姜盛洪,王長明,趙 海,賀昕宇,夏 銳,郭春影,賴相濡,歐陽學財
(1.中國地質大學地球科學與資源學院,北京 100083; 2.山東黃金集團有限公司,山東濟南 250000; 3.核工業(yè)北京地質研究院,北京 100029)
?
新城金礦穩(wěn)定同位素地球化學特征及成礦物質來源探討
姜盛洪1,王長明1,趙 海2,賀昕宇1,夏 銳1,郭春影3,賴相濡1,歐陽學財1
(1.中國地質大學地球科學與資源學院,北京 100083; 2.山東黃金集團有限公司,山東濟南 250000; 3.核工業(yè)北京地質研究院,北京 100029)
新城金礦是膠東金礦集區(qū)招遠—萊州成礦帶的一個“焦家式”蝕變型金礦床。本文主要通過C、H、O、S、Pb同位素研究,對新城金礦成礦流體、物質來源和成礦作用進行探討和研究。新城金礦礦石中δD值范圍為-116‰~-91‰,δ18O水值范圍為3.8‰~7.2‰,表明成礦流體早期來源于巖漿水,成礦晚期混入大氣降水。礦石硫化物、郭家?guī)X花崗閃長巖、玲瓏花崗巖和膠東群δ34S平均值分為7.9‰、6.5‰、8.5‰和6.2‰,認為礦石硫具有對礦區(qū)地層及巖漿巖硫的繼承性。硫化物礦石206Pb/204Pb=17.115~17.414,207Pb/204Pb=15.460~15.577,208Pb/204Pb=37.912~38.196,顯示鉛具有殼幔混合來源的特征。碳、氫、氧、硫、鉛同位素反映新城金礦成礦物質和流體主要來源于深部巖漿。
同位素 流體來源 物質來源 成礦作用 新城金礦
Jiang Sheng-hong,Wang Chang-ming,Zhao Hai,He Xin-yu,Xia Rui,Guo Chun-ying,Lai Xiang-ru,Ouyang Xue-cai.Geochemical characteristics of stable isotopes and metallogenic material source in the Xincheng gold deposit[J].Geology and Exploration, 2015,51(1):0068-0078.
膠東地區(qū)是中國最大的金礦集區(qū),占全國不足0.25%的面積,卻有全國1/4的黃金儲量,以玲瓏石英脈型與焦家蝕變巖型金礦最為突出。膠東金礦成礦具有多源、多期疊加、時空集中、規(guī)模巨大等顯著特征,金成礦作用與燕山期強烈的構造及巖漿熱液活動有關(毛景文等,2002)。前人曾對膠東地區(qū)典型金礦床地質特征、流體、物質來源以及成礦機制等方面進行過詳細研究,但認識并不統(tǒng)一(毛景文等,2005;周新華等,2003;鄧軍等,2001;陸麗娜等,2011)。新城金礦是膠東金礦集中區(qū)焦家成礦帶的一個“焦家式”金礦床,研究時間長達30余年,然而研究的精細程度與特大型礦床“身份”相比極不相稱,對于新城金礦礦床流體、成礦物質來源缺乏綜合性的討論。本文結合礦床地質特征,對新城金礦C、H、O、S、Pb同位素進行研究,獲得其流體和物質來源信息及探討礦床的成礦作用,為膠東礦集區(qū)中生代巨量金屬集聚機制和金礦成礦理論研究提供啟示。
膠東地區(qū)大地構造位置處于華北板塊東緣,蘇魯超高壓變質帶以北,經歷了長期、復雜的構造運動。研究區(qū)構造主要以東西向、北東-北北東向為主,另發(fā)育北西向構造(圖1)。
膠東地區(qū)出露的地層主要由中太古界唐家莊巖群、新太古界膠東群、古元古界荊山群、古元古界粉子山群、新元古界蓬萊群,中生界萊陽組、青山組、王氏組和新生界組成(圖1)。
膠東地區(qū)侵入巖分布范圍廣,絕大部分屬于中生代花崗巖類(圖1),約占全區(qū)面積的1/3,反映區(qū)內中生代經歷了強烈的巖漿活動。超基性-酸性巖石均有分布,尤其以中酸性、酸性巖規(guī)模大,分布廣。晚三疊世花崗巖類(230~200 Ma)(Chenetal.,2003;郭敬輝等,2005)主要分布在膠東東南緣的甲子山、槎山、邢家地區(qū)。晚侏羅世-早白堊世早期花崗巖類(160~140 Ma)(郭敬輝等,2005;羅鎮(zhèn)寬等,2002)主要包括玲瓏巖體和灤家河巖體,膠東東部地區(qū)主要包括昆崳山巖體、鵲山巖體、文登巖體和垛固山巖體。早白堊世中期花崗巖類(130~125 Ma)(羅鎮(zhèn)寬等,2002)主要分布在膠西北地區(qū),主要有郭家?guī)X巖體、三山島巖體、上莊巖體、北截巖體、叢家?guī)r體。早白堊世晚期花崗巖類(120~100 Ma)(郭敬輝等,2005)主要包括三佛山巖體、偉德山巖體、海陽巖體等巖體。
圖1 膠東地區(qū)地質圖(據(jù)楊敏之,1998;Fan et al.,2003)Fig.1 Simplified map of geology in eastern Shandong peninsular (after Yang,1998;Fan et al.,2003) 1-太古代變質巖;2-元古代變質巖;3-中生代花崗巖;4-白堊紀火山巖;5-三疊-第四系沉積物;6-主要斷裂;7-城市;8 -金礦(噸位)1-archean metamorphic rock;2-proterozoic metamorphic rock;3-mesozoic granite;4-cretaceous volcanic rock;5-triassic-quaterna ry sediments;6-major fault;7-cities;8-gold deposit (tonnage)
