劉治田,張林驊,張旗,鄭樂(lè)馳,于雪晨,王成
武漢工程大學(xué)材料科學(xué)與工程學(xué)院,湖北 武漢 430074
苯胺雙子衍生物在鹽酸中對(duì)Q235碳鋼的緩蝕性能
劉治田,張林驊,張旗,鄭樂(lè)馳,于雪晨,王成
武漢工程大學(xué)材料科學(xué)與工程學(xué)院,湖北 武漢 430074
對(duì)苯胺及其雙子衍生物1,3-二苯胺基異丙醇在1 mol/L鹽酸中對(duì)碳鋼的緩蝕性能進(jìn)行了對(duì)比研究,探討了通過(guò)雙子衍生化提高有機(jī)分子緩蝕性能的有效性.靜態(tài)失重法測(cè)得20℃下苯胺緩蝕率為85.15%~91.62%,而苯胺始終為82%左右.腐蝕動(dòng)力學(xué)分析顯示苯胺及其雙子衍生物加入均能明顯提高腐蝕反應(yīng)勢(shì)壘,阻礙腐蝕反應(yīng)的發(fā)生,且雙子衍生物阻礙效果更佳,表觀(guān)活化能提高到48.94~59.59 kJ/mol,高于苯胺的44.61~49.59 kJ/mol.相同條件下雙子衍生物緩蝕效果明顯高于苯胺,原因是雙子衍生化通過(guò)共價(jià)鍵連接拉近了兩個(gè)N原子的距離,使分子中極性部位電荷密度增大,吸附能力增強(qiáng),同時(shí)也使與N相連的疏水苯環(huán)距離更近,當(dāng)形成吸附層時(shí),其疏水層中苯環(huán)的密度也相應(yīng)增大,阻隔效果更好.極化曲線(xiàn)測(cè)試結(jié)果表明,苯胺雙子衍生物作為緩蝕劑可同時(shí)抑制陰陽(yáng)極反應(yīng),屬于混合型緩蝕劑.
苯胺雙子衍生物;酸腐蝕;緩蝕劑;失重法;極化曲線(xiàn);腐蝕反應(yīng)動(dòng)力學(xué)
緩蝕劑是指用在金屬表面起防護(hù)作用的物質(zhì),加入微量或少量這類(lèi)物質(zhì)就可使金屬材料在介質(zhì)中的腐蝕速度明顯降低直至為零,同時(shí)還能保持金屬材料原來(lái)的物理、力學(xué)性質(zhì)不變.緩蝕劑按化學(xué)成分可分為無(wú)機(jī)緩蝕劑、有機(jī)緩蝕劑和聚合物類(lèi)緩蝕劑,其中有機(jī)緩蝕劑在環(huán)境友好性以及緩蝕效率方面具有明顯優(yōu)勢(shì),因此備受人們關(guān)注.有機(jī)緩蝕劑多為含有N、O、S、P等原子的吸附膜型緩蝕劑[1],其緩蝕效率與其在金屬表面的吸附和覆蓋效率有直接關(guān)系[2].大量的研究已經(jīng)表明有機(jī)緩蝕劑的吸附性能由其分子結(jié)構(gòu)、金屬表面電荷以及腐蝕介質(zhì)類(lèi)型所決定[3-5].有機(jī)緩蝕劑分子一般具有極性基團(tuán),可被金屬的表面電荷吸附,在整個(gè)陽(yáng)極和陰極區(qū)形成吸附分子膜,從而阻止或減緩相應(yīng)的電化學(xué)反應(yīng).如某些含氮、硫或含羥基的、具有表面活性的有機(jī)化合物,其分子中含有兩種極性相反的基團(tuán)——親水基和親油基.具有明顯兩親性的表面活性劑分子已作為典型的金屬緩蝕劑而被廣泛研究[6-11].不僅僅是傳統(tǒng)的表面活性劑,新型的雙子表面活性劑的緩蝕性能也相繼有人報(bào)道[12-15].研究顯示,雙子表面活性劑在相同的條件下比傳統(tǒng)單鏈表面活性劑表現(xiàn)出更優(yōu)異的緩蝕性能,是一類(lèi)高效的有機(jī)緩蝕劑.究其原因,主要是因?yàn)槠浞肿咏Y(jié)構(gòu)的特殊性,即是由兩個(gè)傳統(tǒng)表面活性劑分子在親水頭基處通過(guò)化學(xué)鍵進(jìn)行連接,強(qiáng)行拉近了兩個(gè)具有靜電排斥力的親水頭基的距離,進(jìn)而提高單個(gè)分子中極性頭基部分的電荷密度,增大了與帶電金屬表面的作用力,同時(shí)其疏水尾鏈的距離也拉近,吸附后易于形成致密的疏水隔離層[15].
