于瑞鵬 林 卉 丁 翠 王李娟 孫華生
(1.山東省第一地質(zhì)礦產(chǎn)勘查院,山東 濟(jì)南 250014;2.江蘇師范大學(xué)測(cè)繪學(xué)院,江蘇 徐州 221116;3.山東城市建設(shè)職業(yè)學(xué)院,山東 濟(jì)南 250103;4.遼寧工程技術(shù)大學(xué)測(cè)繪與地理科學(xué)學(xué)院,遼寧 阜新 123000)
礦井大型導(dǎo)線控制網(wǎng)雙觀測(cè)平差模型
于瑞鵬1林 卉2丁 翠3王李娟2孫華生4
(1.山東省第一地質(zhì)礦產(chǎn)勘查院,山東 濟(jì)南 250014;2.江蘇師范大學(xué)測(cè)繪學(xué)院,江蘇 徐州 221116;3.山東城市建設(shè)職業(yè)學(xué)院,山東 濟(jì)南 250103;4.遼寧工程技術(shù)大學(xué)測(cè)繪與地理科學(xué)學(xué)院,遼寧 阜新 123000)
礦井導(dǎo)線網(wǎng)平差的特點(diǎn)是2類(lèi)觀測(cè)值(測(cè)角和量邊)數(shù)量相當(dāng),多余觀測(cè)量相對(duì)較少。為了提高礦井大型導(dǎo)線控制網(wǎng)的平差精度,根據(jù)礦井導(dǎo)線控制網(wǎng)往返觀測(cè)及驗(yàn)后估計(jì)需要多余觀測(cè)數(shù)較多的特點(diǎn),提出了雙觀測(cè)平差模型。相對(duì)于經(jīng)典平差模型,該模型條件方程個(gè)數(shù)較多,容易滿(mǎn)足驗(yàn)后估計(jì)的可估條件,從而可通過(guò)后驗(yàn)估計(jì)合理定權(quán)來(lái)提高礦井大型導(dǎo)線控制網(wǎng)的平差精度。以某礦井大型導(dǎo)線控制網(wǎng)的實(shí)測(cè)數(shù)據(jù)為例進(jìn)行了平差計(jì)算,結(jié)果顯示:經(jīng)典平差模型求得的3條已知邊的方位角平差值與真值之差依次為-7″、-62″、-54″,而新提出的雙觀測(cè)平差模型所得出的平差值與真值之差依次為-10″、-12″、-15″,這說(shuō)明雙觀測(cè)平差模型通過(guò)Helmert方差估計(jì)能夠合理定權(quán),可更準(zhǔn)確地計(jì)算出各網(wǎng)點(diǎn)的平差值,具有一定的實(shí)用性。
導(dǎo)線控制網(wǎng)平差 雙觀測(cè)平差模型 Helmert方差估計(jì) 精度
礦井控制網(wǎng)由于受巷道條件的限制,均以導(dǎo)線的形式沿巷道布設(shè)[1]。在控制網(wǎng)施測(cè)過(guò)程中需要沿導(dǎo)線布設(shè)路線對(duì)角度和邊長(zhǎng)進(jìn)行往返觀測(cè),在控制網(wǎng)平差時(shí)一般取往返觀測(cè)值的算術(shù)平均值為最終觀測(cè)值,按照條件平差法進(jìn)行控制網(wǎng)平差[1-6]。該平差模型的缺點(diǎn)是條件方程個(gè)數(shù)較少,即多余觀測(cè)數(shù)較少,從而很難滿(mǎn)足驗(yàn)后估計(jì)的可估條件。在確定礦井控制網(wǎng)平差的隨機(jī)模型時(shí),對(duì)于測(cè)角、量邊等2類(lèi)不同的觀測(cè)量一般采用經(jīng)驗(yàn)公式定權(quán),即根據(jù)儀器出廠標(biāo)明的標(biāo)稱(chēng)精度和導(dǎo)線網(wǎng)的等級(jí)來(lái)確定各自的方差,在此基礎(chǔ)上確定各自的權(quán)重。實(shí)踐證明,經(jīng)驗(yàn)公式定權(quán)在許多情況下是不夠精確的,尤其是控制網(wǎng)形較大的情形,該定權(quán)方法適用性較差[7-9]。