新城金礦位于膠東半島西北部招遠-萊州成礦帶內的黃縣-掖縣弧形斷裂帶上,賦存于該帶的北東走向地段,該地段為黃縣-掖縣弧形斷裂帶的主要控礦段,通常稱為焦家斷裂帶。新城金礦賦存于焦家主斷裂面下盤。焦家斷裂上盤為玲瓏黑云二長花崗巖、下盤為郭家?guī)X超單元上莊單元似斑狀花崗閃長巖(圖2),走向NE40°左右,傾向NW,傾角26~30°,沿走向和傾向呈現(xiàn)舒緩波狀。
新城金礦已探明礦體18個,其中Ⅰ號、Ⅴ號礦體規(guī)模最大。Ⅰ號礦體為礦區(qū)內最主要的礦體,為蝕變巖型礦體,受焦家主斷裂控制,地表礦體出露長120 m,平均長度330 m,最寬25 m。礦體平均走向NE 37°,傾向NW,傾角26~30°,局部大于35°,平均傾角29°。礦體局部有膨脹、夾縮、分支復合和尖滅再現(xiàn)等現(xiàn)象。礦石具壓碎結構、晶粒結構、填隙結構、包含結構;浸染狀、細脈浸染狀、塊狀、斑點狀構造。圍巖蝕變類型有絹云母化、云英巖化、硅化、碳酸鹽化等。Ⅴ號礦體為細脈或網(wǎng)脈型礦體,產于絹英巖化、硅化或鉀長石化花崗閃長質碎裂巖中,礦石具壓碎結構、晶粒結構、填隙結構;脈狀、網(wǎng)脈狀、團塊狀構造。Ⅴ號礦體群賦存于Ⅰ號礦體傾斜延深旁側(圖3)。根據(jù)新城金礦床礦石的礦物共生組合、結構構造和穿插關系,結合礦山實際生產資料的綜合分析,將新城金礦床熱液期劃分為四個成礦階段: 粗粒黃鐵礦(鉀長石)-石英階段;細粒黃鐵礦-絹云母-石英階段;石英-多金屬硫化物階段;石英-碳酸鹽階段。熱液成礦期所劃分的四個階段中,主要成礦階段為第二階段和第三階段。
圖2 新城金礦地質圖(據(jù)王長明,2011b)Fig.2 Geological sketch map of the Xincheng gold deposit (after Wang,2011b) 1-郭家?guī)X花崗閃長巖;2-玲瓏黑云母花崗巖;3-蝕變花崗閃長巖;4-黃鐵絹英巖;5-蝕變黑云母花崗巖;6-Ⅰ號礦 體;7-斷層泥;8-斷裂邊界1-Guojialing granodiorite;2-Linglong biotite granite;3-altered granodiorite;4-beresitization rocks;5-altered biotite granite;6-Ⅰ ore body;7-fault gouge;8-fault boundary
圖3 新城金礦區(qū)地質剖面圖 (據(jù)王長明,2011b)Fig.3 Geological section of the Xincheng gold deposit (after Wang,2011b) 1-郭家?guī)X花崗閃長巖;2-玲瓏黑云母花崗巖;3-蝕變花崗閃長巖;4-黃鐵絹英巖;5-蝕變黑云母花崗巖;6-礦體;7-斷裂1-Guojialing granodiorite;2-Linglong biotite granite;3-altered granodiorite;4-beresitization rocks;5-altered biotite granite;6-ore body;7-fault
本次采集新城金礦氫氧同位素研究的樣品是根據(jù)成礦期次的劃分來進行采集的,包括鉀長石-石英脈、石英-黃鐵礦脈、黃鐵絹英巖脈、多金屬硫化物脈和石英脈。鉀長石-石英脈是熱液期第一階段的產物,石英-黃鐵礦脈、黃鐵絹英巖脈屬于第二階段,多金屬硫化物屬于第三階段,石英脈則是熱液期第四階段的的產物。該12件樣品測試分析是在中國地質科學院礦產資源研究所穩(wěn)定同位素試驗室完成,所用質譜儀型號為MAT-252。
(1) 流體包裹體中水的氫同位素: 把分選的單礦物在105℃以下烘干后,在真空系統(tǒng)中逐步加熱抽走次生包裹體的水,加熱至600℃使其中的包裹體熱爆,釋放的水通過收集、冷凝和純化處理,然后用鋅置換出水中的氫,對獲得的H2進行質譜分析。
(2) 石英的氧同位素: 首先用BrF5在500~550℃條件下與石英礦物反應15h,然后用液氮將產生的O2純化,最后在700℃將O2轉變?yōu)镃O2而用于質譜分析。
S、Pb同位素分析共采集18件樣品,樣品分析礦物均為黃鐵礦,分析在核工業(yè)北京地質研究院測試研究中心完成:
(1) S同位素分析: 以Cu2O做氧化劑制備測試樣品,儀器型號為Finnigan MAT-251型質譜儀,分析結果采用國際標準CDT表達,分析精度優(yōu)于±0.2‰。
(2) Pb同位素分析: 先用混合酸(HF+HClO4)溶樣,然后用樹脂交換法分離出鉛,蒸干后用熱表面電離質譜法進行鉛同位素測試,儀器型號為ISOPROBE-T,對于1μg的208Pb/206Pb分析精度優(yōu)于0.005%。
5.1 H和O同位素組成
新城金礦床氫氧同位素分析結果見表 1。流體包裹體的氧同位素δ18O水值是根據(jù)寄主礦物石英的氧同位素,利用石英-水之間的氧同位素平衡分餾方程1000lnα石英-水=3.38×106/T2-3.4(Claytonetal.,1972)計算得到的。由表可知,新城金礦礦石δD值范圍是-116‰~-91‰,其中絕大部分值都在-100‰~-90‰之間,δ18O水值范圍是3.8‰~7.2‰,平均值為5.8‰。
表1 新城金礦氫氧同位素組成
注: “—”引文代表未給出數(shù)據(jù)。
5.2 S同位素組成
硫同位素組成見表 2,樣品總計19件,大多為主成礦期巖石,少量采自含礦圍巖中。新城金礦硫化物δ34S值介于1.9‰~11.7‰之間(表3),大部分樣品的δ34S均具大的正值。
表2 招遠-萊州金成礦帶蝕變巖型金礦、地層和花崗巖體的硫同位素組成
注: “—”引文代表未給出數(shù)據(jù)
表3 新城金礦黃鐵礦中硫、鉛同位素組成
表4 招遠-萊州金成礦帶地層和花崗巖類鉛同位素組成
注: “—”引文代表未給出數(shù)據(jù)
5.3 Pb同位素組成
