徐革鋒,尹家勝,韓 英,馬 波,牟振波,*
1 中國水產(chǎn)科學(xué)研究院黑龍江水產(chǎn)研究所, 哈爾濱 150070 2 東北農(nóng)業(yè)大學(xué)動物科技學(xué)院, 哈爾濱 150030
不同適應(yīng)條件對細(xì)鱗鮭幼魚游泳能力的影響
徐革鋒1,2,尹家勝1,韓 英2,馬 波1,牟振波1,*
1 中國水產(chǎn)科學(xué)研究院黑龍江水產(chǎn)研究所, 哈爾濱 150070 2 東北農(nóng)業(yè)大學(xué)動物科技學(xué)院, 哈爾濱 150030
為了研究適應(yīng)條件對鮭科魚類幼魚續(xù)航游泳能力的影響,在(16.0±0.2)℃和8 mg/L溶解氧條件下,以續(xù)航時(shí)間作為評定游泳能力的關(guān)鍵指標(biāo),通過適應(yīng)時(shí)間、適應(yīng)流速、加速時(shí)間以及測試流速對細(xì)鱗鮭幼魚的續(xù)航游泳時(shí)間的影響進(jìn)行了研究, 試驗(yàn)采用4因素8水平的均勻設(shè)計(jì)方案。結(jié)果表明,最大適應(yīng)流速應(yīng)控制在1—1.5 BL/s為宜,相應(yīng)的最佳適應(yīng)時(shí)間應(yīng)為1 h,在合理?xiàng)l件下適應(yīng)流速和適應(yīng)時(shí)間對續(xù)航游泳能力的影響可忽略不計(jì);加速時(shí)間只在大流速條件下(>0.5 m/s)對續(xù)航時(shí)間有極顯著影響,其他情況的影響可以忽略不計(jì);盡管長時(shí)間適應(yīng)環(huán)境更有利于魚類身體機(jī)能的充分調(diào)整,但適應(yīng)時(shí)間仍建議控制在1—2 h以內(nèi),且受試魚類要經(jīng)過試驗(yàn)前的適應(yīng)能力篩選;測試流速建議控制在3—4 BL/s以內(nèi),以避免超過魚類的最大游泳耐受范圍。測試流速對細(xì)鱗鮭幼魚的續(xù)航時(shí)間有極為顯著的影響,其續(xù)航時(shí)間隨測試流速的增加呈冪函數(shù)規(guī)律衰減。
細(xì)鱗鮭;適應(yīng)時(shí)間;適應(yīng)流速;加速時(shí)間;續(xù)航時(shí)間
游泳能力是關(guān)乎魚類生存的至關(guān)重要因素,且大多魚類必須通過不同游泳形式進(jìn)行逃避敵害或?yàn)?zāi)害環(huán)境、獵食、求偶、遷徙等活動[1-3]。大多學(xué)者通常將游泳速度和游泳時(shí)間作為評價(jià)魚類游泳能力的關(guān)鍵指標(biāo)[4-5],并利用游泳時(shí)間將游泳能力區(qū)分為持續(xù)游泳能力和短暫游泳能力,而持續(xù)游泳又區(qū)分為恒速游泳和變速游泳[6];因此,相應(yīng)延伸出了魚類游泳速度的劃分標(biāo)準(zhǔn),持續(xù)游泳能力主要包括最大續(xù)航游泳速度[7-8]、最優(yōu)巡航游泳速度[9-12]、最大游泳速度[13]、臨界游泳速度[14-16]、短暫游泳能力主要為沖刺游泳速度[17-19]等。一般認(rèn)為,最大續(xù)航速度與魚類在自然水域的真實(shí)游泳能力最為貼近,也是魚類索餌、遷徙或洄游等的主要運(yùn)動形式。而續(xù)航屬于非疲勞狀態(tài),且最大續(xù)航速度一般無法直接測定。但大多學(xué)者認(rèn)為,通過多組次續(xù)航時(shí)間的測定,并構(gòu)建數(shù)學(xué)模型可獲得任意給定續(xù)航時(shí)間下的最大續(xù)航速度[8, 20-21]。而魚類的最大續(xù)航速度和最大續(xù)航時(shí)間的測定結(jié)果受適應(yīng)條件的影響極大,如果不區(qū)別對待魚的種類特異性,將導(dǎo)致大多研究結(jié)果差異較大而失去可比性。因此,設(shè)計(jì)合理的適應(yīng)條件不但對魚類游泳能力的準(zhǔn)確測定起到至關(guān)重要的作用,而且對一些攔水工程的魚道設(shè)計(jì)具有指導(dǎo)意義,即在進(jìn)行試驗(yàn)之初要設(shè)計(jì)合理的適應(yīng)條件,對于魚道的激流區(qū)設(shè)計(jì)要充分考慮魚的適應(yīng)能力,避免魚類適應(yīng)不足或是疲勞過度浪費(fèi)體力,而導(dǎo)致生理應(yīng)激或是無法克服水流速度及流態(tài)造成的水流障礙,從而試驗(yàn)失敗或魚道設(shè)計(jì)產(chǎn)生重大失誤[22]。