傳統(tǒng)表面活性劑的雙子衍生化可以大大提高緩蝕效率,那么對(duì)于一些具有潛在兩親性的有機(jī)小分子,通過(guò)化學(xué)鍵將其孿連,進(jìn)行雙子衍生化,是否也會(huì)像表面活性劑那樣明顯提高其緩蝕效率呢?基于此問(wèn)題,本文以苯胺這種有機(jī)小分子為對(duì)象,通過(guò)一步反應(yīng)使其雙子衍生化,并將苯胺及其雙子衍生物在鹽酸中對(duì)碳鋼的緩蝕性能進(jìn)行對(duì)比研究,以揭示它們分子結(jié)構(gòu)與緩蝕性能之間的關(guān)系,為開(kāi)發(fā)高效的有機(jī)緩蝕劑提供一種思路.
1.1 儀器與試劑
VersaSTAT 3電化學(xué)工作站(美國(guó)阿美特克有限公司),采用三電極體系,Q235碳鋼片(10 mm× 10 mm×1 mm)為工作電極,Ag/AgCl(飽和KCl溶液)電極為參比電極,鉑片電極為對(duì)電極.電位均相對(duì)于參比電極.失重實(shí)驗(yàn)用Q235碳鋼腐蝕試片[上海金山石化濼崧機(jī)電設(shè)備有限公司,國(guó)家標(biāo)準(zhǔn)腐蝕試片,Q235I型鋼,規(guī)格50mm×25mm×2mm,檢測(cè)依據(jù)(產(chǎn)品標(biāo)準(zhǔn))HG5-1256-83,元素質(zhì)量分?jǐn)?shù)(%):C 0.19,Si 0.28,Mn 0.52,P 0.03,S 0.03,Cr 0.025,Ni 0.30,Cu 0.25]、苯胺購(gòu)自天津市天利化學(xué)有限公司,使用前經(jīng)過(guò)蒸餾純化.環(huán)氧氯丙烷、乙醇均購(gòu)自天津市富宇精細(xì)化工有限公司,直接使用.
1.2 苯胺雙子衍生物(1,3-二苯胺基異丙醇)的合成
將苯胺(28 g,0.3 mol)和環(huán)氧氯丙烷(4.65 g,0.05 mol)置于100 mL圓底燒瓶,加25 mL乙醇作溶劑,90℃回流24 h.反應(yīng)結(jié)束后用減壓蒸餾除去過(guò)量苯胺和乙醇得到粗產(chǎn)品,粗產(chǎn)品用60mLNaOH溶液(1 mol/L)進(jìn)行中和,混合溶液用二氯甲烷萃取3次(每次40 mL),合并有機(jī)相,有機(jī)相用蒸餾水(40 mL)、飽和食鹽水(40 mL)各洗滌一次,無(wú)水硫酸鎂干燥過(guò)夜.旋干溶劑得到最終產(chǎn)物,為淺褐色粘稠狀液體.合成路線(xiàn)如圖1所示.