新城金礦床石英-多金屬階段不發(fā)育,故主要樣品為黃鐵礦,共計19件(表3)。礦石硫化物206Pb/204Pb=17.115~17.414,207Pb/204Pb=15.460~15.577,208Pb/204Pb=37.912~38.196。鉛值的變化范圍小,顯示分布集中。
6.1 成礦流體
將表1中的數(shù)據(jù)投影到Taylor (1979)的氫氧同位素組成圖解(圖4)中,可以看出,成礦早期流體投影點位于巖漿水區(qū)域內或其附近,在成礦晚期階段,投影點遷移至雨水線附近。
圖4 新城金礦δD-δ18O同位素組成圖解 (底圖據(jù)Taylor,1979)Fig.4 The δD-δ18O diagram of the Xincheng gold deposit (after Taylor,1979) 1-第一階段;2-第二階段;3-第三階段;4-第四階段1-stage one;2-stage two;3-stage three;4-stage four
從成礦早期至成礦晚期,數(shù)據(jù)點由巖漿水區(qū)域向大氣降水線遷移,說明成礦晚期有大氣降水混入,這與前人研究觀點一致(Dengetal.,2003; 王長明等,2006)。因此,認為成礦早期流體是巖漿水,隨著成礦作用的進行,大氣降水混入,并在成礦晚期階段大氣降水逐漸成為主要流體類型。
6.2 成礦物質來源
硫同位素示蹤成礦物質來源,在當今礦床研究中仍有著廣泛的應用。從表3中可以看出,新城金礦黃鐵礦δ34S的范圍絕大部分集中在8.0‰~12.0‰?yún)^(qū)間內,顯示出硫同位素均一程度高且有正向偏離的特征,與前人(王義文等,2002)分析的膠東蝕變巖型礦床硫同位素δ34SΣS的值約為10‰相近。新城金礦硫化物組成簡單,以黃鐵礦為主,Ohmotoetal.,(1979)認為該類硫化物可近似代表成礦流體中δ34SΣS的值。
在礦區(qū)范圍內,郭家?guī)X花崗閃長巖的δ34S的范圍為2.7‰~10.0‰(陳光遠,1993),平均值為6.7‰;玲瓏花崗巖的δ34S的范圍為4.2‰~14.9‰(毛景文等,2005;黃德業(yè),1994;楊忠芳等,1991),平均值為8.5‰;膠東群δ34S的范圍為3.0‰~7.8‰(王義文等,2002;楊忠芳等,1991;李洪志等,1996),平均值為6.2‰。膠東蝕變巖型金礦床中,三山島金礦δ34S的范圍為11.5‰~12.0‰(毛景文等,2005),平均值為11.8‰;倉上金礦δ34S的范圍為11.3‰~12.5‰(毛景文等,2005),平均值為11.9‰;焦家金礦δ34S的范圍為10.1‰~12.2‰(毛景文等,2005),平均值為11.4‰;望兒莊金礦δ34S的范圍為8.5‰~8.9‰(毛景文等,2005),平均值為8.7‰;河西金礦δ34S的范圍為7.4‰~8.5‰,平均值為7.8‰(侯明蘭等,2004)。
比較新城金礦和其他礦床、地層、巖漿巖硫同位素分析(圖5),反映招遠-萊州成礦帶不同礦床、礦體、巖漿巖以及地層的黃鐵礦的硫同位素值均一化程度高,亦可看出新城金礦礦石中硫元素對花崗巖類硫、地層硫的繼承性,可認為礦床硫來源于膠東群及礦體圍巖玲瓏花崗巖、郭家?guī)X花崗閃長巖。
圖5 膠東地區(qū)花崗巖、膠東群、新城金礦及其他蝕變巖型金礦硫同位素組成Fig.5 δ34S compositions of granitoids,Jiaodong group metamorphic rocks,the Xincheng gold deposit and other altered gold deposit in the eastern Shandong peninsular
膠東地區(qū)地層206Pb/204Pb=17.070~17.932,207Pb/204Pb=15.290~15.580,208Pb/204Pb=37.260~38.300(王義文,1988;張文起,1993;楊士望,1986);玲瓏花崗巖206Pb/204Pb=16.635~17.220,207Pb/204Pb=15.013~15.64,208Pb/204Pb=36.954~38.467(周新華等,2003;張文起,1993;徐金方等,1989);郭家?guī)X花崗閃長巖206Pb/204Pb=17.000~17.978,207Pb/204Pb=15.365~15.731,208Pb/204Pb=37.348~38.461(周新華等,2003;侯明蘭等,2004;張文起,1993;陳振勝等,1994;張理剛,1988)(表4)。
圖6 新城金礦黃鐵礦硫同位素分布直方圖Fig.6 Histogram of sulfur isotopes of pyrites from the Xincheng gold deposit
上述數(shù)據(jù)(表3,4)投在鉛同位素構造模式圖中,可以看出,膠東群數(shù)據(jù)點落在地幔演化曲線兩側,這與膠東群各變質巖變質程度不同、U/Th丟失不均勻有關;玲瓏花崗巖具有地殼重融巖漿巖特征,郭家?guī)X花崗閃長巖具殼?;烊厶卣?,二者數(shù)據(jù)點主要落在地幔與造山帶之間,顯示鉛的殼?;旌蟻碓?,與前人研究的結論具有一致性。從207Pb/204Pb-206Pb/204Pb、208Pb/204Pb-206Pb/204Pb鉛同位素構造模式圖(Zartmanetal,1981)(圖7)可以看出,整體上,新城金礦礦石鉛同位素分布在膠東群及礦區(qū)內花崗巖類范圍內。相比較而言,礦石鉛在一定范圍內集中,顯示礦石鉛對膠東群及礦區(qū)內花崗巖繼承和差異性。Δβ-Δγ圖(圖8)(朱炳泉等,1998)顯示,新 城金礦礦石Pb同位素投影在與巖漿作用相關的鉛(圖8-3a)與地幔鉛混合區(qū)域內(圖8),認為成礦物質來源于地幔以及巖漿熱液上升過程中萃取的源區(qū)殼源物質。