水槽實(shí)驗(yàn)法是進(jìn)行魚類游泳能力及游泳行為等基礎(chǔ)研究所采用的最常用手段[7-8, 16, 21]。這種試驗(yàn)方法可對眾多復(fù)雜的環(huán)境因子進(jìn)行有目的的調(diào)控,將最主要刺激源進(jìn)行強(qiáng)化,易于直接觀測及定量比較,試驗(yàn)重復(fù)性較高。大多學(xué)者都非常重視測試前的準(zhǔn)備與適應(yīng)過程,但對適應(yīng)條件(水溫、光照、溶解氧、初始適應(yīng)流速、適應(yīng)時(shí)間、加速適應(yīng)等)的選擇與其對測試結(jié)果的影響通常未做過深入探討,無法確定適應(yīng)條件與測試結(jié)果的相關(guān)程度,導(dǎo)致不同研究之間的比較缺乏足夠的說服力。本研究選擇了我國珍稀、名貴的細(xì)鱗鮭(Brachymystaxlenok)幼魚進(jìn)行測定試驗(yàn),目前該魚是我國“十二五”期間主推的名特優(yōu)品種之一,近年來在有關(guān)細(xì)鱗鮭的健康養(yǎng)殖、疾病和生物學(xué)等方面的報(bào)道較多[23-25],但未見在行為生態(tài)學(xué)方面的研究報(bào)道。本文借鑒桂福坤等[21]方法,在恒定的環(huán)境因子條件下,通過調(diào)整適應(yīng)流速、適應(yīng)時(shí)間、加速時(shí)間這3種適應(yīng)條件來研究對幼魚階段細(xì)鱗鮭的最大續(xù)航時(shí)間和最大續(xù)航速度的影響,旨在為今后開展鮭科魚類的行為學(xué)、運(yùn)動能量學(xué)和行為生態(tài)學(xué)等方面的試驗(yàn)設(shè)計(jì),尤其在前期適應(yīng)條件方面提供有價(jià)值的資料,并對攔水工程的魚道設(shè)計(jì)提供鮭科魚類游泳能力的基礎(chǔ)參考數(shù)據(jù)。
1.1 試驗(yàn)對象
細(xì)鱗鮭(Brachymystaxlenok)來自于中國水產(chǎn)科學(xué)研究院黑龍江水產(chǎn)研究所丹東養(yǎng)殖基地,為5月齡幼魚,共60尾,體長為(18.52±0.35)cm, 體重為(64.50±3.5)g。試驗(yàn)前, 受試魚被暫養(yǎng)于控溫循環(huán)水水族箱內(nèi)(1.5 m × 0.5 m×0.6 m),水溫為(16.0±0.2)℃,溶解氧大于8.0 mg/L,光照為不作特殊控制的自然光,暫養(yǎng)時(shí)間10 d。當(dāng)試驗(yàn)魚適應(yīng)了暫養(yǎng)環(huán)境,繼而進(jìn)行為期10 d的養(yǎng)殖馴化,選用鮭鱒魚專用飼料(北京,思諾)每日按魚總體重的2%進(jìn)行投喂,每天8:00和14:00各投喂1次。水族箱內(nèi)配備了污水過濾、紫外殺菌、精確控溫、除氨等輔助系統(tǒng),污水過濾系統(tǒng)每1—3 d清洗1次,且每天交換20%的水體。
1.2 試驗(yàn)設(shè)計(jì)
本試驗(yàn)設(shè)計(jì)主要借鑒桂福坤等[21]方法,選擇續(xù)航時(shí)間作為細(xì)鱗鮭幼魚的游泳能力的評價(jià)指標(biāo)。試驗(yàn)共設(shè)定3個(gè)適應(yīng)因子,分別為魚在水槽中的流速適應(yīng)、時(shí)間適應(yīng)以及由適應(yīng)流速升至測試流速的加速適應(yīng),加上最大續(xù)航流速(測試流速)共4個(gè)因子,并且忽略各因子間的交互影響,以降低試驗(yàn)強(qiáng)度。細(xì)鱗鮭幼魚的續(xù)航時(shí)間測定采用4因子8水平的均勻設(shè)計(jì)試驗(yàn)方案[26](表1),共需試驗(yàn)對象48尾,分為8組,每組2尾魚,試驗(yàn)共設(shè)3個(gè)重復(fù)組,每組測試后不再進(jìn)行重復(fù)試驗(yàn)。
試驗(yàn)對象的測試流速范圍根據(jù)預(yù)試驗(yàn)獲得的相關(guān)數(shù)據(jù)進(jìn)行設(shè)定,測試流速范圍為0.25—0.60 m/s,流速水平為均勻遞增;適應(yīng)流速以大致1.0 BL/s(0.19 m/s)作為最大值,適應(yīng)流速水平為均勻遞減。
適應(yīng)時(shí)間范圍根據(jù)預(yù)試驗(yàn)情況設(shè)定,范圍為5—75 min,適應(yīng)時(shí)間的水平增量為10 min;加速時(shí)間設(shè)定為8個(gè)水平,為1—8 min,加速時(shí)間水平增量為1 min。
表1 細(xì)鱗鮭續(xù)航時(shí)間試驗(yàn)均勻設(shè)計(jì)方案Table 1 Uniform design for lenok sustained swimming time tests
1.3 試驗(yàn)裝置與試驗(yàn)方法
圖1 魚類游泳代謝測定儀 Fig.1 The structure of fish swimming-MO2 determining device
