郭 敏, 郭 靖
(1.武漢理工大學(xué) 網(wǎng)絡(luò)信息中心, 武漢 430070; 2.西南大學(xué) 電子信息工程學(xué)院, 重慶 400715)
?
含噪ICA模型的一種時(shí)頻算法
郭 敏1, 郭 靖2*
(1.武漢理工大學(xué) 網(wǎng)絡(luò)信息中心, 武漢 430070; 2.西南大學(xué) 電子信息工程學(xué)院, 重慶 400715)
實(shí)際ICA(Independent Component Analysis)模型中,觀測信號(hào)常常被各種噪聲干擾,致使ICA的源估計(jì)相當(dāng)困難.針對(duì)信號(hào)源噪聲污染情形,分析了ICA模型的估計(jì)難點(diǎn);并假設(shè)信號(hào)和噪聲的時(shí)頻特性不同,以一種高性能的雙線性時(shí)頻分布計(jì)算混合信號(hào)的時(shí)頻特性,輔之Hough空間變換思想,將噪聲能量擴(kuò)展到整個(gè)參數(shù)空間,只選擇信號(hào)能量占主導(dǎo)的自項(xiàng)點(diǎn)進(jìn)行最小二乘對(duì)角化估計(jì)源信號(hào),提出了一種時(shí)頻抗噪ICA方法;最后,詳細(xì)分析了該方法的抗噪性能.該方法擴(kuò)展了ICA模型的應(yīng)用限制條件,能有效分離各種非平穩(wěn)信號(hào).
信號(hào)源噪聲; RID分布; Hough變換; ICA; SNR
現(xiàn)實(shí)世界中,觀測信號(hào)往往被各種噪聲干擾,這些噪聲可能是實(shí)際傳感器的物理噪聲,也可能本身作為源信號(hào)之一而存在.然而,當(dāng)噪聲存在時(shí),ICA的源估計(jì)相當(dāng)困難[1-2].針對(duì)該問題,研究者提出了常用的解決思路和方法:①稀疏編碼收縮法(SparseCodeShrinkage,SCS)[3-4]:SCS假設(shè)正交ICA變換具有很強(qiáng)的稀疏性,根據(jù)這種稀疏性將含噪信號(hào)投影到ICA正交基上來實(shí)現(xiàn)降噪.但SCS需要假設(shè)噪聲和信號(hào)相互獨(dú)立,且需要預(yù)先估計(jì)噪聲的方差.②小波濾波法(WaveletFiltering,WF)[5-6]:WF根據(jù)信號(hào)和噪聲的小波系數(shù)在不同尺度上具有不同的性質(zhì),構(gòu)造相應(yīng)規(guī)則,在小波平面采用數(shù)學(xué)方法對(duì)含噪信號(hào)的小波系數(shù)進(jìn)行處理.WF成功的關(guān)鍵在于如何保持信號(hào)的完整信息.③高階累積量法(Higher-OrderCumulant,HOC)[7-9]:HOC利用方差、偏度、峭度等高階聯(lián)合矩描述信號(hào)和噪聲的分布特征,能避免因高斯噪聲帶來的問題,缺點(diǎn)是高階累積量對(duì)野值敏感,且計(jì)算量大.④極大似然估計(jì)方法(MaximumLikelihood,ML)[10-11]:ML是將信號(hào)的密度用高斯混合模型的密度來逼近,不過,計(jì)算量大.⑤偏差去除技術(shù):(BiasRemovalTechniques,BRT)[12-13]:BRT對(duì)無噪的ICA方法進(jìn)行修正,以去除由于噪聲引起的偏差,關(guān)鍵是如何從觀測量中獲得不受噪聲影響的度量標(biāo)準(zhǔn).
本文假設(shè)噪聲施加在傳感器上的效果可等效為附加源信號(hào)的情形,分析了含噪ICA模型的估計(jì)難點(diǎn).在此基礎(chǔ)上,假設(shè)信號(hào)和噪聲的時(shí)頻特性不同,通過把一維時(shí)域中的含噪信號(hào)映射到二維的時(shí)頻平面來獲取信號(hào)的頻率特性隨時(shí)間變化的信息,并映射到Hough變換空間,選擇信號(hào)能量占主導(dǎo)的自項(xiàng)點(diǎn)進(jìn)行最小二乘對(duì)角化,進(jìn)而估計(jì)源信號(hào),去除噪聲,提出一種新的去噪ICA算法.最后以LFM(LinearFrequencyModulation)信號(hào)分析了該方法的抗噪性能.