圖1 1,3-二苯胺基異丙醇的合成Fig.1 The synthesis of 1,3-bisphenylamino-isopropanol
1,3-二苯胺基異丙醇的分子結(jié)構(gòu)及1H核磁共振譜如圖2所示,1H核磁數(shù)據(jù)為(CDCl3,400 MHz),δ,J:7.15,7.06 Hz(t,4H,Ar-H),6.72,7.28 Hz(t,2H,Ar-H),6.58,7.61 Hz(d,4H,Ar-H),3.93(m,1H,CH),3.65,7.23 Hz(t,4H,CH2),3.16,8.38 Hz(t,2H,NH),3.03,12.95 Hz(d,1H,OH)
圖2 1,3-二苯胺基異丙醇的分子結(jié)構(gòu)及1H核磁共振圖譜Fig.2 The chemical structure and1H NMR spectra of 1,3-bisphenylamino-isopropanol
1.3 失重法測(cè)試緩蝕效率
分別稱(chēng)取一定質(zhì)量1,3-二苯胺基異丙醇的加入到濃度為1 mol/L的鹽酸溶液,充分溶解配成不同抑制劑濃度的腐蝕試液.分別用14~20 μm(500目)、7~10 μm(800目)和5~7 μm(1 000目)砂紙逐級(jí)打磨Q235碳鋼腐蝕試片,打磨完畢依次用蒸餾水、丙酮、乙醇洗滌,清洗完畢用脫脂棉擦去試片表面的乙醇放入干燥器中干燥,5 min后在電子天平上稱(chēng)重.計(jì)重鋼片在設(shè)定的溫度下浸泡在腐蝕試液中一個(gè)小時(shí).取出后先將試片表面用清水沖洗干凈,再用蒸餾水、丙酮、乙醇依次洗滌,最后用冷風(fēng)吹干后放在電子天平上稱(chēng)重,記錄相關(guān)數(shù)據(jù).試驗(yàn)前后兩次稱(chēng)重的數(shù)據(jù)之差便為腐蝕導(dǎo)致的失重,為確保實(shí)驗(yàn)數(shù)據(jù)的準(zhǔn)確性,每個(gè)失重?cái)?shù)據(jù)的獲得均通過(guò)三次平行實(shí)驗(yàn),取平均值.用相同方法以苯胺為緩蝕劑進(jìn)行對(duì)比實(shí)驗(yàn).
1.4 極化曲線(xiàn)測(cè)試
電化學(xué)測(cè)試在VersaSTAT 3電化學(xué)工作站上進(jìn)行.選擇三電極體系進(jìn)行測(cè)試.工作電極為Q235碳鋼電極,工作面積為1 cm2,上表面焊接銅絲作為導(dǎo)線(xiàn),除下表面外其余各面用環(huán)氧樹(shù)脂封裝,只露出下表面作為工作面.輔助電極為鉑片電極,工作面積為1 cm2.實(shí)驗(yàn)前工作電極先后用粒度尺寸為14~20 μm(500目)、7~10(800目)、5~7 μm(1 000目)砂紙逐級(jí)打磨,然后用500 nm氧化鋁粉末在麂皮上拋光至鏡面.在恒定的溫度下待開(kāi)路電位(Eocp)腐蝕電位穩(wěn)定后進(jìn)行電化學(xué)極化曲線(xiàn)的測(cè)量.極化曲線(xiàn)掃描速率為0.5 mV/s,掃描區(qū)間為相對(duì)于Eocp的-200 mV~200 mV.
2.1 失重測(cè)試
有機(jī)緩蝕劑對(duì)金屬腐蝕的保護(hù)作用一般是基于其在金屬表面的吸附所形成的吸附保護(hù)膜,該吸附層可以有效地隔離腐蝕介質(zhì)的與金屬表面的接觸,進(jìn)而阻礙電化學(xué)反應(yīng)的進(jìn)行.在含有緩蝕劑的腐蝕介質(zhì)中,金屬表面的腐蝕速率大小可以由未被緩蝕劑分子覆蓋的自由腐蝕位點(diǎn)數(shù)目來(lái)表示[16].基于該假設(shè),金屬的腐蝕只會(huì)發(fā)生在自由腐蝕位點(diǎn),在這種情況下,由失重法測(cè)得的金屬腐蝕速率(CR)、緩蝕劑的緩蝕效率(IE)和表面覆蓋率(θ)可以通過(guò)式(1)~(3)[1]進(jìn)行計(jì)算:
式(1)中W1、W2是碳鋼試片試驗(yàn)前后的質(zhì)量,S是試片的總表面積,t是浸泡時(shí)間.