綜合地層、巖漿巖、礦床的Pb同位素特征,認為新城金礦鉛來源于地幔物質和礦區(qū)地層、巖漿巖類的混合。
礦區(qū)不同碳酸鹽礦物之間碳-氧同位素的研究能夠很好地揭示成礦流體的來源,并且碳氧同位素的研究可以揭露成礦作用,前人對此做過詳細的研究(王長明等,2011)。同時。前人對碳酸鹽流體包裹體研究表明,流體成分屬于幔源流體C-H-O體系,深部流體中CO2對于流體運移、成礦甚至比H2O更重要(Rollinson,1992)。根據(jù)前人C和O同位素數(shù)據(jù)(劉建明等,2003;毛景文等,2005)(圖9),得出該區(qū)主要金礦床的δ13C值的范圍是-6.5‰~-0.1‰,δ18O的值為2.9‰~14.1‰。對C、O數(shù)據(jù)進行分析,顯示蝕變巖型金礦的C、O數(shù)據(jù)與地幔碳酸巖接近,表明其成礦與地幔有關。郭敬輝等(2005)研究流體包裹體證明,幔源CO2存在于該區(qū)的成礦流體當中。綜上,從碳同位素的證據(jù)也能說明作為膠東典型蝕變巖型金礦的新城金礦成礦期成礦流體具有地幔流體來源。
6.3 礦床成礦作用
膠東金礦的深部成礦過程已被前人廣泛認可(翟明國等,2001),成礦年代約為120 Ma左右(Wangetal.,2014)。該時期膠東地區(qū)構造體制發(fā)生轉換,處于擠壓作用向拉張作用轉換的過渡階段,具體表現(xiàn)為伊澤奈崎板塊低角度、高速向北北西斜向俯沖于東亞大陸之下,中國東部出現(xiàn)郯廬斷裂帶的左旋剪切,同時壓剪背景下導致軟流圈上涌、巖石圈地殼上隆,周邊及下部的軟流圈物質上升,產生強烈的巖漿活動。新城金礦礦區(qū)內出露巖漿巖為玲瓏花崗巖和郭家?guī)X花崗閃長巖,分別是早白堊世早、中期巖漿熱液活動的產物。礦區(qū)控礦構造則是郯廬斷裂的次級斷裂——焦家斷裂(圖3)。早白堊世中-晚期構造體制轉換背景下,上涌的幔源巖漿熱液沿著郯廬斷裂帶向上運移,成礦流體進入焦家斷裂帶,在熱液運移至淺部的過程中,與礦區(qū)周圍地層以及巖漿巖發(fā)生作用,萃取其中的成礦物質,且在成礦后期大氣降水也參與到流體當中。
圖7 新城金礦床中礦石、花崗巖和膠東群的鉛同位素組成 (底圖據(jù)Zartman et al,1981)Fig.7 Pb isotope compositions of ores,granitoids and metamorphic rocks in the Xincheng gold deposit (after Zartman and et al,1981) 1-新城金礦;2-玲瓏花崗巖;3-郭家?guī)X花崗閃長巖;4-膠東群1-Xincheng gold deposit;2-Linglong granite;3-Guojialing granodiorite;4-Jiaodong Group
圖8 新城金礦床黃鐵礦鉛同位素組成Δβ-Δγ分類圖解 (底圖據(jù)朱炳泉等,1998)Fig.8 Δβ-Δγ diagram of lead isotopes of pyrites from the Xincheng gold deposit (after Zhu et al.,1998) 1-地幔鉛源;2-上地殼鉛源;3-上地殼與地幔混合的俯沖鉛(3a-巖漿作用;3b-沉積作用);4-化學沉積鉛;5-海底熱水作用鉛;6-中-深變質作用鉛;7-深變質下地殼鉛;8-造山帶鉛;9- 古老頁巖上地殼鉛;10-退變質鉛1-mantle lead;2-supracrustal lead;3-subducted lead from mixing of supracrustal and mantle lead(3a-magmatism;3b-sedimentation) ;4-chemical deposit lead;5-submarine hydrothermal lead;6-medium to deep metamorphism lead;7-deep metamorphic lower crust lead;8-orogenic belt lead;9-ancient shale upper crust lead;10-retrograde metamorphic lead
圖9 膠東地區(qū)石英脈型、蝕變巖型和角礫 巖型金礦床中碳酸鹽脈18O SMOW (‰) -13CPDB (‰) 圖解 (據(jù)毛景文等,2005)Fig.9 Diagram showing δ18O SMOW (‰) v.sδ13CPDB (‰) for the carbonate veins from the quartz vein type,altered type brecciatype of gold deposits in the eastern Shandong peninsula(after Mao et al.,2005) 1-石英脈型;2-蝕變巖型;3-角礫巖型1-quartz vein type;2-altered type;3-breccia type
通過對新城金礦碳、氫、氧、硫、鉛同位素的研究,取得以下主要認識:
(1) 氫、氧、碳同位素結果表明早期成礦流體主要為巖漿水,氫、氧同位素證據(jù)還能證明成礦晚期成礦流體中主要是大氣降水。
(2) 硫、鉛同位素結果顯示成礦物質主要來源深部地幔,在殼-幔相互作用過程中,混染了礦區(qū)地層以及花崗巖類巖物質。
Chen Guang-yuan. 1993. Genetic mineralogy and gold mineralization of Guojialing granodiorite in Jiaodong[M]. Beijing: China University of Geosciences Press: 1-230 (in Chinese)
