亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        AClass of Limit Theorems for DelayedAverages of Negatively Dependent Random Variables

        2015-03-08 01:56:30WANGZizhenYANPengfeiHUSongLVWenhua
        關(guān)鍵詞:愛華安徽學(xué)報(bào)

        WANG Zizhen,YAN Pengfei,HU Song,LV Wenhua

        (1.School of Mathematics and Statistics,Shandong University at Weihai,Weihai 264209,China;2.School of Mathematics&Physics Science and Engineering,Anhui University of Technology,Ma'anshan 243032,China;3.School of Mathematics and Finance,Chuzhou University,Chuzhou 239000,China)

        Let(an)n∈Nbe a sequence of real numbers and(kn)n∈Nbe a sequence of positive integers.The numbersare called the(forward)delayed first arithmetic means[1].The limiting properties for such delayed average have been studied by many researchers.For examples,Shepp[2]investigated some limiting properties ofρn,f(n)for mutually independent Bernoulli sequence and obtained some profound results.By using the limiting behavior of delayed average,Chow[3]found necessary and sufficient conditions for the Borel-summability of i.i.d.random variables and also obtained very simple proofs of a number of well-known results such as the Hsu-Robbins-Spitzer-Katztheorem.Lai[4]studied the analogues of the law of the iterated logarithm for delayed sums of independent random variables.

        Bozorgnia,Patterson and Taylor[5]mentioned that in many stochastic models,the assumption that random variables are independent is not plausible.Increases in some random variables are often related to decreases in other random variables so an assumption of negative dependence is more appropriate than that of independence.Lehmann[6]investigated various concepts of positive and negative dependence in the bivariate case.Recently,Jian[7]and Hu[8]discussed the limit property of moving average for a class of dependent random variables.In this paper,we study analogues of the law of large numbers for delayed sums of negatively dependent random variables.We give the upper and lower bounds for delayed averages of the form(logn)for identically distributed ND(negatively dependent)r.v.'s when the moment conditionis imposed with somep>1.

        1 Definitions and Propositions

        Definition 1[9]A random variableXis said to be Sub-Gaussian(SG)r.v.if there exists a nonnegative real numberαsuch that for each real numbert

        The number,τ(X)=will be called the Gaussian standard of the random

        variableX.It is evident thatXwill be a Sub-Gaussian random variable if and only if τ(X)< ∞.Definition 2 The random variablesX1,…,Xnare said to be ND if we have

        for allX1,…,Xn∈ R.An infinite sequence(Xn)n∈Nis said to be ND if every finite subsetX1,…,Xnis ND.

        Proposition 1 Let(Xn)n∈Nbe mean zero ND r.v.’s with| |Xn≤dn,n>1,Then,for everyt>1,k,l∈Nwe have

        Let(cn)n∈Rbe a sequence of positive real numbers,for everyn,j∈ N,denote

        Proposition 2 LetX,(Xn)n∈Nbe identically distributed ND r.v.’s.Then,for everyt> 0,we have

        Proposition 3 LetX,(Xn)n∈Nbe identically distributed ND r.v.’s.Then,for every ε > 0,we have

        Proposition 4 LetX,(Xn)n∈Nbe identically distributed ND r.v.’s.IfEeδ|X|< ∞ ,for some δ> 0.Then for every ε>0,we have

        2 Main Results and Proofs

        Let(Xn)n∈Nbe a sequence be a random variables.Letγ > 0,and consider the“delayed sum”where[·]is the usual greatest integer function.

        Theorem 1 Let(Xn)n∈Nbe a sequence of ND Sub-Gaussian r.v.’s with τ(Xn)≤ αn.

        1)Tn,nγis a Sub-Gaussian r.v.with

        3)Ifαj=α,j=1,2,…,then for some

        Proof

        1)By reference[10],we have

        hence,Tn,nγis a Sub-Gaussian r.v.and

        2)For eachε>0by reference[10],we have

        3)And also

        Theorem 2 Let(Xn)n∈Nbe a sequence of ND r.v.’s satisfyingP[a ≤ Xn≤ b]=1andEXn=0,for eachn,then for every

        Proof

        Since Xn|≤max{| a|,|b|} a.s.,hence by [10],(Xn)n∈Nis a sequence of Sub-Gaussian r.v.’s with τ(Xn)≤2((m ax{| a|,|b|})).Thus by Theorem 1,for everyβ >1/2,we have

        Theorem 3 Let(Xn)n∈Nbe a sequence of ND r.v.’s withEXn=0,EXn= σ2n>0,n=1,2,…,and suppose there exists a positive constantHso that for allm≥2,

        Proof

        By Proposition 1,references[10-11]and Markov’s inequality for everywe have

        Hence

        Hence

        and for eachε′>α≥ε>0,we have

        Theorem 4 Let(Xn)n∈Nbe a sequence of ND r.v.’sandIf,for everyε>0,then,we have

        Proof

        By reference[10],and Markov’s inequality for everyε>0andt>0,we have

        and by the assumption,for everyε>0,

        Theorem 5 LetX,(Xn)n∈Nbe identically distributed ND r.v’s.IfEeδ|X|< ∞ for someδ>0.Then,for every ε>0,we have