式(2)中CR0和CR分別為未加緩蝕劑和加入緩蝕劑時(shí)的腐蝕速率.
在鹽酸濃度為1 mol/L,溫度為20℃、30℃和40℃的條件下,考察1,3-二苯胺基異丙醇和苯胺濃度對(duì)緩蝕性能的影響,結(jié)果如圖3和表1所示.實(shí)驗(yàn)數(shù)據(jù)顯示,不論是苯胺還是其雙子衍生物1,3-二苯胺基異丙醇,在20℃、30℃和40℃下,均對(duì)Q235碳鋼片在1 mol/L鹽酸中的腐蝕起到明顯的緩蝕作用,而且在條件相同的情況下,雙子化衍生物的緩蝕效率明顯高于苯胺.可以看到以苯胺雙子衍生物為緩蝕劑時(shí)Q235碳鋼的腐蝕速率隨緩蝕劑濃度的增加而逐漸降低,緩蝕劑的覆蓋率和緩蝕效率則呈現(xiàn)出相反的變化趨勢(shì),說(shuō)明隨著鹽酸中緩蝕劑濃度的增加,苯胺雙子衍生物在鋼片表面的吸附量也相應(yīng)增加.而以苯胺作為緩蝕劑時(shí),其濃度上升,鋼片腐蝕速率、苯胺緩蝕率和表面覆蓋率卻沒(méi)有明顯變化,表明隨著溶液中苯胺濃度的加大,其在鋼片表面的吸附量并未發(fā)生明顯改變.產(chǎn)生這種現(xiàn)象的原因可能是當(dāng)苯胺在溶液中濃度達(dá)到100 mg/L時(shí),其在鋼片表面的吸附已達(dá)到飽和,繼續(xù)增加鹽酸溶液中苯胺濃度,其在鋼片表面的覆蓋率不會(huì)增加.因此,鋼片腐蝕速率以及緩蝕率變化很小.而對(duì)于苯胺雙子衍生物由于其分子結(jié)構(gòu)中含有兩個(gè)N原子,且距離因?yàn)楣矁r(jià)鍵連接而拉得很近,在與酸性介質(zhì)中的氫離子結(jié)合成親水的鎓離子后,單個(gè)分子中極性部位的電荷密度大于只含一個(gè)N原子的苯胺的,進(jìn)而導(dǎo)致1,3-二苯胺基異丙醇在帶負(fù)電荷的鋼片表面的吸附能力強(qiáng)于苯胺,所以在100 mg/L時(shí),苯胺雙子衍生物的吸附量并未達(dá)到飽和,繼續(xù)增加介質(zhì)中苯胺衍生物濃度,其在鋼片表面的吸附量和覆蓋率還會(huì)增加,緩蝕率也相應(yīng)提高.
圖3 不同溫度下(A)1,3-二苯胺基異丙醇及(B)苯胺的緩蝕率(IE)和覆蓋率(θ)隨濃度變化的關(guān)系Fig.3 The relationship between the concentration and the corrosion inhibition efficiency and coverage rate of(A)1,3-bisphenylamino-isopropanol or(B)aniline at different temperatures
表1 不同溫度下苯胺和1,3-二苯胺基異丙醇作為緩蝕劑時(shí)Q235碳鋼在1 mol/L鹽酸中的腐蝕參數(shù)Table 1 Corrosion parameters of Q235 mild steel immersed in 1 mol/L HCl using aniline and 1,3-bisphenylamino-isopropanol as inhibitors at different temperatures
圖3數(shù)據(jù)還表明在相同濃度和溫度下,除了在30℃下質(zhì)量濃度100和200 mg/L時(shí),苯胺的緩蝕效率均低于其雙子衍生物,原因同樣可以歸結(jié)于它們分子結(jié)構(gòu)差異而導(dǎo)致的吸附能力不同,苯胺雙子衍生物因形成鎓鹽后極性部位電荷密度要大于苯胺,所以其吸附能力要強(qiáng)于苯胺,相同條件下吸附量更多、覆蓋率更高.另外,由于雙子化衍生不光通過(guò)共價(jià)鍵拉近了兩個(gè)N原子的距離,同時(shí)也使與N相連的疏水苯環(huán)距離更近,當(dāng)形成吸附層時(shí),其疏水層中苯環(huán)的密度也相應(yīng)增大,吸附層更加致密,阻隔效果更好.