隨著井田的開(kāi)拓,井下控制網(wǎng)的規(guī)模也隨之?dāng)U大。為了提高控制網(wǎng)平差結(jié)果的可靠性,Helmert于1924年提出了一種驗(yàn)后估計(jì)方差法,即Helmert方差估計(jì)法,此后許多學(xué)者對(duì)其進(jìn)行了擴(kuò)展或簡(jiǎn)化,并進(jìn)行了大量應(yīng)用研究[10-16]。只有在控制網(wǎng)形較大,多余觀測(cè)數(shù)較多且各類(lèi)觀測(cè)值的多余分量大體保持相等的情況下,進(jìn)行Helmert方差估計(jì)才是必要的和有利的。也就是說(shuō),一個(gè)控制網(wǎng)能否進(jìn)行驗(yàn)后估計(jì)取決于其控制網(wǎng)形結(jié)構(gòu)及觀測(cè)水平[5]。礦井導(dǎo)線網(wǎng)平差的特點(diǎn)是2類(lèi)觀測(cè)值(測(cè)角和量邊)數(shù)量相當(dāng),多余觀測(cè)量相對(duì)較少。本研究充分利用礦井導(dǎo)線返測(cè)可增加多余觀測(cè)值的特點(diǎn),建立了雙觀測(cè)平差模型,該模型的條件方程個(gè)數(shù)較多,容易滿(mǎn)足Helmert方差估計(jì)的可估條件,從而可通過(guò)驗(yàn)后估計(jì)合理定權(quán)來(lái)提高礦井大型控制網(wǎng)的平差精度。
礦井控制網(wǎng)一般以閉合導(dǎo)線或附合導(dǎo)線的形式布設(shè),每一條閉合或附合導(dǎo)線都存在3個(gè)條件方程,即1個(gè)方位角條件方程、2個(gè)坐標(biāo)條件方程,因此,控制網(wǎng)平差時(shí)采用條件平差法比較方便。 設(shè)L1、L2分別為互相獨(dú)立的角度、邊長(zhǎng)觀測(cè)向量,相應(yīng)的改正數(shù)向量分別為V1、V2,相應(yīng)的對(duì)角權(quán)陣分別為P1、P2,則條件平差法的數(shù)學(xué)模型為[17-19]
A1V1+A2V2=W,
(1)
式中,A1,A2分別為角度、邊長(zhǎng)的系數(shù)矩陣;W為平差系數(shù)矩陣。式(1)為往測(cè)或往返測(cè)取觀測(cè)值平均值時(shí)對(duì)應(yīng)的條件平差模型,對(duì)應(yīng)的多余觀測(cè)數(shù)為r個(gè)。
雙觀測(cè)平差模型充分利用了往返觀測(cè)值,當(dāng)?shù)V井導(dǎo)線采用了往返觀測(cè)或部分路線采用了往返觀測(cè)時(shí),設(shè)返測(cè)時(shí)共觀測(cè)了m個(gè)值,其中m1個(gè)角度觀測(cè)值向量為L(zhǎng)1′,m2(m2=m-m1)個(gè)邊長(zhǎng)觀測(cè)值向量為L(zhǎng)2′,相應(yīng)的改正數(shù)向量分別為V1′、V2′,對(duì)應(yīng)的對(duì)角權(quán)陣分別為P1′、P2′,令
則m個(gè)觀測(cè)值的條件平差模型為
(2)
令
聯(lián)合式(1)、式(2),可得整個(gè)控制網(wǎng)條件方程為
(3)
若令
則式(3)可表示成
(4)
式(4)包含了全部或部分觀測(cè)量的雙觀測(cè)值,即為雙觀測(cè)平差的函數(shù)模型,對(duì)應(yīng)的多余觀測(cè)數(shù)為(r+m)個(gè)。
由(4)式可得其法方程為[8]
(5)
式中,K為法方程系數(shù)矩陣;
于是,各觀測(cè)值的改正數(shù)方程為
(6)
