach and Schmidt,2011)

        當(dāng)俯沖的碳酸鹽化洋殼物質(zhì)進(jìn)入深部地幔,其液相線與地幔地?zé)峋€相交,碳酸鹽化榴輝巖和泥質(zhì)變質(zhì)巖會(huì)發(fā)生熔融,形成相應(yīng)的碳酸巖熔體和硅酸鹽熔體,這一問題已被許多實(shí)驗(yàn)巖石學(xué)研究證實(shí)(Dasgupta and Hirschmann,2006;Thomsen and Schmidt, 2008; Luth, 2009; Keshav and Gudfinnsson,2010;Litasov and Ohtani,2010;Grassi and Schmidt,2011;Tsuno and Dasgupta,2011)。Dasgupta et al.(2013)通過對(duì)比碳酸鹽化橄欖巖和無水橄欖巖的實(shí)驗(yàn)熔融曲線,認(rèn)為全球尺度上,碳酸鹽化的橄欖巖熔體產(chǎn)生應(yīng)當(dāng)在250 ~200km 處。按照前述討論,Stagno and Frost (2010)通過高溫高壓實(shí)驗(yàn)認(rèn)為地幔碳酸鹽在100 ~150km 時(shí)就開始被還原成金剛石(石墨)穩(wěn)定存在了。在上地幔更深處,Rohrbach et al. (2007)通過高溫高壓實(shí)驗(yàn)研究發(fā)現(xiàn)石榴石和輝石在>7GPa 時(shí)可以容納大量的Fe3+,導(dǎo)致在上地幔大于250km 時(shí)Fe、Ni 金屬可以穩(wěn)定存在?;诖送普?,Rohrbach and Schmidt (2011)進(jìn)而通過高溫高壓實(shí)驗(yàn)?zāi)M認(rèn)為俯沖碳酸鹽熔體在進(jìn)入受Fe、Ni 金屬控制氧逸度的上地幔時(shí)(250km)會(huì)變得不穩(wěn)定,被大量還原成金剛石穩(wěn)定下來(圖4)。以上通過高溫高壓實(shí)驗(yàn)確定的碳酸鹽被還原成金剛石/石墨的深度都是建立在全球地幔氧逸度均一的假設(shè)基礎(chǔ)之上。然而,由于地幔氧逸度空間分布的不均一性,碳酸鹽被還原成金剛石的深度會(huì)出現(xiàn)一定的變化。譬如攜帶有大量氧化性物質(zhì)(H2O 和碳酸鹽)的俯沖帶進(jìn)入深部地幔時(shí),就不會(huì)在Stagno and Frost (2010)所認(rèn)為的150km 處發(fā)生明顯的碳酸鹽還原作用。俯沖碳酸鹽就可以進(jìn)入更深的地幔,在到達(dá)Rohrbach and Schmidt (2011)認(rèn)為的250km 時(shí),大量俯沖碳酸鹽應(yīng)該會(huì)被具有強(qiáng)還原屬性的Fe、Ni 金屬還原成金剛石穩(wěn)定下來。在這種情況下,Dasgupta et al. (2013)認(rèn)為的碳酸鹽化橄欖巖熔體在250 ~200km 處產(chǎn)生的結(jié)論應(yīng)該是合理的。相反,深部地幔穩(wěn)定的金剛石在地幔柱或者洋中脊巖漿作用過程中,可以被上部地幔中含F(xiàn)e3+硅酸鹽礦物氧化成容易遷移的碳酸巖熔體,逃離地幔,噴出地表(Rohrbach et al.,2011;Stagno et al.,2013)(圖4)。

        4.6 上地幔C-O-H 流體

        在洋中脊玄武巖(MORB)熔融深度(50km),C-O-H 流體主要是以CO2和H2O 為主的氧化性流體。Frost (2006)認(rèn)為沿著洋中脊絕熱線,是不存在任何含水礦物的。根據(jù)前述討論,上地幔150km 深度,地幔碳酸鹽開始通過EMOD 反應(yīng)還原成剛石/石墨穩(wěn)定存在(Stagno and Frost,2010)。這時(shí),與石墨平衡的上地幔C-O-H 流體相組分及其比例就可以通過流體狀態(tài)方程進(jìn)行熱力學(xué)計(jì)算。圖5 是基于純流體計(jì)算的上地幔絕熱線下C-O-H 流體相組分及其比例。其中氧逸度是假設(shè)富集地幔Fe3+/∑Fe 為2%時(shí)通過石榴石橄欖巖氧逸度計(jì)確定的(Frost and McCammon,2008)。計(jì)算表明地幔中含石墨/金剛石的C-O-H 流體中水含量在150km 時(shí)達(dá)到最大值(圖5),這些水可能存在于上地幔名義上不含水礦物(NAMs)中(Beran and Libowitzky,2006;Hirschmann,2006;Skogby,2006)。那么地幔橄欖巖的熔融深度就應(yīng)該取決于此時(shí)地幔中CO2的含量(Dasgupta and Hirschmann,2007)。大于200 km 時(shí),地幔中含石墨/金剛石的C-O-H 流體中CH4和H2含量明顯增加(圖5)。到上地幔深部(>250km)時(shí),其氧逸度主要受控于與飽和鐵、鎳金屬沉淀曲線(Ballhaus,1995;Rohrbach et al.,2007)。此時(shí)地幔中的C-O-H 流體是以CH4和H2O 為主,以及少量的H2(Wood et al.,1990;Ballhaus,1995;Matveev et al.,1997)(圖5)。由此可見,真正的洋中脊上地幔的熔融可能取決于地幔深部還原性碳(石墨、金剛石、甲烷)在減壓上涌過程中被上部含F(xiàn)e2O3的礦物氧化成CO2和H2O 的位置。氧化形成的CO2和H2O 可以降低上部地幔熔融溫度,形成含碳酸巖的氧化熔體(Taylor and Green,1988;Ballhaus and Frost,1994;Stagno et al.,2013)。通過此過程可以從深部地幔抽取還原性碳C-O-H 流體以氧化性的碳酸鹽巖噴出地表。