不論是苯胺還是其雙子衍生物,當(dāng)溫度增加時(shí),鋼片腐蝕速度均加快,緩蝕效率和覆蓋率不同程度降低(圖3).說(shuō)明溫度增加有助于電化學(xué)腐蝕反應(yīng)的進(jìn)行,同時(shí)對(duì)緩蝕劑的吸附產(chǎn)生不利影響.其中的原因?qū)⒃谙旅娴母g動(dòng)力學(xué)部分做具體討論.
2.2 極化曲線(xiàn)
添加不同濃度的1,3-二苯胺基異丙醇作為緩蝕劑,30℃下Q235碳鋼電極在1 mol/L鹽酸溶液中的極化曲線(xiàn)如圖4所示,電化學(xué)腐蝕參數(shù),如腐蝕電位Ecorr(mV/SCE),陽(yáng)極和陰極Tafel斜率ba和-bc(單位為mV/dec,dec表示十進(jìn)位)和腐蝕電流密度等icorr(μA·cm-2)列于表2中.緩蝕率可以通過(guò)式(4)[17]計(jì)算:
不論是苯胺還是其雙子衍生物,當(dāng)溫度增加時(shí),鋼片腐蝕速度均加快,緩蝕效率和覆蓋率不同程度降低(圖3).說(shuō)明溫度增加有助于電化學(xué)腐蝕反應(yīng)的進(jìn)行,同時(shí)對(duì)緩蝕劑的吸附產(chǎn)生不利影響.
表2 30℃下Q235碳鋼電極在含不同濃度1,3-二苯胺基異丙醇的1 mol/L鹽酸中的極化曲線(xiàn)參數(shù)Table 2 Polarization parameters for Q235 carbon steel in 1 mol/L HCl solutions containing 1,3-bisphenylamino-isopropanol with different concentrations at 30℃
圖4 1,3-二苯胺基異丙醇作為緩蝕劑時(shí)的極化曲線(xiàn)Fig.4 The electrochemical polarization curves using 1,3-bisphenylamino-isopropanol as inhibitors
2.3 腐蝕反應(yīng)動(dòng)力學(xué)分析
金屬腐蝕反應(yīng)的難易程度可以通過(guò)其活化能大小反映出來(lái),腐蝕反應(yīng)的表觀(guān)活化能可用阿倫尼烏斯公式及其等價(jià)變換式[20]計(jì)算得到:
其中,Ea為表觀(guān)活化能,A為指數(shù)前因子,CR為腐蝕速率.ΔHa為表觀(guān)活化焓,ΔSa為表觀(guān)活化熵,h為普朗克常數(shù),N為阿伏伽德羅常數(shù).由lnCR對(duì)1 000/T線(xiàn)性擬合,如圖5所示,可根據(jù)斜率求出Ea.由ln(CR/T)對(duì)1 000/T線(xiàn)性擬合,如圖6所示,得到的斜率為(-ΔHa/1 000R),截距為[ln(R/Nh)+(ΔSa/R)],以此可以求出腐蝕反應(yīng)的ΔHa和ΔSa的值(結(jié)果列于表3中).