目前,水槽實(shí)驗(yàn)中最常用的裝置均來自于Brett[27]式呼吸儀的改進(jìn)設(shè)計(jì)。本研究小組從丹麥購置了一套全自動數(shù)字化游泳代謝測定儀(圖1),該裝置為一個(gè)橫截面為矩形的循環(huán)式水槽, 具有流速、溶氧、光照和溫度均可控的特點(diǎn),工作區(qū)的上游有一個(gè)控流裝置, 下游為不銹鋼遮擋網(wǎng),受試魚在工作區(qū)做趨流運(yùn)動,水槽外部安裝有監(jiān)視設(shè)備,對魚的游泳行為、狀態(tài)進(jìn)行記錄。研究小組利用該裝置能對各種適應(yīng)條件進(jìn)行量化調(diào)控,研究初始適應(yīng)流速、適應(yīng)時(shí)間、加速適應(yīng)和測試流速對魚類游泳的續(xù)航能力產(chǎn)生的影響。試驗(yàn)在專用魚類游泳代謝測定儀的環(huán)形水槽中進(jìn)行(丹麥進(jìn)口,圖1),工作區(qū)(測試區(qū))觀測窗口長46 cm,水流斷面尺寸14 cm×14 cm,測試系統(tǒng)造流流速范圍(0—1.5)m/s。測試區(qū)的上下游設(shè)有網(wǎng)狀穩(wěn)流裝置,整個(gè)環(huán)形水槽被封閉于自動控溫、循環(huán)過濾和充氣系統(tǒng)之中。
試驗(yàn)前,給整個(gè)測試系統(tǒng)注入爆氣24 h以上的自來水,并調(diào)控水溫在(16.0± 0.2) ℃,打開增氧和循環(huán)系統(tǒng),每次試驗(yàn)隨機(jī)取2尾魚(每個(gè)水平的測試設(shè)3個(gè)重復(fù)組,分別編號為A—F),放入試驗(yàn)區(qū)并讓其適應(yīng)1 h 以降低環(huán)境更替帶來的壓力,期間水流速度控制在0.06 m/s。測試開始時(shí),按試驗(yàn)方案,將測試區(qū)的流速在1 min 內(nèi)升至設(shè)定的適應(yīng)流速,并使魚在該流速下趨流到設(shè)定的適應(yīng)時(shí)間,隨后將流速在對應(yīng)的加速時(shí)間內(nèi)調(diào)整到測試流速。以測試方案的第1組為例: 適應(yīng)環(huán)境1 h后,流速由0.06 m/s 升至適應(yīng)流速0.09 m/s,并在該流速下適應(yīng)5 min,然后在8 min內(nèi)將流速勻速升至對應(yīng)的測試流速0.40 m/s。當(dāng)試驗(yàn)對象接觸試驗(yàn)區(qū)末端阻隔網(wǎng),放棄趨流30 s時(shí)視為試驗(yàn)結(jié)束[21]。
1.4 試驗(yàn)魚體力消耗(E)公式應(yīng)用
本研究中,由于作者對試驗(yàn)魚采用不同的加速時(shí)間組合,因此,魚的體力消耗也存在差異。借鑒桂福坤等[21]的方法,按下式計(jì)算試驗(yàn)魚在加速階段的體力消耗情況:
(1)
式中,E代表體力消耗比例,t1表示加速初始時(shí)間(t1= 0),t2表示加速結(jié)束時(shí)間,T表示t時(shí)刻對應(yīng)的續(xù)航時(shí)間。由于本試驗(yàn)采用均勻加速,因此速度與時(shí)間的關(guān)系式為:
(2)
式中,Vt1為加速起始對應(yīng)的適應(yīng)流速,Vt2為t2對應(yīng)的測試流速,ΔT為加速時(shí)間。續(xù)航時(shí)間與測試速度采用冪函數(shù)模型:
T=aVb
(3)
式中,a和b為進(jìn)行線性相關(guān)回歸分析得到的冪函數(shù)常數(shù)。將公式(2)和(3)帶入公式(1),可得最終體力消耗公式:
(4)
1.5 數(shù)據(jù)處理與分析
試驗(yàn)計(jì)時(shí)采用時(shí)鐘和數(shù)碼攝像機(jī)(Sony DCR-SR200E)進(jìn)行全程記錄,作為計(jì)時(shí)分析和測試結(jié)束的判定依據(jù)。對于測試時(shí)間較短的計(jì)時(shí)(<600 min),通過攝像機(jī)回放確定續(xù)航時(shí)間;對測試時(shí)間較長的計(jì)時(shí),采用時(shí)鐘作為計(jì)時(shí)手段,數(shù)據(jù)采用均值作為分析依據(jù)。適應(yīng)時(shí)間、流速和加速時(shí)間以及測試流速對試驗(yàn)魚的續(xù)航時(shí)間與體力消耗的影響采用向后剔除回歸法(Regression Backward)進(jìn)行統(tǒng)計(jì)分析(軟件為SPSS 18.0),以篩選出影響續(xù)航時(shí)間和體力消耗的最關(guān)鍵因子。
2.1 適應(yīng)條件對細(xì)鱗鮭幼魚續(xù)航時(shí)間的影響
在8組不同組合的測試方案下,細(xì)鱗鮭幼魚的續(xù)航時(shí)間結(jié)果如表2所示。本試驗(yàn)的每個(gè)組合為3個(gè)重復(fù),個(gè)別數(shù)據(jù)與其他數(shù)據(jù)偏差過大將被舍棄。通過表2統(tǒng)計(jì)發(fā)現(xiàn),細(xì)鱗鮭幼魚的最大續(xù)航時(shí)間為768 min(測試流速為0.25 m/s),最小續(xù)航時(shí)間為2.4 min(測試流速為0.60 m/s);續(xù)航時(shí)間隨著測試流速的增大而減小。