        圖5 在1200℃,上地幔條件下通過熱力學(xué)計(jì)算與石墨/金剛石共生C-O-H 流體在圖1 所示線1 和線2 氧逸度曲線控制下所出現(xiàn)的物相種類和含量(據(jù)Frost and McCammon,2008 修改)Fig. 5 The speciation of the C-O-H fluid phase in equilibrium with graphite/diamond calculated as a function of pressure in the upper mantle along an adiabat with a potential temperature of 1200℃ and at an fO2 defined by curves 1 and 2 in Fig.1 (after Frost and McCammon,2008)

        5 俯沖帶氧逸度及其對(duì)含碳相氧化還原作用

        前人巖石學(xué)和實(shí)驗(yàn)?zāi)M研究俯沖帶中主要含碳相(碳酸鹽)穩(wěn)定性,一般都只局限于溫度和壓力對(duì)碳酸巖的穩(wěn)定性的影響(Zhang and Liou,1994,1996;Martinez et al.,1996;Luth,2001;Sato and Katsura,2001;Shirasaka et al.,2002;Zhang et al.,2003b;Buob et al.,2006;Morlidge et al.,2006;Hammouda et al.,2011)。然而,由于俯沖帶碳酸鹽中一般都含有C 以及Fe、Mn 等變價(jià)元素,使碳酸鹽的穩(wěn)定性也受到了氧逸度這一重要成分變量的影響(Tao et al.,2013)。前述我們討論了地幔氧逸度對(duì)俯沖進(jìn)入深部地幔含碳相的影響,但是關(guān)于俯沖帶本身的氧化還原條件及其對(duì)含碳相穩(wěn)定性影響的研究還不是很多(Connolly,1995;Hayes and Waldbauer,2006)。根據(jù)前述討論,前人普遍認(rèn)為俯沖帶中含碳相是以碳酸鹽以及H2O 和CO2為主的氧化性C-O-H流體為主(Wood et al.,1990;Parkinson and Arculus,1999;Kelley and Cottrell,2009)。但是Galvez et al. (2013)通過拉曼光譜和碳同位素研究了Alpine Corsica 俯沖帶中折返蛇紋巖和富碳酸鹽沉積巖接觸帶中石墨,發(fā)現(xiàn)富碳酸鹽沉積巖中高度結(jié)晶的石墨是通過俯沖帶蛇紋巖釋放的還原性流體還原富碳酸鹽沉積巖而形成的。也就是說在低溫俯沖過程中,洋殼超基性巖蛇紋巖化過程可能會(huì)導(dǎo)致上部俯沖板片富含大量還原性流體。近來在西南天山俯沖帶榴輝巖和泥質(zhì)片巖中發(fā)現(xiàn)了普遍存在的石墨(Lü et al.,2008,2009,2013)和碳?xì)浠衔锪黧w包體(Tao et al.,2015)說明俯沖帶含碳相穩(wěn)定性(碳酸鹽)不僅受到溫度、壓力等因素控制,同時(shí)也受到俯沖帶氧逸度對(duì)含碳相變化及物化屬性的影響。俯沖碳酸鹽可以被俯沖帶本身的低氧逸度被還原成石墨、甲烷等還原性含碳相,從而改變含碳相遷移能力等屬性。

        鑒于Fe 作為重要的俯沖碳酸鹽的成分,而且含鐵碳酸鹽中Fe 和C 可以通過自身氧化還原作用改變含碳相穩(wěn)定性的屬性。Tao et al. (2013)通過高溫高壓實(shí)驗(yàn)確定了天然菱鐵礦(FeCO3)的脫碳反應(yīng)邊界及熔融曲線,與不同地?zé)崆€對(duì)比發(fā)現(xiàn)純菱鐵礦可以在地幔100km 深度就可以發(fā)生脫碳/熔融反應(yīng),并通過自身歧化反應(yīng)產(chǎn)生磁鐵礦和石墨/金剛石。同時(shí),Tao et al. (2014)通過巖石學(xué)和高溫高壓實(shí)驗(yàn)?zāi)M方法研究了西南天山俯沖含鐵白云石的分解結(jié)構(gòu),發(fā)現(xiàn)Fe 可以明顯的降低白云石等含鐵碳酸鹽的高壓穩(wěn)定性。有意思的是,Tao et al. (2015)在西南天山碳酸鹽化榴輝巖中發(fā)現(xiàn)了典型的含鐵碳酸鹽在變質(zhì)流體作用下,通過自身岐化反應(yīng)產(chǎn)生石墨和磁鐵礦的結(jié)構(gòu),并利用此結(jié)構(gòu)限定出西南天山具有比其它俯沖帶低得多的氧逸度(ΔFMQ-1.5)。結(jié)合菱鐵礦高溫高壓條件下歧化分解反應(yīng)產(chǎn)生石墨反應(yīng)(Tao et al.,2013),提出西南天山變質(zhì)巖中發(fā)現(xiàn)的普遍存在石墨以及少量碳?xì)浠衔锖苡锌赡苁呛F白云石被變質(zhì)流體溶解并發(fā)生歧化反應(yīng)形成的。為了驗(yàn)證以上巖石學(xué)假設(shè),Tao et al.(2015)通過高溫高壓實(shí)驗(yàn)確定了含鐵白云石和水可以通過岐化反應(yīng)形成石墨、甲烷、乙烷等無機(jī)碳?xì)浠衔锏氖聦?shí)。通過上述對(duì)西南天山俯沖帶中不同含碳相(碳酸鹽,石墨,碳?xì)浠衔?穩(wěn)定性及其相關(guān)轉(zhuǎn)換關(guān)系的巖石學(xué)和實(shí)驗(yàn)?zāi)M研究,我們認(rèn)為西南天山俯沖帶作為迄今為止發(fā)現(xiàn)的兩例洋殼超高壓變質(zhì)俯沖帶之一(Zhang et al.,2013),其中發(fā)育的經(jīng)歷了高壓/超高壓變質(zhì)作用的大理巖(Lü et al.,2013)、碳酸鹽化泥質(zhì)變質(zhì)巖(Zhang et al.,2003)、碳酸鹽化榴輝巖(Zhang et al.,2002)都是研究俯沖帶深部碳循環(huán)的理想天然樣品(Tao et al.,2014)。同時(shí)西南天山俯沖帶中發(fā)育的不同含碳相(碳酸鹽,石墨,碳?xì)浠衔铮糃-O-H 流體包裹體)對(duì)研究俯沖帶氧逸度及其對(duì)含碳相轉(zhuǎn)變和遷移屬性的影響都就有重要意義(Tao et al.,2015)。