Chen J F,Xie Z,Li H M,Zhang X D,Zhou T X,Park Y S,Ahn K S,Chen D G and Zhang X. 2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane,China[J]. Geochemical Journal,37(1): 35-46
Chen Zhen-sheng,Zhang Li-gang,Liu Jing-xiu,Wang Bing-cheng,Xu Jinfang,Zheng Wen-shen. 1994. A study on lead isopote geochemical backgrounds of geological in Jiaodong region[J]. Contributions to Geology and Mineral Resources Research,9(1): 65-78(in Chinese with English abstract)
Clayton R N,O,Neil J R, Mayeda T K. 1972. Oxygen isotope exchange between quart and water[J]. Geophy. Res. :3057-3067
Deng Jun,Yang Li-qiang,Liu Wei,Sun Zhong-shi,Li Xin-jun,Wang Qingfei. 2001. Gold origin and fluid ore-forming effect of zhaoye ore deposits concentrating area in jiaodong,shandong,China[J]. Acta Geoscientica Sinica,36(3): 257-268(in Chinese with English abstract)
Deng Jun,Yang Li-qiang,Sun Zhong-shi,Wang Jian-pin,Wang Qing-fei,Xin Hong-bo, Li Xin-jun. 2003. A metallogenic model of gold deposits of the Jiaodong granite-greenstone belt[J]. Acta Geologica Sinica,77(4): 537-546
Fan H R,Zhai M G,Xie Y H,Yang J H. 2003. Ore-forming fluidsassociated with granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China[J].Mineralium Deposita,34(38): 739-750
Guo Jing-hui,Chen Fu-kun,Zhang Xiao-man,Zhai Ming-guo. 2005. Evolution of syn to post-collisional magmatism from north Sulu UHP belt,eastern China: zircon U-Pb geochronolog[J]. Acta Petrologica Sinica,21(4): 1281-1301(in Chinese with English abstract)
Hou Ming-lan,Ding Xin,Jiang Shao-chong. 2004. Lead and sulfur isotope geochemistry of the Hexi gold deposit in Penglai,Eastern Shandong [J]. Acta Geoscientica Sinica,26(2): 145-150(in Chinese with English abstract)
Huang De-ye. 1994. Sulfur isotope studies of the metallogenic series of gold deposits in Jiaodong(eastern Shandong)area[J]. Mineral Deposits,23(1): 75-87(in Chinese with English abstract)
Li Hong-zhi,Wu Yue-bin,Zhao Shan-ren. 1996. Major constituent element zone of gold deposits in greenstone belt,jiao dong[J]. Geoscience-Journal of Graduate School,China University of Geosciences,10(4): 61-66(in Chinese with English abstract)
Liu Jian-ming,YE Jie,Xu Jiu-hua,Sun Jing-gui,Shen Kun. 2003. C-O and Sr-Nd isotopic geochemistry of carbonate minerals from gold deposits in East Shandong,China [J]. ACTA Petrologica Sinica,19(4):775-784(in Chinese with English abstract)