利用相關(guān)函數(shù)模型分析各適應(yīng)因子對細(xì)鱗鮭幼魚續(xù)航時(shí)間的影響,各因子單獨(dú)對續(xù)航時(shí)間的影響以及兩者之間的擬合曲線見圖2—圖5。從各個(gè)擬合的趨勢線可以看出,只有測試流速與續(xù)航時(shí)間具有密切的相關(guān)性,且呈顯著的冪函數(shù)關(guān)系,即續(xù)航時(shí)間隨測試流速的增加而迅速縮短。
表2 細(xì)鱗鮭幼魚續(xù)航時(shí)間測試結(jié)果Table 2 Experimental sustained swimming time of juvenile lenok
*為淘汰數(shù)據(jù)
圖2 適應(yīng)時(shí)間與細(xì)鱗鮭幼魚游泳續(xù)航時(shí)間的關(guān)系 Fig.2 Relationship between acclimation time period and the sustained swimming time of juvenile lenok
圖3 適應(yīng)流速與細(xì)鱗鮭幼魚游泳續(xù)航時(shí)間的關(guān)系 Fig.3 Relationship between acclimation flow velocity and the sustained swimming time of juvenile lenok
圖4 加速時(shí)間與細(xì)鱗鮭幼魚游泳續(xù)航時(shí)間的關(guān)系 Fig.4 Relationship between acceleration time period and the sustained swimming time of juvenile lenok
圖5 測試流速與細(xì)鱗鮭幼魚游泳續(xù)航時(shí)間的關(guān)系 Fig.5 Relationship between testing flow velocity and the sustained swimming time of juvenile lenok
2.2 適應(yīng)條件對續(xù)航游泳時(shí)間的顯著性分析
雖然大多適應(yīng)條件與續(xù)航時(shí)間之間未呈現(xiàn)出某種最佳的線性關(guān)系,但并不代表其對續(xù)航時(shí)間沒有影響,只是影響程度存在差異。因此,主要采用多元線性回歸的向后剔除法來分析各適應(yīng)因子對續(xù)航時(shí)間的影響程度以及相關(guān)性。根據(jù)圖2—圖5中各個(gè)模型的初步判斷,只有測試流速與續(xù)航時(shí)間具有相關(guān)的冪函數(shù)關(guān)系(圖5),因此根據(jù)向后剔除回歸的運(yùn)算要求,要將測試流速進(jìn)行冪函數(shù)進(jìn)行轉(zhuǎn)換處理,即轉(zhuǎn)換測試流速(V′)按照公式V′=V-6.688計(jì)算,其他適應(yīng)條件數(shù)據(jù)不做處理,直接帶入運(yùn)算。之后依次將適應(yīng)時(shí)間、適應(yīng)流速、加速時(shí)間、V′和續(xù)航時(shí)間相應(yīng)數(shù)據(jù)導(dǎo)入統(tǒng)計(jì)軟件中,應(yīng)用線性回歸的向后剔除法進(jìn)行分析,進(jìn)而檢驗(yàn)各因子對續(xù)航時(shí)間的影響程度,統(tǒng)計(jì)結(jié)果見表3。結(jié)果分析表明,測試流速在各階元回歸中,對細(xì)鱗鮭幼魚續(xù)航時(shí)間的影響極為顯著(P<0.01),而其他適應(yīng)因子對續(xù)航時(shí)間的影響均不顯著(P>0.05)。表3中測試流速的回歸系數(shù)與圖5中的回歸系數(shù)不一致,主要是對測試流速進(jìn)行轉(zhuǎn)換處理而導(dǎo)致的,不影響最終的結(jié)果分析。
分析中測試流速按照V′=V-6.688進(jìn)行換算處理
表4 細(xì)鱗鮭幼魚加速過程中的體力消耗情況Table 4 Ratio of energy loss of juvenile lenok during acceleration process
2.3 不同適應(yīng)因子對細(xì)鱗鮭幼魚體力消耗的影響
在不斷加速的過程中,各個(gè)因子對幼魚體力消耗的影響見表4,各試驗(yàn)組的體力消耗情況存在差異,第2組和第4組的體力消耗均超過了10%;第1組和第6組的體力消耗超過了1%;剩余其他各組的體力消耗均小于1%,可以忽略不計(jì)。依據(jù)向后剔除回歸分析的結(jié)果(表5),加速時(shí)間與測試流速是影響試驗(yàn)魚體力消耗的相關(guān)的條件因子,且測試流速是直接決定試驗(yàn)魚體力消耗大小的關(guān)鍵因子;而測試流速在0.25—0.45 m/s時(shí),體力消耗最少。本試驗(yàn)的最大適應(yīng)流速為0.19 m/s,利用續(xù)航游泳時(shí)間與測試流速的冪函數(shù)關(guān)系(圖5) 進(jìn)行換算,細(xì)鱗鮭幼魚的續(xù)航游泳時(shí)間應(yīng)為12320.63 min;而在此適應(yīng)流速下的適應(yīng)時(shí)間為75 min,僅占理論總續(xù)航時(shí)間的0.61%,其它適應(yīng)流速條件下適應(yīng)時(shí)間對應(yīng)的體力消耗情況(仍以續(xù)航時(shí)間比例作為分析依據(jù)) 如表6所示。