        6 結(jié)語

        通過總結(jié)地幔氧逸度的時(shí)空分布和演化規(guī)律,結(jié)合深部碳循環(huán)在不同地幔氧逸度條件下的氧化還原作用,我們認(rèn)為在考慮俯沖帶深部碳循環(huán)過程時(shí),不能只考慮溫度和壓力等常規(guī)變量,必須要把影響含碳相物相轉(zhuǎn)變和穩(wěn)定性的氧逸度這一重要成分變量引進(jìn)來。氧逸度通過影響碳的價(jià)態(tài),使含碳相從氧化態(tài)的碳酸鹽、CO2和CO 到還原態(tài)石墨/金剛石、甲烷和鐵碳化合物之間轉(zhuǎn)變。同時(shí)引起含碳相從易遷移的碳酸鹽熔體、CO2、CH4到不易遷移石墨/金剛石和鐵碳化合物之間轉(zhuǎn)變。在不同的地球深部環(huán)境下,不同的氧逸度條件明顯改變了含碳相的存在形式和遷移能力。從俯沖帶深部碳循環(huán)的角度來說,碳循環(huán)在洋殼形成;洋殼水化、碳酸鹽化;俯沖脫水、脫碳;深俯沖碳酸鹽再循環(huán)過程中都會(huì)受到不同地質(zhì)背景下不同氧逸度的影響。地表CO2以氧化性的碳酸鹽形式沉淀在俯沖洋殼中,在俯沖進(jìn)入深部地幔后被還原成石墨/金剛石、碳?xì)浠衔锘蛘哞F碳化合物;而深部地幔還原性石墨/金剛石以及CH4流體在洋中脊和地幔柱巖漿作用過程中又可以被氧化成碳酸鹽熔體或者CO2流體循環(huán)帶出地表。從這個(gè)角度來說,地球深部碳循環(huán)也是伴隨碳在不同含碳相之間的氧化還原作用,同時(shí)也證明地幔氧逸度引起的含碳相的氧化還原作用是影響俯沖帶深部碳循環(huán)的非常重要的因素,值得深入談?wù)摵脱芯俊Mㄟ^對(duì)西南天山俯沖帶深部碳循環(huán)工作的總結(jié),我們認(rèn)為俯沖帶自身氧化還原環(huán)境及其對(duì)俯沖帶深部碳循環(huán)的影響是將來研究的重點(diǎn)問題。

        致謝 本文是在三位匿名評(píng)審人大量建設(shè)性意見基礎(chǔ)上逐漸成熟定稿的,在此對(duì)他們表示由衷的感謝。

        Ague JJ and Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nature Geoscience,7(5):355 -360

        Alt JC and Teagle DAH. 1999. The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta,63(10):1527-1535

        Arculus RJ,Dawson JB,Mitchell RH,Gust DA and Holmes RD. 1984.Oxidation states of the upper mantle recorded by megacryst ilmenite in kimberlite and type A and B spinel lherzolites. Contributions to Mineralogy and Petrology,85(1):85 -94

        Arculus RJ. 1985. Oxidation status of the mantle:Past and present.Annual Review of Earth and Planetary Sciences,13:75 -93

        Ballhaus C,Berry RF and Green DH. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer:Implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology,107(1):27 -40

        Ballhaus C. 1993a. A question of reduction. Nature,366(6451):112-113

        Ballhaus C. 1993b. Redox states of lithospheric and asthenospheric upper mantle. Contributions to Mineralogy and Petrology,114(3):331-348

        Ballhaus C and Frost BR. 1994. The generation of oxidized CO2-bearing basaltic melts from reduced CH4-bearing upper mantle sources.Geochimica et Cosmochimica Acta,58(22):4931 -4940

        Ballhaus C. 1995. Is the upper mantle metal-saturated?Earth and Planetary Science Letters,132(1 -4):75 -86

        Beran A and Libowitzky E. 2006. Water in natural mantle minerals II:Olivine,garnet and accessory minerals. Reviews in Mineralogy and Geochemistry,62(1):169 -191

        Berndt ME,Allen DE and Seyfried Jr WE. 1996. Reduction of CO2during serpentinization of olivine at 300℃and 500bar. Geology,24(4):351 -354

        Bézos A and Humler E. 2005. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochimica et Cosmochimica Acta,69(3):711 -725

        Biellmann C,Gillet P,Guyot F,Peyronneau J and Reynard B. 1993.Experimental evidence for carbonate stability in the earth’s lower mantle. Earth and Planetary Science Letters,118(1 -4):31 -41 Blundy JD,Brodholt JP and Wood BJ. 1991. Carbon-fluid equilibria and the oxidation state of the upper mantle. Nature,349(6307):321 -324

        Brenker FE,Vollmer C,Vincze L,Vekemans B,Szymanski A,Janssens K,Szaloki I,Nasdala L,Joswig W and Kaminsky F. 2007.Carbonates from the lower part of transition zone or even the lower mantle. Earth and Planetary Science Letters,260(1 -2):1 -9