在腐蝕介質(zhì)中加入苯胺及其雙子衍生物1,3-二苯胺基異丙醇,其對(duì)應(yīng)的Ea值相對(duì)于空白樣均明顯增大(表3),說(shuō)明緩蝕劑加入后,碳鋼的腐蝕反應(yīng)活化能明顯提高,這是由于緩蝕劑分子在金屬表面的吸附,阻礙了腐蝕過(guò)程中的電荷傳遞,使得腐蝕反應(yīng)勢(shì)壘增加,腐蝕變得困難.而對(duì)比苯胺及1,3-二苯胺基異丙醇對(duì)碳鋼在1mol/L HCl中腐蝕的Ea的影響,可以發(fā)現(xiàn)在相同濃度下,1,3-二苯胺基異丙醇對(duì)應(yīng)的Ea值明顯高于苯胺,說(shuō)明苯胺雙子衍生物使腐蝕反應(yīng)勢(shì)壘提高得更多,腐蝕更難進(jìn)行.另外,表3中所示的腐蝕反應(yīng)ΔHa均大于零,說(shuō)明碳鋼腐蝕反應(yīng)活化需要吸收熱量[21].ΔSa為負(fù),且絕對(duì)值很大,說(shuō)明腐蝕反應(yīng)速率控制步驟為締合(形成活化絡(luò)合物)而非離解過(guò)程[20],從反應(yīng)物轉(zhuǎn)化為活化絡(luò)合物過(guò)程界面變得較為有序.鐵在鹽酸中腐蝕時(shí)起到活化作用的為氯離子,其活化效應(yīng)如式(7)~(9)[22]所示:
圖5 以(A)1,3-二苯胺基異丙醇或(B)苯胺作為緩蝕劑時(shí)Q235碳鋼在1 mol/L鹽酸中的阿倫尼烏斯曲線(xiàn)圖Fig.5 The Arrhenius curves of Q235 mild steel immersed in 1 mol/L HCl using(A)1,3-bisphenylamino-isopropanol or(B)aniline as corrosion inhibitor
圖6 以(A)1,3-二苯胺基異丙醇或(B)苯胺作為緩蝕劑時(shí)Q235碳鋼在1 mol/L鹽酸中l(wèi)n(CR/T)與1/T的關(guān)系圖Fig.6 The relation between ln(CR/T)and 1/T of Q235 mild steel immersed in 1mol/L HCl solution using(A)1,3-bisphenylamino-isopropanol or(B)aniline as corrosion inhibitor
表3 1,3-二苯胺基異丙醇和苯胺作為緩蝕劑時(shí)Q235碳鋼在1 mol/L鹽酸中的腐蝕動(dòng)力學(xué)參數(shù)Table 3 The corrosion kinetic parameters of Q235 mild steel immersed in 1 mol/L HCl using 1,3-bisphenylamino-isopropanol or aniline as corrosion inhibitor
式中電子轉(zhuǎn)移到鋼鐵表面陰極區(qū),并主要由H+得到電子,構(gòu)成完整的氧化還原反應(yīng).其中(FeCl)ads、(FeCl)+均為可能的活化絡(luò)合物,隨著緩蝕劑濃度的增加ΔSa逐漸減小,說(shuō)明隨緩蝕劑濃度增加從反應(yīng)物轉(zhuǎn)化為活化絡(luò)合物過(guò)程界面有序程度降低.而根據(jù)文獻(xiàn),中性和質(zhì)子化的緩蝕劑分子均能形成絡(luò)合物([Fe(0)Inh]或[FeCl-InhH+])保護(hù)層,阻止腐蝕性離子的破壞[22].
a.在1 mol/L的HCl腐蝕介質(zhì)中,1,3-二苯胺基異丙醇對(duì)Q235碳鋼的緩蝕效果明顯優(yōu)于苯胺.說(shuō)明對(duì)具有一定緩蝕效果的有機(jī)分子進(jìn)行適當(dāng)?shù)碾p子化衍生以提高分子結(jié)構(gòu)中極性部位的電荷密度,是一種獲得更高效緩蝕劑的有效途徑.
b.極化曲線(xiàn)的測(cè)試結(jié)果表明苯胺雙子衍生物1,3-二苯胺基異丙醇同時(shí)抑制了碳鋼表面陽(yáng)極腐蝕和陰極析氫反應(yīng),是一種混合型緩蝕劑,且對(duì)陽(yáng)極的金屬溶解抑制作用更大.
c.在腐蝕介質(zhì)中加入苯胺及其雙子衍生物,腐蝕反應(yīng)的Ea值明顯增大,說(shuō)明緩蝕劑分子在金屬表面的吸附,阻礙了腐蝕過(guò)程中的電荷傳遞,使得腐蝕反應(yīng)勢(shì)壘增加,腐蝕變得困難,且苯胺雙子衍生物的阻礙效果更佳.