3.1 適應(yīng)時(shí)間和適應(yīng)流速對細(xì)鱗鮭續(xù)航游泳時(shí)間的影響
通過表6可以發(fā)現(xiàn),本研究與桂福坤等[21]的研究結(jié)果相一致,適應(yīng)時(shí)間與適應(yīng)流速對續(xù)航游泳時(shí)間的影響極其微弱(表6),體力消耗最大的情況僅為0.55%(適應(yīng)流速為0.21 m/s,適應(yīng)時(shí)間為35 min),該體力消耗可以忽略,因此不會對最終的續(xù)航游泳時(shí)間的測定結(jié)果產(chǎn)生顯著影響,這與在顯著性分析部分的結(jié)論相吻合。
表5 加速過程中細(xì)鱗鮭幼魚體力消耗與不同適應(yīng)條件的向后線性回歸分析Table 5 Backward linear regression analysis for the energy loss of lenok during acceleration process
表6 細(xì)鱗鮭幼魚適應(yīng)時(shí)間與適應(yīng)流速條件下相對的體力消耗情況Table 6 Ratio of energy loses of juvenile lenok during flow velocity acclimation stage
但按照上述方法,若將適應(yīng)流速調(diào)整為1.5—2 BL/s適應(yīng)1 h時(shí)間的情況下,細(xì)鱗鮭幼魚的體力消耗將達(dá)到10%—70%。若仍以10%作為體力消耗比例的控制標(biāo)準(zhǔn)[21],細(xì)鱗鮭幼魚在1 h適應(yīng)時(shí)間內(nèi)的最大適應(yīng)流速應(yīng)為1.5 BL/s(即0.30 m/s);或適應(yīng)流速為1.0—1.5 BL/s條件下的最長適應(yīng)時(shí)間應(yīng)不超過1 h。大多學(xué)者常采用的1 h作為魚類的適應(yīng)時(shí)間[8,28],我們在進(jìn)行相關(guān)游泳能力測定時(shí),建議鮭科魚類幼魚的流速最好不超過1.0 BL/s,在適當(dāng)流速情況下適應(yīng)時(shí)間可根據(jù)試驗(yàn)需求確定,1—2 h均不影響最終試驗(yàn)結(jié)果,但根據(jù)大量試驗(yàn)摸索發(fā)現(xiàn),適應(yīng)流速的初始值應(yīng)設(shè)定為微流水狀態(tài)(<0.06 m/s);在試驗(yàn)開始前的適應(yīng)環(huán)境的時(shí)間應(yīng)設(shè)定在1 h為最佳,最多不超過2 h。國內(nèi)外對于鮭科魚類適應(yīng)條件的研究尚處于空白,但條件因子對于試驗(yàn)結(jié)果的影響顯著,還需進(jìn)一步深入研究形成一致的試驗(yàn)慣例。
3.2 加速時(shí)間對細(xì)鱗鮭幼魚續(xù)航游泳時(shí)間的影響
適應(yīng)條件對魚類游泳能力的影響具有兩面性[28],足夠的適應(yīng)可使受試魚的身體機(jī)能得以充分地調(diào)整,直至最佳游泳狀態(tài),進(jìn)而延長了其續(xù)航時(shí)間,即積極的影響;但過度的適應(yīng)也會使受試魚消耗大量體力,導(dǎo)致其續(xù)航時(shí)間被縮短,即消極的影響。這兩方面的影響在整個(gè)適應(yīng)過程中是相伴存在的,針對不同種類魚進(jìn)行大量實(shí)驗(yàn)摸索,找出各適應(yīng)條件對續(xù)航游泳時(shí)間影響的有效范圍,是確保測定魚類游泳能力研究結(jié)果準(zhǔn)確和可靠的基本前提,也可為不同種類間的試驗(yàn)結(jié)果比較分析提供強(qiáng)有力的理論依據(jù)。對于加速時(shí)間而言,緩慢而勻速的過程對于試驗(yàn)是利好的,但過慢同樣會浪費(fèi)大量不必要的體力;但過快情況下魚類將無法迅速調(diào)整自身的生理機(jī)能以適應(yīng)不斷變化的流速環(huán)境,進(jìn)而使其始終處于緊張和脅迫狀態(tài)下,導(dǎo)致機(jī)體浪費(fèi)大量體力來做調(diào)整所用。多數(shù)研究人員都希望魚有足夠的適應(yīng)時(shí)間,但又不想讓實(shí)驗(yàn)魚在此過程中消耗過多的體力,因此,通過大量科學(xué)合理的試驗(yàn)探索,篩選出合適的條件因子,進(jìn)而指導(dǎo)魚類游泳能力的相關(guān)研究是必要的。本研究基本獲得了與桂福坤等[21]相一致的研究結(jié)果,通過不同適應(yīng)因子與續(xù)航游泳時(shí)間和體力消耗的向后剔除回歸相關(guān)分析發(fā)現(xiàn),盡管測試流速是其最關(guān)鍵的條件因子,但在相應(yīng)的測試流速情況下,加速時(shí)間對續(xù)航游泳時(shí)間的影響最為敏感。因?yàn)樵谳^大測試流速條件下,過長的加速時(shí)間會導(dǎo)致體力消耗過大,從而影響了測試結(jié)果,如細(xì)鱗鮭幼魚、美國紅魚以及黑鯛的測試流速分別在0.6、1.16 m/s和0.86 m/s時(shí),加速時(shí)間均為7 min,這3條魚在加速過程中的體力消耗分別占20.64%、19.40%和15.2%[21],而這3條魚在其它流速條件下的體力消耗相對較小,這也證明了回歸分析的正確性,即加速時(shí)間對續(xù)航時(shí)間的影響總體并不顯著。