        Buob A,Luth RW,Schmidt MW and Ulmer P. 2006. Experiments on CaCO3-MgCO3solid solutions at high pressure and temperature.American Mineralogist,91(2 -3):435 -440

        Canil D and O’Neill HSC. 1996. Distribution of ferric iron in some upper-mantle assemblages. Journal of Petrology,37(3):609 -635 Canil D. 2002. Vanadium in peridotites,mantle redox and tectonic environments:Archean to present. Earth and Planetary Science Letters,195(1 -2):75 -90

        Christie DM,Carmichael ISE and Langmuir CH. 1986. Oxidation states of mid-ocean ridge basalt glasses. Earth and Planetary Science Letters,79(3 -4):397 -411

        Connolly JAD. 1995. Phase diagram methods for graphitic rocks and application to the system C-O-H-FeO-TiO2-SiO2. Contributions to Mineralogy and Petrology,119(1):94 -116

        Dai LD and Karato SI. 2014. Influence of oxygen fugacity on the electrical conductivity of hydrous olivine:Implications for the mechanism of conduction. Physics of the Earth and Planetary Interiors,232:57 -60

        Dasgupta R and Hirschmann MM. 2006. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature,440(7084):659 -662

        Dasgupta R and Hirschmann MM. 2007. Effect of variable carbonate concentration on the solidus of mantle peridotite. American Mineralogist,92(2 -3):370 -379

        Dasgupta R. 2013. Ingassing,storage,and outgassing of terrestrial carbon through geologic time. Reviews in Mineralogy and Geochemistry,75(1):183 -229

        Dasgupta R,Mallik A,Tsuno K,Withers AC,Hirth G and Hirschmann MM. 2013. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature,493(7431):211 -215

        Etiope G,Oehler DZ and Allen CC. 2011. Methane emissions from Earth’s degassing:Implications for Mars. Planetary and Space Science,59(2 -3):182 -195

        Fei Y,Bertka CM and Mysen BO. 1999. Mantle petrology:Field observations and high pressure experimentation (a Tribute to Francis R. Joe Boyd). Geochemical Society Special Publication,6:189-207

        Fiebig J,Chiodini G,Caliro S,Rizzo A,Spangenberg J and Hunziker JC. 2004. Chemical and isotopic equilibrium between CO2and CH4in fumarolic gas discharges:Generation of CH4in arc magmatichydrothermal systems. Geochimica et Cosmochimica Acta,68(10):2321 -2334

        Fiquet G,Guyot F,Kunz M,Matas J,Andrault D and Hanfland M.2002. Structural refinements of magnesite at very high pressure.American Mineralogist,87(8 -9):1261 -1265

        Foley SF. 2010. A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. Journal of Petrology,52(4):1363 -1391

        Frezzotti ML,Selverstone J,Sharp ZD and Compagnoni R. 2011.Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geosicence,4(10):703 -706

        Frost DJ,Liebske C,Langenhorst F,McCammon CA,Tronnes RG and Rubie DC. 2004. Experimental evidence for the existence of ironrich metal in the Earth’s lower mantle. Nature,428(6981):409 -412

        Frost DJ. 2006. The stability of hydrous mantle phases. Reviews in Mineralogy and Geochemistry,62(1):243 -271

        Frost DJ and McCammon CA. 2008. The redox state of Earth’s mantle.Annual Review of Earth and Planetary Sciences,36:389 -420

        Fukao Y,Obayashi M and Nakakuki T. 2009. Stagnant slab:A review.Annual Review of Earth and Planetary Sciences,37:19 -46

        Galimov EM. 2005. Redox evolution of the Earth caused by a multi-stage formation of its core. Earth and Planetary Science Letters,233(3 -4):263 -276

        Galvez ME,Beyssac O,Martinez I,Benzerara K,Chaduteau C,Malvoisin B and Malavieille J. 2013. Graphite formation by carbonate reduction during subduction. Nature Geoscience,6(6):473 -477

        Gorman PJ,Kerrick DM and Connolly JAD. 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochemistry Geophysics Geosystems,7(4),doi:10.1029/2005GC001125

        Grassi D and Schmidt MW. 2011. The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology,52(4):765 -789

        Gu YJ,Lerner-Lam AL,Dziewonski AM and Ekstr?m G. 2005. Deep structure and seismic anisotropy beneath the East Pacific Rise. Earth and Planetary Science Letters,232(3 -4):259 -272

        Gudmundsson G and Wood BJ. 1995. Experimental tests of garnet peridotite oxygen barometry. Contributions to Mineralogy and Petrology,119(1):56 -67

        Haggerty SE and Tompkins LA. 1983. Redox state of Earth’s upper mantle from kimberlitic ilmenites. Nature,303(5915):295 -300

        Hammouda T,Andrault D,Koga K,Katsura T and Martin AM. 2011.Ordering in double carbonates and implications for processes at subduction zones. Contributions to Mineralogy and Petrology,161(3):439 -450

        Hayes JM and Waldbauer JR. 2006. The carbon cycle and associated redox processes through time. Philosophical Transactions:Biological Sciences,361(1470):931 -950

        Hazen RM and Schiffries CM. 2013. Why deep carbon?Reviews in Mineralogy and Geochemistry,75(1):1 -6

        Hirschmann MM. 2006. Water,melting,and the deep Earth H2O cycle.Annual Review of Earth and Planetary Sciences,34:629 -653

        Hofmann AW and White WM. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters,57(2):421 -436

        Holloway JR. 1998. Graphite-melt equilibria during mantle melting:Constraints on CO2in MORB magmas and the carbon content of the mantle. Chemical Geology,147(1 -2):89 -97

        Huang RF,Sun WD,Ding X and Wang YR. 2013. Mechanism for serpentinization of mafic and ultramafic rocks and the potential of mineralization. Acta Petrologica Sinica,29(12):4336 -4348 (in Chinese with English abstract)