致謝
感謝國(guó)家自然科學(xué)基金、湖北省青年科技晨光計(jì)劃、湖北省教育廳重點(diǎn)研究項(xiàng)目、武漢市軟科學(xué)研究項(xiàng)目資助.
[1]楊光宏,劉東,丁一剛,等.新型含硫緩蝕劑的制備及其緩蝕吸附行為[J].武漢工程大學(xué)學(xué)報(bào),2012,34(6):18-21.
YANG Guang-hong,LIU Dong,DING Yi-gang,et al.Preparation and inhibition adsorption behavior of new corrosion inhibitor containing sulfur[J].Journal of Wuhan Institute of Technology,2012,34(6):18-21.(in Chinese)
[2]YILDIRIM A,CETIN M.Synthesis and evaluation of new long alkyl side chain acetamide,isoxazolidine and isoxazoline derivatives as corrosion[J].CorrosSci, 2008,50(1):155-165.
[3]MORRETI G,GUIDI F,F(xiàn)ABRIS F.Corrosion inhibition of the mild steel in 0.5 M HCl by 2-butyl-hexahydropyrrolo[1,2-b][1,2]oxazole[J].Corros Sci,2013,76:206-218.
[4]SOLTANI N,BEHPOUR M,GHOREISHI S M,et al.Corrosion inhibition of mild steel in hydrochloric acid solution by some double Schiff bases[J].Corros Sci,2010,52(4):1351-1361.
[5]OBOT I B,OBI-EGBEDI N O,UMOREN S A.The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium[J].Corros Sci,2009,51(2):276-282.
[6]DEYAB M A,ABD EL-REHIM S S,KEERA S T.Study of the effect of association between anionic surfactant and neutral copolymer on the corrosion behavior of carbon steel in cyclohexane propionic acid[J].Colloids Surf A,2009,348(1-3):170-176.
[7]OSTAPENKO G I,GLOUKHOV P A,BUNEV A S.Investigation of 2-cyclohexenylcyclohexanone as steel corrosion inhibitor and surfactant in hydrochloric acid[J].Corros Sci,2014,82:265-270.
[8]FUCHS-GODEC R,PAVLOVI M G.Synergistic effect between non-ionic surfactant and halide ions in the forms of inorganic or organic salts for the corrosion inhibition of stainless-steel X4Cr13 in sulphuric acid[J].Corros Sci,2012,58:192-201.
[9]BADR E A.Inhibition effect of synthesized cationic surfactant on the corrosion of carbon steel in 1 M HCl[J].J Ind Eng Chem,2014,20(5):3361-3366.
[10]SOLIMAN S A,METWALLY M S,SELIM S R,et al.Corrosion inhibition and adsorption behavior of new Schiff base surfactant on steel in acidic environment: Experimental and theoretical studies[J].J Ind Eng Chem,2014,20(6):4311-4320.
[11]MOTAMEDI M,TEHRANI-BAGHA A R,MAHDAVIAN M.Effect of aging time on corrosion inhibition of cationic surfactant on mild steel in sulfamic acid cleaning solution[J].Corros Sci,2013,70:46-54.
[12]ZHAO J,DUAN H,JIANG R.Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in H2S and CO2saturated brine solution[J].Corros Sci,2015,91:108-119.
[13]ASEFI D,MAHMOODI N M,ARAMI M.Effect of nonionic co-surfactants on corrosion inhibition effect of cationic gemini surfactant[J].ColloidsSurfA,2010,335(1-3):183-186.
[14]HUANG W,ZHAO J X.Adsorption of quaternaryammonium gemini surfactants on zinc and the inhibitive effect on zinc corrosion in vitriolic solution[J].Colloids Surf A,2006,278(1-3):246-251.