Lu Lina,F(xiàn)an Hong-rui,Hu Fang-fang,Yang Kui-feng,Zheng Xiao-li, Zhao Hai. 2011. Ore-forming fluids and genesis of Xincheng altered rock gold deposit in northwestern Jiaodong Peninsula[J].Mineral Deposits,30(3): 522-532(in Chinese with English abstract)
Luo Zhen-kuan,Miao Lai-cheng. 2002. Granitoids and gold deposits in Zhaoyuan to Laizhou area in Jiaodong peninsula[M]. Beijing: Press of Metallurgy Industry: 1-157(in Chinese)
Mao Jing-wen,He Ying,Ding Ti-ping. 2002. Mantle fluids involved in metal logenesis of jiaodong( East Shandong) Gold district: evidence of C,O and H Isotopes[J].Mineral Deposits,21(2): 121-128(in Chinese with English abstract)
Mao Jing-wen,Li Hou-min,Wang Yi-tian,Zhang Chan-qing,Wang Rui-ting. 2005. The Relationship between Mantle-derived fluid and gold ore-formation in the Eastern Shandong Peninsula: Evidences from D-O-C-S Isotopes[J]. Acta Geologica Sinica,84(6): 839-857(in Chinese with English abstract)
Ohmoto H,Rye R O. 1979. Isotopes of sulphur and carbonGeochemistry Ore Deposits[M]. New York: John Wiley & Sons: 509-567
Rollinson H R. 1992. Using geochemical data: Evaluation,presentation,interpretation[M]. New York: Longman Science and Technical,Published in the United States with John Wiley and Sons,Inc:1-343
Taylor HP. 1979. Oxygen and hydrogen isotope relations in hydrothermal ore deposits[J]. In: BarnesHL(ed. ).Geochemistry of Hydrothermal Ore Deposits. New York: Wiley:236- 277
Wang Zhong-liang. 2012. Metallogenic system of Jiaojia gold ore field Shandong Province,China[D].Beijing China University of Geosciences (Beijing):1-208
Wang Chang-ming,Deng Jun,Zhang Shou-ting. 2006. Relationship between Huashan granite and gold mineralization in Xiongershan Area,Henan[J]. Geoscience-Journal of Graduate School,China University of Geosciences,20(2): 315-321(in Chinese with English abstract)
Wang Chang-ming,Xu Yi-gan,Wu Gan-guo,Zhang Da,Yang Lei,Liu Jianguang,Wan Hao-zhang,Di Yong-jun,Yu Xin-qi,He Ming-yue,Zhang Yao-yao. 2011. C,O,S and Pb isotopes characteristics and sources of the ore metals of the Lengshuikeng Ag-Pb-Zn ore field,Jiangxi[J]. Earth Science Frontiers,18(1) : 179-193
Wang Chang-ming.2011b. Metallogenic regularity and location prediction of the concealed gold deposits at depths[M]. Beijing Postdoctoral dissertation China University of Geosciences (Beijing):1-377