        Irving AJ and Wyllie PJ. 1975. Subsolidus and melting relationships for calcite,magnesite and the join CaCO3-MgCO3to 36kb. Geochimica et Cosmochimica Acta,39(1):35 -53

        Isshiki M,Irifune T,Hirose K,Ono S,Ohishi Y,Watanuki T,Nishibori E,Takata M and Sakata M. 2004. Stability of magnesite and its high-pressure form in the lowermost mantle. Nature,427(6969):60 -63

        Jacob DE,Kronz A and Viljoen KS. 2004. Cohenite,native iron and troilite inclusions in garnets from polycrystalline diamond aggregates.Contributions to Mineralogy and Petrology,146(5):566 -576

        Kasting JF,Eggler DH and Raeburn SP. 1993. Mantle redox evolution and the oxidation state of the Archean atmosphere. The Journal of Geology,101(2):245 -257

        Kelemen PB and Matter J. 2008. From the Cover:In situ carbonation of peridotite for CO2storage. Proceedings of the National Academy of Sciences of the United States of America,105(45):17295 -17300

        Kelemen PB,Matter J,Streit EE,Rudge JF,Curry WB and Blusztajn J.2011. Rates and mechanisms of mineral carbonation in peridotite:Natural Processes and recipes for enhanced,in situ CO2capture and storage. Annual Review of Earth and Planetary Sciences,39:545 -576

        Kelley DS,Karson JA,F(xiàn)rüh-Green GL,Yoerger DR,Shank TM,Butterfield DA,Hayes JM,Schrenk MO,Olson EJ,Proskurowski G,Jakuba M,Bradley A,Larson B,Ludwig K,Glickson D,Buckman K,Bradley AS,Brazelton WJ,Roe K,Elend MJ,Delacour Al,Bernasconi SM,Lilley MD,Baross JA,Summons RE and Sylva SP. 2005. A serpentinite-hosted ecosystem:The lost city hydrothermal field. Science,307(5714):1428 -1434

        Kelley KA and Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science,325(5940):605 -607

        Kerrick DM and Connolly JAD. 1998. Subduction of ophicarbonates and recycling of CO2and H2O. Geology,26(4):375 -378

        Kerrick DM and Connolly JAD. 2001a. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature,411(6835):293 -296

        Kerrick DM and Connolly JAD. 2001b. Metamorphic devolatilization of subducted oceanic metabasalts:Implications for seismicity,arc magmatism and volatile recycling. Earth and Planetary Science Letters,189(1 -2):19 -29

        Keshav S and Gudfinnsson GH. 2010. Experimentally dictated stability of carbonated oceanic crust to moderately great depths in the Earth:Results from the solidus determination in the system CaO-MgOAl2O3-SiO2-CO2. Journal of Geophysical Research,115:B05205,doi:10.1029/2009JB006457

        Lee CT,Luffi P,Le Roux V,Dasgupta R,Albarede F and Leeman WP.2010. The redox state of arc mantle using Zn/Fe systematics.Nature,468(7324):681 -685

        Li ZXA and Lee CTA. 2004. The constancy of upper mantle fO2through time inferred from V/Sc ratios in basalts. Earth and Planetary Science Letters,228(3 -4):483 -493

        Litasov K and Ohtani E. 2010. The solidus of carbonated eclogite in the system CaO-Al2O3-MgO-SiO2-Na2O-CO2to 32GPa and carbonatite liquid in the deep mantle. Earth and Planetary Science Letters,295(1 -2):115 -126

        Liu CQ,Li HP,Huang ZL and Su GL. 2001. A review of studies on oxygen fugacity of the Earth mantle. Earth Science Frontier,8(3):73 -82 (in Chinese with English abstract)

        Liu FL,Xue HM,Xu ZQ,Liang FH and Gerdes A. 2006. SHRIMP UPb zircon dating from eclogite lens in marble,Shuanghe area,Dabie UHP terrane:Restriction on the prograde,UHP and retrograde metamorphic ages. Acta Petrologica Sinica,22(7):1761 -1778(in Chinese with English abstract)

        Lü Z,Zhang LF,Du JX and Bucher K. 2008. Coesite inclusions in garnet from eclogitic rocks in western Tianshan,northwest China:Convincing proof of UHP metamorphism. American Mineralogist,93(11 -12):1845 -1850

        Lü Z,Zhang LF,Du JX and Bucher K. 2009. Petrology of coesitebearing eclogite from Habutengsu Valley,western Tianshan,NW China and its tectonometamorphic implication. Journal of Metamorphic Geology,27(9):773 -787

        Lü Z,Bucher K and Zhang LF. 2013. Omphacite-bearing calcite marble and associated coesite-bearing pelitic schist from the meta-ophiolitic belt of Chinese western Tianshan. Journal of Asian Earth Sciences,76:37 -47

        Luth RW,Virgo D,Boyd FR and Wood BJ. 1990. Ferric iron in mantlederived garnets. Contributions to Mineralogy and Petrology,104(1):56 -72

        Luth RW. 2001. Experimental determination of the reaction aragonite +magnesite=dolomite at 5 to 9 GPa. Contributions to Mineralogy and Petrology,141(2):222 -232

        Luth RW. 2009. Melting of carbonated eclogites. Awards Ceremony Speeches and Abstracts of the 19thAnnual V. M. Goldschmidt Conference 2009. Geochimica et Cosmochimica Acta,73:A805

        Mallmann G and O’Neill HSC. 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al,P,Ca,Sc,Ti,Cr,F(xiàn)e,Ga,Y,Zr and Nb). Journal of Petrology,50(9):1765 -1794

        Manning CE,Shock EL and Sverjensky DA. 2013. The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions:Experimental and theoretical constraints. Reviews in Mineralogy and Geochemistry,75(1):109 -148

        Mao HK and Bell PM. 1977. Disproportionation equilibrium in ironbearing systems at pressures above 100kbar with applications to chemistry of the Earth’s mantle. Energetics of Geological Processes,236 -249