通過大量分析與比較研究發(fā)現(xiàn),在鮭魚類續(xù)航游泳能力試驗(yàn)中,幼魚的最大測試流速一般應(yīng)控制在3—4 BL/s,且在大流速情況下,應(yīng)避免其體力消耗過大,需根據(jù)預(yù)試驗(yàn)設(shè)定相對較短的加速時(shí)間,但加速時(shí)間應(yīng)考慮魚的種類、規(guī)格、年齡以及測試流速等情況,視具體情況而定[21];小流速情況對其體力消耗影響不大,加速時(shí)間的選擇范圍也較大。根據(jù)本研究的結(jié)果,如以10%體力消耗作為控制標(biāo)準(zhǔn),對細(xì)鱗鮭幼魚而言,在最大測試流速下的適應(yīng)時(shí)間應(yīng)控制在1 h、其加速時(shí)間應(yīng)控制在4 min以內(nèi)。
3.3 測試流速對細(xì)鱗鮭幼魚續(xù)航時(shí)間的影響
通過表1發(fā)現(xiàn),細(xì)鱗鮭在幼魚階段游泳能力不是特別強(qiáng),測試流速達(dá)到0.6 m/s時(shí),續(xù)航時(shí)間僅能達(dá)到2.4 min,這符合該魚的早期生活史主要是在北方地區(qū)江河的支流或山間溪流的棲息習(xí)性[29]。細(xì)鱗鮭經(jīng)過長期進(jìn)化,其主要的棲息地在溪流中,因此其游泳能力不是特別強(qiáng),但沖刺能力較好。由于該魚自身的特點(diǎn),在設(shè)定測試流速時(shí),應(yīng)充分考慮最大測試流速極值,根據(jù)續(xù)航時(shí)間結(jié)果和體力消耗的情況,本研究認(rèn)為,鮭科魚幼魚階段的最大測試流速應(yīng)設(shè)置在3—4 BL,因?yàn)橥ㄟ^之前體力消耗比例公式測算,如果測試流速過大,將直接影響其續(xù)航時(shí)間的測定結(jié)果。根據(jù)上述分析與大量試驗(yàn)摸索我們還發(fā)現(xiàn),對于鮭科魚類幼魚的續(xù)航游泳能力的測定,首先應(yīng)對試驗(yàn)魚進(jìn)行初步篩選,因?yàn)轸~類屬于群體性動物,存在個(gè)體差異(適應(yīng)能力),為了使測定的游泳能力能盡量接近群體的真實(shí)情況,所以應(yīng)先通過預(yù)試驗(yàn)找到一個(gè)測試速度標(biāo)準(zhǔn),即在該測試流速下能自然趨流游泳,且游泳狀態(tài)正常(無掙扎與拒絕游泳情況)3—5 min,如能通過該標(biāo)準(zhǔn)測試,即視為合格,因?yàn)橛行﹤€(gè)體適應(yīng)環(huán)境的能力很差,必須采用超長的適應(yīng)環(huán)境時(shí)間才能進(jìn)行正常游泳測定,但由于不能浪費(fèi)大量寶貴時(shí)間以及體力消耗,所以我們要進(jìn)行初步篩選。本研究將細(xì)鱗鮭幼魚的最小測試流速通過預(yù)試驗(yàn)判定為0.25 m/s。在自然界中,魚類的運(yùn)動是一系列復(fù)雜的游泳狀態(tài)的綜合體,常與階段性的持續(xù)式游泳運(yùn)動、暫停及偶爾性的爆發(fā)游泳運(yùn)動相互穿插發(fā)生[30-31]。以鮭科魚類生殖洄游為例,爆發(fā)游速為其越過水流障礙到達(dá)產(chǎn)卵場提供了保障,持續(xù)式和耐久式游泳狀態(tài)則在長距離洄游中發(fā)揮重要作用[32]。而通常魚類在季節(jié)性洄游或遷徙時(shí)還會面臨大型水壩設(shè)施,他們只能借助魚道通行。因此,魚道內(nèi)的設(shè)計(jì)流速通常按魚類的耐久游泳速度設(shè)計(jì),在修建較長的魚道時(shí),通過魚類的耐久游泳能力計(jì)算其最大游泳距離,以此確定休息池的距離。尤其對于鮭科魚類的幼魚,在索餌或遷徙過程中,對于水流障礙的影響更為明顯。對于細(xì)鱗鮭幼魚而言,如果想穿越魚道,那么該魚道的最大流速不能超過體長4倍,且距離不能超過80m。
[1] Stobutzki I C, Bellwood D R. An analysis of the sustained swimming abilities of pre-and post-settlement coral reef fishes. Journal of Experimental Marine Biology and Ecology, 1994, 175(2): 275-286.