式(4)共有(r+m)個(gè)條件方程,即雙觀測(cè)平差模型共有(r+m)個(gè)多余觀測(cè)量。為了準(zhǔn)確確定礦井大型控制網(wǎng)中測(cè)角和量邊等2類(lèi)觀測(cè)值對(duì)應(yīng)的權(quán)重,需要利用驗(yàn)后估計(jì)法重新定權(quán)?,F(xiàn)有研究表明:對(duì)含有2類(lèi)觀測(cè)值的方差分量估計(jì)的必要多余觀測(cè)數(shù)應(yīng)大于20。顯然,在礦井控制網(wǎng)雙觀測(cè)平差時(shí)很容易滿(mǎn)足上述多余觀測(cè)量條件,從而可用Helmert方差估計(jì)法對(duì)測(cè)角和量邊進(jìn)行驗(yàn)后定權(quán)[20]。以新的權(quán)重重新行平差計(jì)算,經(jīng)多次迭代,直至各觀測(cè)值單位權(quán)方差之比為1為止。
某礦井大型控制網(wǎng)由146個(gè)網(wǎng)點(diǎn)組成,近井1、近井2為已知點(diǎn),導(dǎo)線總長(zhǎng)約11.3km。按照7″級(jí)導(dǎo)線布設(shè),加測(cè)了3條陀螺邊,分別為A4—A5、A22—B1、E9—E10,各陀螺邊與起算點(diǎn)間的相對(duì)位置見(jiàn)圖1,陀螺方位角觀測(cè)結(jié)果見(jiàn)表1。觀測(cè)路線:近井2—L1—L2—X1—X2—X3—X4—X5—X6—A5—A4進(jìn)行了往返觀測(cè),返測(cè)該路線時(shí)共觀測(cè)了10個(gè)角度、10條邊長(zhǎng)。
圖1 陀螺邊與起算點(diǎn)間的相對(duì)位置示意Fig.1 Relative position between gyro-sideand starting calculating points表1 陀螺邊方位角觀測(cè)成果Table 1 Surveying results of orientationangle of each gyro-side
陀螺邊實(shí)測(cè)陀螺方位角子午線收斂角改正后坐標(biāo)方位角A4—A5298°17′36″+5′07″298°11′29″A22—B1207°46′44″+4′29″207°41′15″E9—E10118°08′54″+4′20″118°03′34″
為了比較Helmert方差估法與經(jīng)典平差模型的平差精度,3個(gè)陀螺方位角觀測(cè)值不參與平差計(jì)算,僅用來(lái)比較不同方案計(jì)算出的該3條陀螺邊方位角的平差值。
(1)方案1。經(jīng)典平差法定權(quán)時(shí),設(shè)測(cè)角中誤差(σ01=7″)為單位權(quán)中誤差,各邊的量邊中誤差根據(jù)儀器的標(biāo)稱(chēng)精度公式計(jì)算,各角度觀測(cè)值的權(quán)重為1,各邊長(zhǎng)觀測(cè)值的權(quán)重為PSi。列出雙觀測(cè)值平差的函數(shù)模型,多余觀測(cè)量為37,在此基礎(chǔ)上根據(jù)條件平差公式求得各參數(shù)的最小二乘解。
(2)方案2。在經(jīng)典平差模型的基礎(chǔ)上,計(jì)算經(jīng)典平差模型對(duì)應(yīng)的角度、邊長(zhǎng)單位權(quán)方差的估值,單位權(quán)中誤差的估值為11.7″,經(jīng)3次迭代定權(quán),采用Helmert方差估計(jì)法使得單位權(quán)方差之比約為1。
2種方案計(jì)算的各陀螺邊端點(diǎn)坐標(biāo)平差值見(jiàn)表2,各已知陀螺邊方位角的平差結(jié)果見(jiàn)表3。
表2 2種方案中各陀螺邊端點(diǎn)坐標(biāo)平差值
Table 2 Adjustment values of endpoint coordinates of gyro-side of two schemes m