Wang Chang-ming,Jun Deng,M. Santosha,Emmanuel John M. Carranza,Qingjie Gong,Chunying Guo,Rui Xia,Xiangru Lai. 2015. Timing,tectonic implications and genesis of gold mineralization in the Xincheng gold deposit,China: C-H-O isotopes,pyrite Rb-Sr and zircon fission track thermochronometry[J].Ore Geology Review,65(3):659-673
Wang Yi-wen,Zhu Feng-san,Gong Run-tan. 2002. Tectonic isotope geochemistry-Furtber study on sulphur isotope of Jiaodong Gold Concentration Area [J]. Gold Bulletin,15(4): 1-16(in Chinese with English abstract)
Wang Yi-wen. 1988. Pb isotope characteristic and geological significance of gold deposits in Jiaodong[J]. Changchun Geological Institute Journal,34(3): 277-286(In Chinese)
Xu Jin-fang,Shen Bu-yun. 1989. Study of granitoids related to gold mineralization in Jiaodong Block[J]. Geology in Shandong,5(2): 1-125(in Chinese)
Yang Min-zhi. 1998. Geochemistry of wall-rock alteration in gold deposit: A example from Jiaodong peninsula[M]. Beijing: Geology Press: 1-120(in Chinese )
Yang Shi-wang. 1986. characteristics of jiaodong group,source beds of gold and strata feature of gold deposits in north-west Jiaodong peninsula[J]. Contributions to Geology and Mineral Resources Research,1(3): 39-49(in Chinese with English abstract)
Yang Zhong-fang,Xu Jing-kui,Zhao Lun-shan,Wu Yue-bin,Shen Yong-li. 1991. Geochemical studies of hydrogen and oxygen isotopes and ore-forming fluid compositions of fluid inclusions in quartz from two types of gold deposits in Jiaodong[J]. ACTA Mineralogica Sinica,11(4): 363-369(in Chinese with English abstract)
Zartman R. E, Doe. B. R. 1981. Plumbotectonics the model[J]. Tectonophysics,75: 135-162
Zhai Ming-guo,Yang Jin-hui,Liu Wen-jun. 2001. Large Jiaodong gold deposits area and large-scale mineralization[J]. Sciencs in China (series D),52(7): 545-552(in Chinese with English abstract)
Zhang Li-gang. 1988. Lead isotopic compositions of feldspar and ore and their geologic significance[J]. Foreign Geological Deposits,7(2): 55-64(in Chinese with English abstract)
Zhang Wen-qi. 1993. Inqulsion on source materials of the gold deposits in north-western part of Jiaodong area by using geological method of analyzing Pb isotopic chacateristics[J]. Gold Bulletin,6(9): 6-9(in Chinese with English abstract)
Zhou Xin-hua,Yang Jin-hui,Zhang Lian-chang. 2003. the formation of super large gold deposits in Jiaodong and deep process of North China continental lithospherein the Mesozoic[J]. Sciencs in China (series D),54(S2): 11-20(in Chinese with English abstract)