[2] Drucker E G. The use of gait transition speed in comparative studies of fish locomotion. American Zoologist, 1996, 36(6): 555-566.
[3] Watkins T B. Predator-mediated selection on burst swimming performance in tadpoles of the Pacific tree frog,Pseudacrisregilla. Physiological Zoology, 1996, 69(1): 154-167.
[4] Hammer C. Fatigue and exercise tests with fish. Comparative Biochemistry and Physiology Part A: Physiology, 1995, 112(1): 1-20.
[5] Plaut I. Critical swimming speed: its ecological relevance. Comparative Biochemistry and Physiology Part A: Physiology, 2001, 131(1): 41-50.
[6] 王萍, 桂福坤, 吳常文. 魚類游泳速度分類方法的探討. 中國水產(chǎn)科學(xué), 2010, 17(5): 1137-1146.
[7] Fisher R, Bellwood D R. The influence of swimming speed on sustained swimming performance of late-stage reef fish larvae. Marine Biology, 2002, 140(4): 801-807.
[8] Fisher R, Wilson S K. Maximum sustainable swimming speeds of late-stage larvae of nine species of reef fishes. Journal of Experimental Marine Biology and Ecology, 2004, 312(1): 171-186.
[9] Ware D M. Bioenergetics of pelagic fish: theoretical change in swimming speed and ration with body size. Journal of the Fisheries Research Board of Canada, 1978, 35(2): 220-228.
[10] Trump C L, Leggett W C. Optimum swimming speeds in fish: the problems of currents. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37(7): 1086-1092.
[11] Hammer C. Effects of endurance swimming on the growth of 0-and l-age group of whiting,Merlungiusmerlangus, Gadidae. Archive of Fishery and Marine Research, 1994, 42(2): 105-122.
[12] Fisher R, Bellwood D R, Job S D. Development of swimming abilities in reef fish larvae. Marine Ecology Progress Series, 2000, 202: 163-173.
[13] Rodríguez T T, Agudo J P, Mosquera L P, Mosquera L P, González E P. Evaluating vertical-slot fishway designs in terms of fish swimming capabilities. Ecological Engineering, 2006, 27(1): 37-48.
[14] Jain K E, Hamilton J C, Farrell A P. Use of a ramp velocity test to measure critical swimming speed in rainbow trout (Onchorhynchusmykiss). Comparative Biochemistry and Physiology Part A: Physiology, 1997, 117(4): 441-444.
[15] Farrell A P. Comparisons of swimming performance in rainbow trout using constant acceleration and critical swimming speed tests. Journal of Fish Biology, 2008, 72(3): 693-710.
[16] 田凱, 曹振東, 付世建. 速度增量及持續(xù)時(shí)間對瓦氏黃顙魚幼魚臨界游泳速度的影響. 生態(tài)學(xué)雜志, 2010, 29(3): 534-538.
[17] Foster J J. The influence ofsh behaviour on trawl design with special reference to mathematical interpretations of observations on the swimming speeds ofsh and results of C.F. experiments. Proceedings of the FAO Conference on Fish Behaviour in Relation to Fishing Techniques and Tactics, Bergen, 1969:19-27
[18] Beamish F W H. Swimming capacity//Hoar W S, Randall D J. Fish Physiology. vol. 7. New York: Academic Press, 1978: 101-187.
[19] Wardle1 C S, He P. Burst swimming speeds of mackerel,ScomberscombrusL. Journal of Fish Biology, 1988, 32(3): 471-478.
[20] Brett J R. Swimming performance of sockeye salmon (Oncorhynchusnerka) in relation to fatigue time and temperature. Journal of the Fisheries Research Board of Canada, 1967, 24(8): 1731-1741.
[21] 桂福坤, 王萍, 吳常文. 適應(yīng)條件對魚類續(xù)航游泳能力的影響. 水產(chǎn)學(xué)報(bào), 2010, 34(8): 1227-1235.
[22] 鄭金秀, 韓德舉, 胡望斌, 王翔, 張曉敏. 與魚道設(shè)計(jì)相關(guān)的魚類游泳行為研究. 水生態(tài)學(xué)雜志, 2010, 3(5): 104-110.
[23] 劉洋, 徐革鋒, 陳玉春, 李永發(fā), 牟振波. 細(xì)鱗魚氣單胞菌的分離、鑒定及藥敏試驗(yàn). 大連海洋大學(xué)學(xué)報(bào), 2011, 26(3): 277-280.
[24] 徐革鋒, 劉洋, 李永發(fā), 牟振波. 不同投喂率對細(xì)鱗鮭(Brachymystaxlenok)幼魚生長及體成分的影響. 海洋與湖沼, 2013, 44(2): 433-437.
[25] 馬波, 尹家勝, 李景鵬. 黑龍江流域兩種細(xì)鱗鮭的形態(tài)學(xué)比較及其分類地位初探. 動物分類學(xué)報(bào), 2005, 30(2): 257-260.
[26] Fang K T. Uniform Designs, Encyclopedia of Statistics. 2nd ed. New York: Wiley, 2004.