[15]ZHANG Q,GAO Z N,XU F,et al.Adsorption and corrosion inhibitive properties of gemini surfactants in the series of hexanediyl-1,6-bis-(diethyl alkyl ammonium bromide)on aluminium in hydrochloric acid solution[J].Colloids Surf A,2011,380(1-3):191-200.
[16]OGUZIE E E.Corrosion inhibition of aluminium in acidic and alkaline media by sansevieria trifasciata extract[J].Corros Sci,2007,49(3):1527-1539.
[17]LOTO R T,LOTO C A,F(xiàn)EDOTOVA T.Electrochemical studies of mild steel corrosion inhibition in sulfuric acid chloride by aniline[J].Res Chem Intermed,2014,40(4),1501-1516.
[18]MISTRY B M,JAUHARI S.Studies on the inhibitive effect of(Z)-4-chloro-N-((2-chloroquinolin-3-yl)methylene)aniline schiff base on the corrosion of mild steel in 1 N HCl solution[J].Res Chem Intermed,2014(40):1-19.
[19]ELMSELLEM H,NACER H,HALAIMIA F,et al.Anti-corrosive properties and quantum chemical study of(methoxybenzylidene)aniline and(4-methoxybenzylidene)-4-nitroaniline coating on mild steel in molar hydrochloric[J].Int J Electrochem Sci,2014,9: 5328-5351.
[20]OBOT I B,OBI-EGBEDI N O.Anti-corrosive properties of xanthone on mild steel corrosion in sulphuric acid:Experimental and theoretical investigations[J].Curr Appl Phys,2011,11(3):382-392.
[21]TANG Y,ZHANG F,HU S,et al.Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media.Part I:Gravimetric,electrochemical,SEM and XPS studies[J].Corros Sci,2013,74: 271-282.
[22]GUO L,ZHU S,ZHANG S.Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium[J].Corros Sci,2014,87:366-375.
Corrosion inhibiting performances of aniline gemini derivative for Q235 carbon steel in hydrochloric acid
LIU Zhi-tian1,ZHANG Lin-hua1,ZHANG Qi1,ZHENG Le-chi1,YU Xue-cheng1,WANG Cheng1
School of Material Science and Engineering,Wuhan Institute of Technology,Wuhan 430074,China
To investigate the effect of gemini derivation on the corrosion inhibiting performances,the study of comparison between aniline and 1,3-bisphenylamino-isopropanol was conducted.At the temperature of 20℃,the gemini derivative shows higher efficiency of 85.14%-91.62%,increasing with the concentration.While the aniline shows efficiency of around 82%regardless of the concentration.The energy barrier of corrosion reaction is enhanced both by aniline and the gemini derivative with the apparent activation energies of 48.94-59.59 kJ/mol for the gemini derivative,also higher than that of 44.61-49.59 kJ/mol for aniline.The results show that the corrosion inhibiting performance of gemini derivative is obviously improved compared with that of aniline.It can be attributed to the closer distances between N atoms which were connected by covalent bonds.So the charge densities of the polar groups are elevated,and thus the adsorption ability is enhanced.With closer distances,the density of hydrophobic benzene rings is also increased,resulting in better blocking ability when forming the adsorption layer.The polarization curves show that the gemini derivative can be defined as a mixed type inhibitor that inhibits the anodic and cathodic reaction spontaneously.
gemini derivative of aniline;acid corrosion;inhibitor;gravimetric measurement;electrochemical polarization;corrosion reaction dynamics
O647
A
10.3969/j.issn.1674-2869.2015.03.008
1674-2869(2015)03-0035-07
本文編輯:龔曉寧
2015-01-23
國(guó)家自然科學(xué)基金(51003080);湖北省青年科技晨光計(jì)劃(2014.5);武漢市應(yīng)用基礎(chǔ)研究(2015010101010018);武漢市軟科學(xué)研究計(jì)劃(2015040606010250)
劉治田(1981-),男,湖北黃岡人,教授,博士生導(dǎo)師.研究方向:功能高分子材料.