表3 2種方案各陀螺邊方位角平差結(jié)果Table 3 Adjustment values of orientation angleof each gyro-side of two schemes
由表2可知:距起算點(diǎn)越遠(yuǎn)坐標(biāo)差值越大,由于起算點(diǎn)到A4—A5路線采用了往返觀測(cè),且A4、A5點(diǎn)距起算點(diǎn)較近(約900 m),2種方案計(jì)算的A4、A5點(diǎn)的坐標(biāo)基本一致;E9、E10點(diǎn)距起算點(diǎn)約5 km,該2點(diǎn)的X坐標(biāo)差值均超過(guò)20 cm,說(shuō)明觀測(cè)的權(quán)重對(duì)平差結(jié)果有一定的影響,在礦井大型控制網(wǎng)平差中,該影響不容忽視。
由表3可知:經(jīng)典平差模型計(jì)算的方位角與實(shí)測(cè)值相差較大,而本研究提出的雙觀測(cè)平差模型計(jì)算出的方位角與實(shí)測(cè)值相差較小,說(shuō)明本研究采用的Helmert方差估計(jì)法能夠合理定權(quán),有助于提高礦井導(dǎo)線控制網(wǎng)的平差精度。
(1)觀測(cè)值的權(quán)重對(duì)單位權(quán)中誤差的估值影響很大,本研究中經(jīng)典平差時(shí)單位權(quán)中誤差的估值為11.7″,而Helmert方差估計(jì)法對(duì)應(yīng)的單位權(quán)中誤差的估值為5.2″,說(shuō)明該方法提高了礦井大型導(dǎo)線控制網(wǎng)的平差精度。
(2)雙觀測(cè)平差模型充分利用了礦井導(dǎo)線控制網(wǎng)的往返觀測(cè)數(shù)據(jù),使得平差模型中具有較多的條件方程,能夠滿(mǎn)足驗(yàn)后估計(jì)的可估條件。
(3)當(dāng)?shù)V井導(dǎo)線控制網(wǎng)規(guī)模較大時(shí),先驗(yàn)定權(quán)法往往很難滿(mǎn)足平差要求,而雙觀測(cè)平差模型通過(guò)驗(yàn)后估計(jì)合理定權(quán)可更準(zhǔn)確地計(jì)算出各網(wǎng)點(diǎn)的平差值,為設(shè)計(jì)礦井大型導(dǎo)線控制網(wǎng)施測(cè)方案提供了依據(jù)。
[1] 張國(guó)良,朱家鈺,顧和和.礦山測(cè)量學(xué)[M].徐州:中國(guó)礦業(yè)大學(xué)出版社,2006. Zhang Guoliang,Zhu Jiayu,Gu Hehe.Mine Surveying[M].Xuzhou:China University of Mining and Technology Press,2006.
[2] 賈寶新,李國(guó)臻.礦山地震監(jiān)測(cè)臺(tái)站的空間分布研究與應(yīng)用[J].煤炭學(xué)報(bào),2010,35(12):2045-2048. Jia Baoxin,Li Guozhen.Research and application of spatial distribution of mines seismic monitoring stations[J].Journal of China Coal Society,2010,35(12):2045-2048.
[3] 周志輝.三維數(shù)字化礦山信息系統(tǒng)的動(dòng)態(tài)更新與應(yīng)用[J].現(xiàn)代礦業(yè),2014(5):11-15. Zhou Zhihui.Dynamic updating and application of the 3D digital mine information system[J].Modern Mining,2014(5):11-15.