[27] Brett J R. The respiratory metabolism and swimming performance of young sockeye salmon. Journal of the Fisheries Research Board of Canada, 1964, 21(5): 1183-1226.
[28] Zeng L Q, Cao Z D, Fu S J, Peng J L, Wang Y X. Effect of temperature on swimming performance in juvenile southern catfish (Silurusmeridionalis). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2009, 153(2): 125-130.
[29] 解玉浩. 東北地區(qū)淡水魚類. 沈陽: 遼寧科學(xué)技術(shù)出版社, 2007: 317-317.
[30] Castro-Santos T. Optimal swim speeds for traversing velocity barriers: an analysis of volitional high-speed swimming behavior of migratory fishes. Journal of Experimental Biology, 2005, 208(3): 421-432.
[31] Kieffer J D. Perspective-Exercise in fish: 50+years and going strong. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2010, 156(2): 163-168.
[32] Powers P, Orsborn J. New concepts in fish ladder design: analysis of barriers to upstream fish migration, volume IV of IV. Investigation of the physical and biological conditions affecting fish passage success at culverts and waterfalls. Project No. 198201400(BPA Report DOE/BP-36523-1). Portland, OR: Bonneville Power Administration, 1985.
Effects of different acclimation conditions on sustainable swimming performance of juvenile lenok,Brachymystaxlenok(Pallas)
XU Gefeng1,2, YIN Jiasheng1, HAN Ying2, MA Bo1, MOU Zhenbo1,*
1HeilongjiangRiverFisheriesResearchInstitute,ChineseAcademyofFisherySciences,Harbin150070,China2CollegeofAnimalScienceandTechnology,NortheastAgriculturalUniversity,Harbin150030,China
Swimming performance is considered a critical factor in determining the survival of many fish species under natural conditions. Flume experimentation, which is visible, measurable, and repeatable for the adjustment and control of environmental factors, is a basic and effective method for the study of swimming performance and behavior in fish. However, many current studies of fish behavior have focused solely on the process of adaptation, while other influencing factors such as temperature, light, dissolved oxygen, velocity, and time have been generally ignored. In addition, maximal sustained swimming time and maximal sustained swimming speed are accepted as key indicators for determining swimming performance in fish. Swimming performance is assessed by determining the maximum sustained swimming performance at a given time and constant speed, and maximal sustained swimming speed is used as the base-line reference when fish become fatigued. The lenok,Brachymystaxlenok(Pallas), is one of the rare and valuable salmonid species found in the northeast of China. In recent years, the biology, ecology, reproduction success, disease prevention, and culture techniques of this species have been extensively studied and reported. However, to the best of our knowledge, there have been very few studies on the behavioral ecology of this species. In this report, the effects of acclimation time, acclimation flow velocity, acceleration time, and tested flow velocity on the sustained swimming time of juvenile lenok were investigated at a water temperature of 16.0 ± 0.2 ℃ and dissolved oxygen level of 8 mg/L. The observed results served as reference data on the ethology, kinematics, energetics, and behavioral ecology of this species. Uniform experimental design was used with four factors and eight levels being applied to all tests. The results revealed that the maximal acclimation flow velocity (AFVmax) should be limited to 1.0—1.5 (body lengths) BL/s, with a corresponding optimum acclimation time (AT) of 1 h. Under reasonable conditions (AFVmax≤ 1.0—1.5 BL/s,AT≤ 1 h), the influence of acclimation flow velocity and acclimation time on sustainable swimming performance was negligible. Acceleration time significantly affected sustained swimming time under stronger flow velocities (> 0.5 m/s) (P< 0.05). Although a longer time period may be favorable in allowing fish to adjust to a new environment, an acclimation time of 1—2 h is recommended; screening for a suitable acclimation time should be performed before trials. It is recommended that the tested flow velocity be limited to 3—4 BL/s to avoid the maximum swimming tolerance range. Sustained swimming time was significantly affected by the tested flow velocities: sustained swimming time decreased significantly with an increase in flow velocity (P< 0.05). The energy loss in fish was also affected by tested flow velocity, acceleration time, and acclimation time. Under the maximal tested flow velocity (> 0.5 m/s), the maximal acclimation time and the acceleration time should be limited to 60 and 4 min, respectively. In conclusion, this study provides a scientific baseline for the behavioral ecology, kinematic theory, and energetics ofB.lenok, which will prove valuable for the design and construction of fish-pass facilities.
Brachymystaxlenok(Pallas); acclimation time period; acclimation flow velocity; acceleration time period; sustained swimming time
中央級公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(HSY201312); 國家“十二五”農(nóng)村領(lǐng)域科技計(jì)劃(2012BAD26B05)
2013-05-24;
日期:2014-04-25
10.5846/stxb201305241165
*通訊作者Corresponding author.E-mail: mouzhenbo@163.com
徐革鋒,尹家勝,韓英,馬波,牟振波.不同適應(yīng)條件對細(xì)鱗鮭幼魚游泳能力的影響.生態(tài)學(xué)報(bào),2015,35(6):1938-1946.
Xu G F, Yin J S, Han Y, Ma B, Mou Z B.Effects of different acclimation conditions on sustainable swimming performance of juvenile lenok,Brachymystaxlenok(Pallas).Acta Ecologica Sinica,2015,35(6):1938-1946.