設(shè)有m個(gè)混疊信號(hào)x(t)=[x1(t),…,xm(t)]T,每個(gè)xi(t)接收到的都是n個(gè)源信號(hào)s(t)=[s1(t),…,sn(t)]T發(fā)出的線性瞬時(shí)混疊,其中,s(t)中有l(wèi)個(gè)源信號(hào)s1(t),…,sl(t),n-l個(gè)加性噪聲sl+1(t),…,sn(t),則
x(t)=As(t)+n(t).
(1)
假設(shè):
(P1)混合是線性時(shí)不變瞬時(shí)混合,A為m×n維的列滿秩陣,且m≥n;
(P2)源信號(hào)s1(t),…,sl(t)是零均值、非平穩(wěn)、互不相關(guān)的隨機(jī)信號(hào);
(P3)噪聲sl+1(t),…,sn(t)為零均值,獨(dú)立同分布,且與源信號(hào)互不相關(guān);
在上述假設(shè)下,可以把噪聲sl+1(t),…,sn(t)當(dāng)作源信號(hào)來建模,即
Rss(t,τ)=E{s(t+τ)s*(t)}=
diag[ρ1(t,τ),ρ2(t,τ),…,ρn(t,τ)],
(2)
Rxx(t,τ)=E{x(t+τ)x*(t)}=
ARss(t,τ)AH+σ2Im,
(3)
其中,上標(biāo)H表示共軛轉(zhuǎn)置.設(shè)分離矩陣為B,即有B=A-1.由式(1),有
y(t)=Bx(t)=B(As(t)+n(t))=
s(t)+Bn(t).
(4)
對(duì)比分析式(1)、(4),可知:
1) 由于噪聲是源信號(hào)之一,則經(jīng)As(t)后,源信號(hào)的結(jié)構(gòu)被噪聲破壞;
2)n(t)的存在,進(jìn)一步破壞了As(t)的結(jié)構(gòu),分離信號(hào)y(t)的各個(gè)成分很難保證獨(dú)立;
3)Bn(t)的存在,輸出成分y(t)=s(t)+Bn(t).因此,當(dāng)噪聲存在時(shí),信號(hào)ICA估計(jì)變得相當(dāng)困難.
2.1 白化
由于信號(hào)被噪聲污染,本文采用子空間的方法來白化觀測信號(hào),使得待分離的信號(hào)互不相關(guān),協(xié)方差矩陣為單位陣I.若對(duì)A,有一白化陣W,滿足WAAHWH=In.由文獻(xiàn)[14],觀測信號(hào)x(t)的零延遲自相關(guān)陣為:
Rxx(t,0)=ARss(t,0)AH+σ2Im
(5)
則白化陣
(6)
其中,[λ1,…,λm]是Rxx[t,0]降序排列的特征值,[h1,…,hm]為其對(duì)應(yīng)的特征向量.令U=WA,則白化信號(hào)為
z(t)=Wx(t)=WAs(t)+Wn(t)=
Us(t)+Wn(t).
(7)
2.2 求白化后信號(hào)的RID分布
RID(Reduced Interference Distribution)在抑制交叉干擾項(xiàng)和時(shí)頻聚集性方面的折衷性較好,其定義為[15]:
(8)
(9)
其中,h(τ),g(v)分別是時(shí)域、頻域的對(duì)稱光滑窗函數(shù).
2.3 Hough變換
Hough變換的本質(zhì)是對(duì)信號(hào)進(jìn)行坐標(biāo)映射,把平面坐標(biāo)映射為參數(shù)坐標(biāo),使映射的結(jié)果更易識(shí)別和檢測.將變換對(duì)象由二維函數(shù)RIDx(t,v)映射成x(t)的RIDHTx(f0,β)分布,則得到x(t)的RIDHT(RID-Hough Transform)變換[16].設(shè)RIDHT的積分直線ABC為:f=f0+βt(f0為截距,β為斜率),則
(10)
圖1 LFM含噪信號(hào)的RIDHT分布Fig.1 The RIDHT distribution of noisy LFM signals
2.4 自項(xiàng)點(diǎn)選擇
設(shè)白化信號(hào)的時(shí)頻譜為Vzz(t,f),考慮低噪或無噪情況,對(duì)式(7)求RIDHT分布
Vzz(f,g)≈WVxx(f,g)WH≈
WAVss(f,g)AHWH≈UVss(f,g)UH.
(11)
根據(jù)文獻(xiàn)[17],U為酉矩陣,Vss(f,g)為源信號(hào)s(t)的RIDHT分布.對(duì)式(11)求特征值運(yùn)算,有
eig{Vzz}≈eig(UVssUH)≈eig(Vss).
(12)
因此,根據(jù)文獻(xiàn)[17]求信號(hào)z(t)的特征值方法,可得出時(shí)頻點(diǎn)選擇策略:
(13)
其中,ε為[0,1]之間的正數(shù),取ε=0.1.