[4] 蔣 晨,張書(shū)畢.基于VB的TM30 測(cè)量機(jī)器人變形監(jiān)測(cè)系統(tǒng)開(kāi)發(fā)[J].金屬礦山,2015(1):104-107. Jiang Chen,Zhang Shubi.Development of the deformation monitoring system of TM30 measuring robot based on VB[J].Metal Mine,2015(1):104-107.
[5] 吳立新,汪云甲,丁恩杰,等.三論數(shù)字礦山——借力物聯(lián)網(wǎng)保障礦山安全與智能采礦[J].煤炭學(xué)報(bào),2012,37(3):357-365. Wu Lixin,Wang Yunjia,Ding Enjie,et al.Thirdly study on digital mine:serve for mine safety and intellimine with support from internet of tings[J].Journal of China Coal Society,2012,37(3):357-365.
[6] 徐凱帆,張書(shū)畢,鮑 國(guó).附加約束條件的井下控制網(wǎng)變參數(shù)序貫平差[J].金屬礦山,2015(6):103-107. Xu Kaifan,Zhang Shubi,Bao Guo.Variable parameter sequential adjustment with constrained condition of underground control network[J].Metal Mine,2015(6):103-107.
[7] Teunissen P J,Amiri-Simkooei A R.Least-squares variance component estimation[J].Journal of Geodesy,2008(2):65-82.
[8] 崔 清,陳 曦,賈旭光,等.基于測(cè)距技術(shù)的邊坡角測(cè)定誤差及敏感性分析[J].金屬礦山,2014(5):121-124. Cui Qing,Chen Xi,Jia Xuguang,et al.Slope angle measuring error and sensitivity analysis based on the distance measurement technology[J].Metal Mine,2014(5):121-124.
[9] 武繼軍,胡圣武.測(cè)量平差的基準(zhǔn)方程與相對(duì)形變及其精度分析[J].煤炭學(xué)報(bào),2007,32(8):808-812. Wu Jijun,Hu Shengwu.Surveying adjustment datum and relative deformation accuracy analysis[J].Journal of China Coal Society,2007,32(8):808-812.
[10] 高俊強(qiáng),胡 燦.Helmert方差分量估計(jì)在隧道貫通中控制網(wǎng)平差的研究[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2006,35(1):125-129. Gao Junqiang,Hu Can.Study of Helmert variance component estimation in tunnel run-through control traverse difference[J].Journal of China University of Mining and Technology,2006,35(1):125-129.
[11] 黃維彬.近代平差理論及其應(yīng)用[M].北京:解放軍出版社,1992. Huang Weibin.Modern Adjustment Theory and Its Application[M].Beijing:People′s Liberation Army Press,1992.
[12] 張書(shū)畢.測(cè)量平差[M].徐州:中國(guó)礦業(yè)大學(xué)出版,2012. Zhang Shubi.Surveying Adjustment[M].Xuzhou:China University of Mining and Technology Press,2012.
[13] Strang G,Borre K.Linear Algebra Geodesy and GPS[M].Massachusetts:Wellesley-Cambridge Press,1997.
[14] Neitzel F.Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation[J].Journal of Geodesy,2010,84(9):751-762.
[15] 卞和方,張書(shū)畢,李益斌,等.概括平差模型的通用解法[J].測(cè)繪科學(xué),2009,34(6):35-36. Bian Hefang,Zhang Shubi,Li Yibin,et al.A universal solution for generalization adjustment model[J].Science of Surveying and Mapping,2009,34(6):35-36.
[16] Yu Z C.A universal formula of maximum likelihood estimation of variance-covariance components[J].Journal of Geodesy,1996(7):233-240.