        Marín-Cerón MI,Moriguti T,Makishima A and Nakamura E. 2010. Slab decarbonation and CO2recycling in the Southwestern Colombian volcanic arc. Geochimica et Cosmochimica Acta,74(3):1104-1121

        Martinez I,Zhang JZ and Reeder RJ. 1996. In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature:Evidence for dolomite breakdown to aragonite and magnesite.American Mineralogist,81(5 -6):611 -624

        Maruyama S and Okamoto K. 2007. Water transportation from the subducting slab into the mantle transition zone. Gondwana Research,11(1 -2):148 -165

        Matveev S,Ballhaus C,F(xiàn)ricke K,Truchenbrodt J and Ziegenbein D.1997. Volatiles in the Earth’s mantle:I. Synthesis of CHO fluids at 1273K and 2.4GPa. Geochimica et Cosmochimica Acta,61(15):3081 -3088

        McCollom TM and Seewald JS. 2001. A reassessment of the potential for

        reduction of dissolved CO2to hydrocarbons during serpentinization of

        olivine. Geochimica et Cosmochimica Acta,65(21):3769 -3778 McCollom TM. 2013. Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. Reviews in Mineralogy and Geochemistry,75(1):467 -494

        Messiga B,Kienast JR,Rebay G,Riccardi MP and Tribuzio R. 1999.Cr-rich magnesiochloritoid eclogites from the Monviso ophiolites(Western Alps,Italy). Journal of Metamorphic Geology,17(3):287 -299

        Morlidge M,Pawley A and Droop G. 2006. Double carbonate breakdown reactions at high pressures:An experimental study in the system CaO-MgO-FeO-MnO-CO2. Contributions to Mineralogy and Petrology,152(3):365 -373

        Murakami M,Hirose K,Kawamura K,Sata N and Ohishi Y. 2004. Postperovskite phase transition in MgSiO3. Science,304(5672):855 -858

        O’Neill HSC and Wall VI. 1987. The olivine-orthopyroxene-spinel oxygen geobarometry,the nikel precipitated curve,and the oxygen fugacity of the Earth’s upper mantle. Journal of Petrology,28(6):1169 -1191

        O’Neill HSC. 1991. The origin of the Moon and the early history of the Earth:A chemical model. Part 1:The Moon. Geochimica et Cosmochimica Acta,55(4):1135 -1157

        Omori S,Liou JG,Zhang RY and Ogasawara Y. 1998. Petrogenesis of impure dolomitic marble from the Dabie mountains,central China.The Island Arc,7(1 -2):98 -114

        Parkinson IJ and Arculus RJ. 1999. The redox state of subduction zones:Insights from arc-peridotites. Chemical Geology 160(4):409 -423

        Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle.Chemical Geology,145(3 -4):325 -394

        Poli S and Schmidt MW. 2002. Petrology of subducted slabs. Annual Review of Earth and Planetary Sciences,30:207 -235

        Poli S,F(xiàn)ranzolin E,F(xiàn)umagalli P and Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust:An experimental study to 5GPa. Earth and Planetary Science Letters,278(3 -4):350 -360

        Proskurowski G,Lilley MD,Seewald JS,F(xiàn)ruh-Green GL,Olson EJ,Lupton JE,Sylva SP and Kelley DS. 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science,319(5863):604 -607

        Proyer A,Rolfo F,Zhu YF,Castelli D and Compagnoni R. 2013.Ultrahigh-pressure metamorphism in the magnesite + aragonite stability field:Evidence from two impure marbles from the Dabie-Sulu UHPM belt. Journal of Metamorphic Geology,31(1):35 -48 Righter K and Ghiorso MS. 2012. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.Proceedings of the National Academy of Sciences of the United States of America,109(30):11955 -11960

        Rohrbach A,Ballhaus C,Golla-Schindler U,Ulmer P,Kamenetsky VS and Kuzmin DV. 2007. Metal saturation in the upper mantle.Nature,449(7161):456 -458

        Rohrbach A and Schmidt MW. 2011. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling.Nature,472(7342):209 -212

        Rohrbach A,Ballhaus C,Ulmer P,Golla-Schindler U and Sch?nbohm D. 2011. Experimental evidence for a reduced metal-saturated upper mantle. Journal of Petrology,52(4):717 -731

        Rosenbauer RJ,Thomas B,Bischoff JL and Palandri J. 2012. Carbon sequestration via reaction with basaltic rocks:Geochemical modeling and experimental results. Geochimica et Cosmochimica Acta,89:116 -133

        Rubie DC,F(xiàn)rost DJ,Mann U,Asahara Y,Nimmo F,Tsuno K,Kegler P,Holzheid A and Palme H. 2011. Heterogeneous accretion,composition and core-mantle differentiation of the Earth. Earth and Planetary Science Letters,301(1 -2):31 -42

        Ryerson FJ,Durham WD,Cherniak DJ and Lanford WA. 1989. Oxygen diffusion inolivine:Effect of oxygen fugacity and implicaitons for creep. Journal of Geophysical Research,94(B4):4105 -4118

        Sato K and Katsura T. 2001. Experimental investigation on dolomite dissociation into aragonite + magnesite up to 8. 5GPa. Earth and Planetary Science Letters,184(2):529 -534

        Sato M and Wright TL. 1966. Oxygen fugacities directly measured in magmatic gases. Science,153(3740):1103 -1105

        Schmidt MW and Poli S. 2013. Devolatilization during subduction.Treatise in Geochemistry,4:669 -701

        Shirasaka M,Takahashi E,Nishihara Y,Matsukage K and Kikegawa T.2002. In situ X-ray observation of the reaction dolomite =aragonite+magnesite at 900 ~1300K. American Mineralogist,87(7):922-930

        Skogby H. 2006. Water in natural mantle minerals I:Pyroxenes.Reviews in Mineralogy and Geochemistry,62(1):155 -167