若信號(hào)s(t)在某個(gè)平面點(diǎn)(fi,gi)自項(xiàng)Vsksk(fi,gi)≠0,互項(xiàng)Vsksl(fi,gi)=0 (k≠l),則源信號(hào)分布Vss(fi,gi)近似為對(duì)角陣.從而,U可采用文獻(xiàn)[18]的最小二乘對(duì)角化算法求出.
總結(jié)上述思路,可得到一種含噪的ICA算法:
1) 對(duì)混疊信號(hào)零均值化,估計(jì)零時(shí)延的自相關(guān)矩陣Rxx(t,0);
2) 對(duì)Rxx(t,0)進(jìn)行特征值分解,利用式(6)計(jì)算白化陣W;
3) 利用式(10)計(jì)算Z(t)的RIDHT變換Vzz(f,β);
4) 根據(jù)式(13)選取自項(xiàng)點(diǎn);
5) 以最小二乘方法對(duì)角化個(gè)Vzz(f,β)矩陣,得到酉矩陣U;
假定一個(gè)LFM信號(hào)為:
(14)
(15)
(16)
若信號(hào)x(k)=s(k)+n(k),對(duì)其采樣T點(diǎn),則其RIDHT函數(shù)的方差為:
(17)
根據(jù)文獻(xiàn)[19],
(18)
因此,輸出SNR為:
(19)
由式(19),可見,信號(hào)的輸出信噪比取決于源信號(hào)的輸入信噪比和采樣量.進(jìn)一步簡化式(19),有
(20)
可見,對(duì)于含噪LFM信號(hào),如以SNR為評(píng)價(jià)指標(biāo),RIDHT變換所得的輸出信噪比SNRout與輸入信噪比SNRin和采樣數(shù)N均成正比.因此,可從提高輸入數(shù)據(jù)的信噪比或/和增加變換的數(shù)據(jù)量兩方面改善ICA算法的性能.
采用一個(gè)EEG(Electroenc Ephalo Graphic)信號(hào)(取自The Laboratory for Advanced Brain Signal Processing (ABSP)),和兩個(gè)高斯白噪聲(均值均為0,方差分別為5、25),采樣2048個(gè)點(diǎn).A=[0.1509 0.8600 0.4966; 0.6979 0.8537 0.8998;0.3784 0.5936 0.8216].源信號(hào),觀測信號(hào)及估計(jì)信號(hào)分別如圖2~圖4所示.可見,本文算法能成功估計(jì)源信號(hào).
圖2 源信號(hào)波形圖Fig.2 The waveform of sources signals
圖3 觀測信號(hào)波形圖Fig.3 The waveform of observed signals
圖4 估計(jì)信號(hào)波形圖Fig.4 The waveform of estimated signals
圖5顯示了不同ICA算法的輸出/輸入SNR曲線.圖6顯示了輸出SNR和信號(hào)采樣點(diǎn)的變化曲線.可見,本文算法針對(duì)含噪ICA具有更強(qiáng)的抗噪性能,且隨著采樣數(shù)的增加,抗噪性能會(huì)更好.
圖5 輸出/輸入SNR變化曲線Fig.5 The curve of output versus input SNR
圖6 輸出SNR和采樣點(diǎn)變化曲線Fig.6 The curve of output SNR versus sampling points
本文考慮噪聲作為源信號(hào)之一的ICA估計(jì)問題.研究了含噪ICA信號(hào)估計(jì)的困難、時(shí)頻點(diǎn)選擇理論、Hough平面映射,提出了一種新的能分離信號(hào)源噪聲的ICA算法,并分析了該算法的信噪比變化趨勢(shì).該算法通過平面變換思想把一維信號(hào)轉(zhuǎn)換到二維平面,雖然計(jì)算量增大,但拓寬了源信號(hào)的限制條件,與基于其他理論的ICA算法相比,不必要求源信號(hào)相互獨(dú)立,或具有稀疏性,只要求源信號(hào)的時(shí)頻譜不同.同時(shí),通過把噪聲能量擴(kuò)展到整個(gè)時(shí)頻面而只選擇信號(hào)能量占主導(dǎo)的時(shí)頻點(diǎn),對(duì)噪聲具有一定的抑制能力,對(duì)野值也不敏感.
[1] 史習(xí)智. 盲信號(hào)處理: 理論與實(shí)踐[M].英文版. 上海:上海交通大學(xué)出版社, 2011.
[2] 孫守宇. 盲信號(hào)處理基礎(chǔ)及其應(yīng)用[M]. 北京: 國防工業(yè)出版社, 2010.
[3] Maria J G, Samer A A, Plumbley M D, et al. Sparse coding for convolutive blind audio source separation[J]. Lecture Notes in Computer Science, 2006, 3(1): 132-139.