        Proof

        Theorem 6 LetX,(Xn)n∈Nbe identically distributed ND r.v’sandc>2eEX2.Then

        Proof

        From(32),we have

        Theorem 7 LetX,(Xn)n∈Nbe identically distributed ND r.v’s.For somep>1,letg(x)=sgnx|x|1/p.Further let t1,t2∈[0,+∞],and assume thatEetg(X)<∞fort∈(-t1,t2),Eetg(X)<∞fort?[-t1,t2],andEX=μ .Then

        and

        Proof

        First,we prove the following result.Lett1,t2>0be given so thatEe-t1g(X)<∞andEe-t2g(X)<∞.In particular,this impliesE|X|<∞ and,without loss of generality,we assumeEX=0.Then

        It suffices to pro the inequality for the upper limit.We use the notationLx=max{1,logx}and letan=(Ln)p.Fix s2∈(0,t2),we decomposeXjintoThen

        Since1≤(log(n+(logn)p)p/(logn)p→1 as n→∞,it suffices to consider onlynlarge enough that for some∈(s2,t2):

        Now observe thatEX′j≤0for allj∈N,EX2<∞ andE(X2e)<∞.Note that

        WhereH(x)=max{1,ex}.Which yields forj=n+1,…,n+[(logn)p]and

        Hence we obtain for anyx>0:

        which yields a convergent series ifSinces2∈(0,t2)was arbitrary,this proves

        The same proof yields the following variant of Theorem 8:

        Theorem 8 LetX,(Xn)n∈Nbe identically distributed ND r.v’s.For somep>1,letg(x)=sgnx{x}1/p.Further let γ≥1,t1,t2∈[0,+∞],and assume thatEetg(X)<∞fort∈(-t1,t2),Eetg(X)=∞fort?[-t1,t2],andEX=μ.Then

        and

        [1]ZygmundA.Trigonometric Series 1[M].[S.l.]:Cambridge University Press,1959:80.

        [2]Shepp LA.First passage time for a particular Gaussian process[J].TheAnnals of Mathematical Statistics,1971,42(3):946-951.

        [3]Chow Y S.Delayed sums and Borelsummability of independent,identically distributed random variables[J].Bulletin of the Institute of MathematicsAcademia Sinica,1973,1(2):207-220.

        [4]Lai T L.Limit Theorems for Delayed Sums[J].TheAnnals of Probability,1974,2(3):432-440.

        [5]Bozorgnia A,Patterson R F,Taylor R L.Limit theorems for dependent random variables[J].Lithuanian Mathematical Journal,1974,14(4):1639-1650.

        [6]Lehmann E L.Some concepts of dependence[J].TheAnnals of Mathematical Statistics,1966,37(5):1137-1153.

        [7]簡旭,吳玉,范愛華.關(guān)于獨(dú)立同分布隨機(jī)序列的若干極限定理[J].安徽工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2014,31(2):209-211.

        [8]胡松,汪忠志.END隨機(jī)序列滑動(dòng)平均的若干極限定理[J].安徽工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2013,30(1):84-87.

        [9]Stout W F.Almost Sure Convergence[M].[S.l.]:Academic Press,1974.

        [10]Petrov V V.Limit Theorems in Probability Theory[M].[S.l.]:Oxford Science Publication,1995.

        [11]Chareka P,Chareka O,Kennendy S.Locally sub-Gaussian random variables and the strong law of large numbers[J].The Atlantic Electronic Journal of Mathematics,2006(1):75-81.

        猜你喜歡
        愛華安徽學(xué)報(bào)
        致敬學(xué)報(bào)40年
        第一次拔牙
        神奇的光
        安徽醫(yī)改自我完善主動(dòng)糾錯(cuò)
        安徽藥采如何“三步走”
        安徽 諸多方面走在前列
        安徽為什么選擇帶量采購
        在廈金胞張愛華孝親牽起兩岸情
        海峽姐妹(2016年2期)2016-02-27 15:15:48
        學(xué)報(bào)簡介
        學(xué)報(bào)簡介
        一区二区高清视频免费在线观看| 在线不卡av天堂| 亚洲欧美久久婷婷爱综合一区天堂| 日本一区人妻蜜桃臀中文字幕| 亚洲av无码国产精品色| 亚洲成av人片在线观看麦芽| 国产乱淫视频| 国产一级av理论手机在线| 亚洲一区二区三区,日本| 免费a级毛片无码| 二区在线视频| 亚洲一区二区三区新视频| 人妻少妇进入猛烈时中文字幕| 亚洲av片一区二区三区| 国产午夜无码视频免费网站| 一区二区亚洲精美视频| 中文字幕无码乱人伦| 国产麻豆精品久久一二三| 久久福利青草精品资源| 荡女精品导航| 亚洲女同系列高清在线观看| 人妻夜夜爽天天爽三区麻豆av| 中文字幕日韩精品一区二区三区 | 无码中文字幕加勒比一本二本 | 国产亚洲av无码av男人的天堂| 亚洲丁香五月天缴情综合| 中文字幕久久久人妻无码| 国产影院一区二区在线| 玩弄放荡人妇系列av在线网站| 国产精品户露av在线户外直播| 亚洲区精品久久一区二区三区女同| av日韩高清一区二区| 帮老师解开蕾丝奶罩吸乳视频 | 丰满岳乱妇一区二区三区| 9999毛片免费看| 亚洲男人在线天堂av| 激情综合色综合啪啪开心| 亚洲av无码男人的天堂在线| 国产91AV免费播放| 国产偷国产偷亚洲综合av| 成人精品一区二区三区中文字幕|