        Slagle AL and Goldberg DS. 2011. Evaluation of ocean crustal Sites 1256 and 504 for long-term CO2sequestration. Geophysical Research Letters,38(16):L16307,doi:10.1029/2011GL048613

        Sleep NH and Zahnle K. 2001. Carbon dioxide cycling and implications for climate on ancient Earth. Journal of Geophysical Research,106(E1):1373 -1399

        Sleep NH,Meibom A,F(xiàn)ridriksson T,Coleman RG and Bird DK. 2004.H2-rich fluids from serpentinization: Geochemical and biotic implications. Proceedings of the National Academy of Sciences of the United States of America,101(35):12818 -12823

        Sobolev AV,Hofmann AW and Nikogosian IK. 2000. Recycled oceanic crust observed in‘ghost plagioclase’within the source of Mauna Loa lavas. Nature 404(6781):986 -990

        Song SG,Su L,Niu YL,Lai Y and Zhang LF. 2009. CH4inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochimica et Cosmochimica Acta,73(6):1737 -1754

        Stachel T,Harris JW and Brey GP. 1988. Rare and unusual mineral inclusions in diamonds from Mwadui,Tanzania. Contributions to Mineralogy and Petrology,132(1):34 -37

        Stagno V and Frost DJ. 2010. Carbon speciation in the asthenosphere:Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth and Planetary Science Letters,300(1 -2):72-84

        Stagno V,Tange Y,Miyajima N,McCammon CA,Irifune T and Frost DJ. 2011. The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophysical Research Letters,38(19):L19309

        Stagno V,Ojwang DO,McCammon CA and Frost DJ. 2013. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature,493(7430):84 -88

        Tao RB,F(xiàn)ei YW and Zhang LF. 2013. Experimental determination of siderite stability at high pressure. American Mineralogist,98(8 -9):1565 -1572

        Tao RB,Zhang LF,F(xiàn)ei YW and Liu Q. 2014. The effect of Fe on the stability of dolomite at high pressure:Experimental study and petrological observation in eclogite from southwestern Tianshan,China. Geochimica et Cosmochimica Acta,143:253 -267

        Tao RB,Tian M,Zhu J,Zhang LF,Liu X,Liu J,Stagno V and Fei Y.2015. Natural formation and synthesis of abiotic hydrocarbons from carbonates at high pressure and temperature. Geology,in press

        Tatsumi Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research,94(B4):4697 -4707

        Tatsumi Y and Eggins SM. 1995. Subduction Zone Magmatism.Cambridge,MA:Blackwell Science

        Tatsumi Y. 2005. The subduction factory:How it operates in the evolving Earth. GSA Today,15(7):4 -10

        Taylor WR and Green DH. 1988. Measurement of reduced peridotite-CO-H solidus and implications for redox melting of the mantle.Nature,332(6162):349 -352

        Taylor WR. 1990. A reappraisal of the nature of fluids included by diamond:A window to deep-seated mantle fluids and redox conditions. In:Herbert HK and Ho SE (eds.). Stable Isotopes and Fluid Processes in Mineralization. The University Western Australia Publication,23:333 -349

        Team TMS. 1998. Imaging the deep seismic structure beneath a Mid-Ocean Ridge:The MELT experiment. Science,280(5367):1215-1218

        Thomsen TB and Schmidt MW. 2008. Melting of carbonated pelites at 2.5 ~5.0GPa,silicate-carbonatite liquid immiscibility,and potassiumcarbon metasomatism of the mantle. Earth and Planetary Science Letters,267(1 -2):17 -31

        Tschauner O,Ma C,Beckett JR,Prescher C,Prakapenka VB and Rossman GR. 2014. Discovery of bridgmanite,the most abundant mineral in Earth,in a shocked meteorite. Science,346(6213):1100 -1102

        Tsuno K and Dasgupta R. 2011. Melting phase relation of nominally anhydrous,carbonated pelitic-eclogite at 2. 5 ~3. 0GPa and deep cycling of sedimentary carbon. Contributions to Mineralogy and Petrology,161(5):743 -763

        Wade J and Wood BJ. 2005. Core formation and the oxidation state of the Earth. Earth and Planetary Science Letters,236(1 -2):78 -95

        Walter MJ,Kohn SC,Araujo D,Bulanova GP,Smith CB,Gaillou E,Wang J,Steele A and Shirey SB. 2011. Deep mantle cycling of oceanic crust:Evidence from diamonds and their mineral inclusions.Science,334(6052):54 -57

        Wang A,Pasteris JD,Meyer HOA and Dele-Duboi ML. 1996.Magnesite-bearing inclusion assemblage in natural diamond. Earth and Planetary Science Letters,141(1 -4):293 -306

        Wood BJ,Bryndzia LT and Johnson KE. 1990. Mantle oxidation state and its relationship to tectonic environment and fluids peciation.Science,248(4953):337 -345

        Wood BJ,Walter MJ and Wade J. 2006. Accretion of the Earth and segregation of its core. Nature,441(7095):825 -833

        Wood BJ,Wade J and Kilburn MR. 2008. Core formation and the oxidation state of the Earth:Additional constraints from Nb,V and Cr partitioning. Geochimica et Cosmochimica Acta,72(5):1415 -1426

        Woodland AB and O’Neill HSC. 1997. Thermodynamic data for Febearing phases obtained using noble metal alloys as redox sensors.Geochimica et Cosmochimica Acta,61(20):4359 -4366

        Woodland AB and Koch M. 2003. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton,Southern Africa.Earth and Planetary Science Letters,214(1 -2):295 -310

        Yang JJ,Godard G,Kienast JR,Lu YZ and Sun JX. 1993. Ultrahighpressure (60kbar ) magnesite-bearing garnet peridotites from Northeastern Jiangsu,China. Journal of Geology,101(5):541-554

        Zhang L,Meng Y,Yang WG,Wang L,Mao WL,Zeng QS,Jeong JS,Wagner AJ,Mkhoyan KA,Liu WJ,Xu R and Mao HK. 2014.Disproportionation of (Mg,F(xiàn)e)SiO3perovskite in Earth’s deep lower mantle. Science,344(6186):877 -882