[17] 李保學(xué).陀螺方位附合導(dǎo)線在礦井測(cè)量中的應(yīng)用[J].煤炭技術(shù),2015,34(2):73-74. Li Baoxue.Application of gyro azimuth in mine traverse measurement[J].Coal Technology,2015,34(2):73-74.
[18] 馬 洋,歐吉坤,袁運(yùn)斌.采用聯(lián)合平差法處理附有病態(tài)等式約束的反演問(wèn)題[J].武漢大學(xué)學(xué)報(bào):信息科學(xué)版,2011,36(7):816-819. Ma Yang,Ou Jikun,Yuan Yunbin.Solving equality constraint inversion with ill-posed constraint matrix using united method[J].Geomatics and Information Science of Wuhan University,2011,36(7):816-819.
[19] 葛旭明,伍吉倉(cāng).病態(tài)總體最小二乘問(wèn)題的廣義正則化[J].測(cè)繪學(xué)報(bào),2012,41(3):372-377. Ge Xuming,Wu Jicang.Generalized regularization to ill-posed total least squares problem[J].Acta Geodaetica et Cartographic Sinica,2012,41(3):372-377.
[20] 李 斐,郝衛(wèi)峰,王文睿,等.非線性病態(tài)問(wèn)題解算的擾動(dòng)分析[J].測(cè)繪學(xué)報(bào),2011,40(1):1-5. Li Fei,Hao Weifeng,Wang Wenrui,et al.The perturbation analysis of nonlinear ill-conditioned solution[J].Acta Geodaetica et Cartographic Sinica,2011,40(1):1-5.
(責(zé)任編輯 王小兵)
Dual-observation Adjustment Model of Undermine Large Traverse Control Network
Yu Ruipeng1Lin Hui2Ding Cui3Wang Lijuan2Sun Huasheng4
(1.TheFirstInstitutionofGeo-explorationofShandongProvince,Jinan250014,China;2.SchoolofGeodesyandGeomatics,JiangsuNormalUniversity,Xuzhou221116,China;3.ShandongUrbanConstructionVocationalCollege,Jinan250103,China;4.SchoolofGeomatics,LiaoningTechnicalUniversity,Fuxin123000,China)
The quantity of two types of observation values are closely with each other and the additional observation values is relatively few,which are the obvious characteristics of undermine transverse adjustment.In order to improve the precision and reliability of the undermine large and control network,the dual-observation adjustment model is proposed based on the characteristics of the direct and reversed observation of undermine transverse control network and the more redundant observation required by posterior estimation.Compared with the classical adjustment models,the dual-observation adjustment model is characterized by more condition equations and easier to meet the estimation condition of posterior estimation,and then the precision can be effectively improved by determining the proper weight value by using posterior estimation.Taking the measure data of the undermine large traverse control network of a mine as the research example,the adjustment calculation is conducted,the results show that the difference between the azimuth angle adjustment values of the three known sides obtained by using the classical adjustment model and the true values are -10″,-12″,-15″respectively,the differences of the adjustment values obtained by the dual-observation adjustment model proposed in this paper and the true values are -10″m,-12″,-15″respectively,it is further indicated that the dual-observation adjustment model proposed in this paper can improve the precision and reliability of the nodes of the undermine large traverse control network by determining the reasonable weight values based on Helmert variance estimation method,therefore,it has some practical value to improve the adjustment precision of the undermine large traverse control network.
Traverse control network adjustment,Dual-observation adjustment model,Helmert variance estimation,Precision
2015-08-07
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):41401397,41201454),江蘇省自然科學(xué)基金青年基金項(xiàng)目(編號(hào):BK20140237),現(xiàn)代工程測(cè)量國(guó)家測(cè)繪地理信息局重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(編號(hào):TJES1204)。
于瑞鵬(1982—),男,工程師,碩士。通訊作者 林 卉(1973—),男,副教授,碩士研究生導(dǎo)師。
TD172
A
1001-1250(2015)-11-109-04