[4] Phatak K, Jakhade S, Nene A, et al. De-noising of magnetic resonance images using independent component analysis[C]//2011 IEEE Recent Advances in Intelligent Computational Systems, Trivandrum, India, 2011. 807-812.
[5] He Q, Su S, Du R. Separating mixed multi-component signal with an application in mechanical watch movement [J]. Digital Signal Processing, 2008, 18(6): 1013-1028.
[6] Muhammad T A, Wataru M, Christopher J. Employing spatially constrained ICA and wavelet denoising for automatic removal of artifacts from multichannel EEG data journal[J]. Signal Processing, 2012, 92(2): 401-416.
[7] Blanco D, Mulgrew B, Ruiz D P, et al. Independent component analysis in signals with multiplicative noise using fourth-order statistics [J]. Signal Processing, 2007, 87(8):1917-1932.
[8] Karfoul A, Albera L, Birot G. Blind underdetermined mixture identification by joint canonical decomposition of HO cumulants[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 638-649.
[9] Sardouie S H, Albera L, Shamsollahi M B, et al. An efficient Jacobi-like deflationary ICA algorithm: application to EEG denoising[J]. IEEE Signal Processing Letters, 2015, 22(8): 1198-1202.
[10] Li X, Zhong W, Alphones A, et al. Channel equalization in optical OFDM systems using independent component analysis[J]. Journal of Light Wave Technology, 2014, 32(18):3206-3214.
[11] Adali T, Anderson M, Fu G. Diversity in independent component and vector analyses: Identifiably, algorithms, and applications in medical imaging[J]. IEEE Signal Processing Magazine, 2014, 31(3):18-33.
[12] Tang H, Wang S. Noisy blind source separation based on adaptive noise removal[C]//10th World Congress on Intelligent Control and Automation, Beijing, China, 2012: 4255-4257.
[13] Takahashi Y, Takatani T, Osako K, et al. Blind spatial subtraction array for speech enhancement in noisy environment[J]. IEEE Transactions on Audio, Speech and Language Processing, 2009, 17(4): 650-664.
[14] Holobar A, Févotte C, Doncarli C, et al. Single auto-terms selection for blind source separation in time-frequency plane[C]//Proceedings of 11th European Signal Processing Conference, Toulouse, France, 2002: 565-568.
[15] Jeong J, Williams W J. Kernel design for reduced interference distributions [J]. IEEE Transactions on Signal Processing, 1992, 40(2):402-412.
[16] Chau C P, Siu W C. Adaptive dual-point Hough transform for object recognition[J]. Computer Vision and Image Understanding, 2004, 96(1):1-16.
[17] Févotte C, Doncarli C. Two contributions to blind source separation using time-frequency distributions[J]. IEEE Signal Processing Letters, 2004, 11(3):386-389.
[18] Fadaili El M, Thirion-Moreau N, Moreau E. Non-orthogonal joint diagonalization/zero diagonalization for source separation based on time-frequency distributions[J]. IEEE Trans Signal Process, 2007, 55 (5):1673-1687.
[19] 邊海龍. 非平穩(wěn)信號(hào)聯(lián)合時(shí)頻分析方法的若干問題研究與應(yīng)用[D]. 成都:電子科技大學(xué), 2008.
A time-frequency algorithm for noisy ICA model
GUO Min1, GUO Jing2
(1.Network & Information Center, Wuhan University of Technology, Wuhan 430070;2.College of Electronics and Information Engineering, Southwest University, Chongqing 400715)
The estimation of signals in ICA (Independent Component Analysis) application model will become a problem because of noise disturbance. In this paper, the problem of noisy ICA model is analyzed against contaminated sources, and a new ICA method is proposed exploiting the difference in the time-frequency signatures of noisy sources to be separated. The approach is developed by firstly using high-resolution time-frequency distributions to obtain signal time-frequency features, secondly localizing the signal energy in parameter space by Hough transform and finally a least squares diagonalization of a combined set of TFD matrices chosen by auto-terms selection method to estimate the source signals. Its performance is also exhaustively derived. This approach extends the ICA application constraints and can effectively separates the various non-stationary sources.
noisy source; reduced interference distribution; Hough transform; independent Component Analysis; SNR
2015-02-27.
國家自然科學(xué)基金項(xiàng)目(61205088, 61472330);中央高校業(yè)務(wù)基金項(xiàng)目(XDJK2014C015);西南大學(xué)博士基金項(xiàng)目(SWU112056).
1000-1190(2015)04-0515-05
TN911.7< class="emphasis_bold">文獻(xiàn)標(biāo)識(shí)碼: A
A
*通訊聯(lián)系人. E-mail: poem24@163.com.