        Zhang LF,Ellis D,Williams S and Jiang WB. 2002. Ultra-high pressure metamorphism in western Tianshan,China Part II. Evidence from magnesite in eclogite. American Mineralogist,87(7):861 -866

        Zhang LF,Ellis DJ,Arculus RJ,Jiang WB and Wei CJ. 2003a.‘Forbidden zone’subduction of sediments to 150km depth:The reaction of dolomite to magnesite + aragonite in the UHPM metapelites from western Tianshan,China. Journal of Metamorphic Geology,21(6):523 -529

        Zhang LF,Du JX,Lü Z,Yang X,Gou LL,Xia B,Chen ZY,Wei CJ and Song SG. 2013. A huge oceanic-type UHP metamorphic belt in southwestern Tianshan,China:Peak metamorphic age and P-T path. Chinese Science Bulletin,58(35):4378 -4383

        Zhang RY and Liou JG. 1994. Significance of magnesite paragenesis in ultrahigh-pressure metamorphic rocks. American Mineralogist,79(3-4):397 -400

        Zhang RY and Liou JG. 1996. Coesite inclusions in dolomite from eclogite in the southern Dabie Mountains,China:The significance of carbonate minerals in UHPM rocks. American Mineralogist,81(1 -2):181 -186

        Zhang RY,Liou JG,Yang JS and Ye K. 2003b. Ultrahigh-pressure metamorphism in the forbidden zone:The Xugou garnet peridotite,Sulu terrane,eastern China. Journal of Metamorphic Geology,21(6):539 -550

        Zhu YF and Ogasawara Y. 2002. Carbon recycled into deep Earth Evidence from dolomite dissociation in subduction-zone rocks.Geology,30(10):947 -950

        Zhu YF. 2005. Dolomite decomposition texture in ultrahigh pressure metamorphic marble:New evidence for the deep recycling of continental materials. Acta Petrologica Sinica,21(2):347 -354(in Chinese with English abstract)

        Zhu YF,Massonne HJ and Zhu MF. 2009. Petrology of low-temperature,ultrahigh-pressure marbles and interlayered coesite eclogites near Sanqingge,Sulu terrane,eastern China. Mineralogical Magazine,73(3):307 -332

        附中文參考文獻(xiàn)

        黃瑞芳,孫衛(wèi)東,丁興,王玉榮. 2013. 基性和超基性巖蛇紋石化的機(jī)理及成礦潛力. 巖石學(xué)報(bào),29(12):4336 -4348

        劉叢強(qiáng),李和平,黃智龍,蘇根利. 2001. 地幔氧逸度的研究進(jìn)展.地學(xué)前緣,8(3):73 -82

        劉福來,薛懷民,許志琴,梁風(fēng)華,Gerdes A. 2006. 大別超高壓變質(zhì)帶的進(jìn)變質(zhì)、超高壓和退變質(zhì)時(shí)代的準(zhǔn)確限定:以雙河大理巖中榴輝巖鋯石SHRIMP U-Pb 定年為例. 巖石學(xué)報(bào),22(7):1761 -1778

        朱永峰. 2005. 超高壓變質(zhì)大理巖中的白云石分解結(jié)構(gòu):大陸地殼物質(zhì)深循環(huán)的新證據(jù). 巖石學(xué)報(bào),21(2):347 -354

        猜你喜歡
        洋殼逸度含碳
        洋殼活動(dòng)斷層特征和動(dòng)力作用
        印度洋、大西洋洋殼流運(yùn)動(dòng)對(duì)地形地貌的影響
        地幔氧逸度的時(shí)空變化
        巖漿與構(gòu)造作用對(duì)洋殼厚度的影響
        ——以西北印度洋為例
        不同溫度、壓強(qiáng)、氧逸度條件下斜方輝石含水性的實(shí)驗(yàn)研究
        太平洋洋殼流運(yùn)動(dòng)對(duì)地形地貌的影響
        幔源巖漿氧化還原狀態(tài)及對(duì)巖漿礦床成礦的制約*
        黑龍江省造林樹種含碳率與土壤性質(zhì)研究
        森林工程(2018年4期)2018-08-04 03:23:20
        氣體混合爐中氧逸度控制
        鐵礦含碳球團(tuán)還原后性能的實(shí)驗(yàn)研究
        天天影视性色香欲综合网| 少妇精品揄拍高潮少妇桃花岛| 日本一二三区在线观看视频| 永久黄网站免费视频性色| 久久久久99精品成人片试看| 欧美xxxxx精品| 国产一区二区三区在线男友| 亚洲av无码精品国产成人| 学生妹亚洲一区二区| 国产熟女av一区二区三区四季 | 久草视频这里只有精品| 国产伦人人人人人人性| 亚洲 都市 校园 激情 另类| 国产小车还是日产的好| 亚洲国产综合在线亚洲区亚洲av| 久久久av波多野一区二区| 天天av天天爽无码中文| 亚洲情精品中文字幕有码在线 | 国产一区二区高清不卡在线| 久久中文字幕人妻淑女| 在线观看免费人成视频| 午夜a福利| 青青草好吊色在线视频| 99riav国产精品视频| 亚洲欧美日韩在线一区| 无码丰满熟妇浪潮一区二区av| 在线观看视频免费播放| 性xxxx18免费观看视频| 丝袜国产高跟亚洲精品91| 在线视频播放观看免费| 精品国产成人一区二区不卡在线| 精品一级一片内射播放| 中文字幕乱偷无码av先锋蜜桃| 男女一级毛片免费视频看| 亚洲二区精品婷婷久久精品| 亚洲无码在线播放| 五月天精品视频在线观看| 精品国产成人一区二区不卡在线| 音影先锋中文字幕在线| 久久中文字幕无码专区| 日本一道dvd在线中文字幕|