Zhu Bing-quan,Li Xian-hua,Dai Tong-mo. 1998. Isotopic system and application in the earth science: Crust-mantle evolution and theory of mainland in China[M]. Beijing: Science Press:224-226(in Chinese)
[附中文參考文獻]
陳光遠. 1993. 膠東郭家?guī)X花崗閃長巖成因礦物學與金礦化[M]. 北京: 中國地質大學出版社: 1-230
陳振勝,張理剛,劉敬秀,王炳成,徐金方,鄭文深. 1994. 膠東區(qū)域巖石鉛同位素地球化學背景研究[J]. 地質找礦論叢,9(1): 65-78
鄧 軍,楊立強,劉 偉,孫忠實,李新俊,王慶飛. 2001. 膠東招掖礦集區(qū)巨量金質來源和流體成礦效應[J]. 地質科學,36(3): 257-268
郭敬輝,陳福坤,張曉曼,翟明國. 2005. 蘇魯超高壓帶北部中生代巖漿侵入活動與同碰撞-碰撞后構造過程: 鋯石 U-Pb 年代學[J]. 巖石學報,21(4): 1281-1301
侯明蘭,丁 昕,蔣少涌. 2004. 膠東蓬萊河西金礦床鉛、硫同位素地球化學特征[J]. 地球學報,26(2): 145-150
黃德業(yè). 1994. 膠東金礦成礦系列硫同位素研究[J]. 礦床地質,23(1): 75-87
李洪志,吳悅斌,趙善仁. 1996. 膠東綠巖型金礦組分分帶特征及找礦意義[J]. 現(xiàn)代地質,10(4): 61-66
劉建明,葉 杰,徐九華,孫景貴,沈 昆. 2003. 膠東金礦床碳酸鹽礦物的碳-氧和鍶-釹同位素地球化學研究[J]. 巖石學報,19(4): 775-784
陸麗娜,范宏瑞,胡芳芳,楊奎鋒,鄭小禮,趙 海. 2011. 膠西北新城金礦成礦流體與礦床成因[J]. 礦床地質,30(3): 522-532
羅鎮(zhèn)寬,苗來成. 2002. 膠東招萊地區(qū)花崗巖和金礦床[M]. 北京: 冶金工業(yè)出版社:1-157
毛景文,赫 英,丁悌平. 2002. 膠東金礦形成期間地幔流體參與成礦過程的碳氧氫同位素證據(jù)[J]. 礦床地質,21(2): 121-128
毛景文,李厚民,王義天,張長青,王瑞廷. 2005. 地幔流體參與膠東金礦成礦作用的氫氧碳硫同位素證據(jù)[J]. 地質學報,84(6): 839-857
王中亮. 2012.焦家金礦田成礦系統(tǒng)[D]. 中國地質大學(北京):1-208
王義文,朱奉三,宮潤譚. 2002. 構造同位素地球化學——膠東金礦集中區(qū)硫同位素再研究[J]. 黃金,15(4): 1-16
王義文. 1988. 膠東西北地區(qū)金礦床鉛同位素特征及其地質意義[J]. 長春地質學院院報,34(3): 277-286
王長明,鄧 軍,張壽庭. 2006. 河南熊耳山地區(qū)花山花崗巖與金礦化的關系[J]. 現(xiàn)代地質,20(2): 315-321
王長明,徐貽贛,吳淦國,張 達,楊 磊,劉建光,萬浩章,狄永軍,余心起,何明躍,張垚垚.2011. 江西冷水坑Ag-Pb-Zn礦田碳、氧、硫、鉛同位素特征及成礦物質來源[J]. 地學前緣,18(1): 179-193
王長明. 2011b. 金礦床成礦規(guī)律研究及深部隱伏礦體定位預測[J]. 中國地質大學(北京): 1-377
徐金方,沈步云. 1989. 膠北地塊與金礦有關的花崗巖類的研究[J]. 山東地質,5(2): 1-125
楊敏之. 1998. 金礦床圍巖蝕變帶地球化學——以膠東金礦床為例[M]. 北京: 地質出版社,1-120
楊士望. 1986. 論膠東半島西北部膠東群地層、金的礦源層和金礦床的層控性質(續(xù))[J]. 地質找礦論叢,1(3): 39-49
楊忠芳,徐景奎,趙倫山,吳悅斌,沈請立. 1991. 膠東兩大成因系列金礦石英包裹體氫氧同位素及成礦流體組分地球化學研究[J]. 礦物學報,11(4): 363-369
翟明國,楊進輝,劉文軍. 2001. 膠東大型黃金礦集區(qū)及大規(guī)模成礦作用[J]. 中國科學(D輯: 地球科學),52(7): 545-552
張理剛. 1988. 長石鉛和礦石鉛同位素組成及其地質意義[J]. 礦床地質,7(2): 55-64
張文起. 1993. 利用Pb同位素地質方法探討膠東西北部地區(qū)金礦的物質來源[J]. 黃金,6(9): 6-9
周新華,楊進輝,張連昌. 2003. 膠東超大型金礦的形成與中生代華北大陸巖石圈深部過程[J]. 中國科學(D輯: 地球科學),54(S2): 11-20
朱炳泉,李獻華,戴橦謨. 1998. 地球科學中同位素體系理論與應用: 兼論中國大陸殼幔演化[M]. 北京: 科學出版社:224-226
Geochemical Characteristics of Stable Isotopes and Metallogenic Material Source in the Xincheng Gold Deposit
JIANG Sheng-hong1,WANG Chang-ming1,ZHAO Hai2,HE Xin-yu1,XIA Rui1,GUO Chun-ying3,LAI Xiang-ru1,OUYANG Xue-cai1
(1.SchoolofEarthScienceandResource,ChinaUniversityofGeosciences,Beijing100083; 2.ShandongGoldGroupCompanyLimited,Jinan,Shandong250000; 3.BeijingResearchInstituteofUraniumGeology,Beijing100029)
The Xincheng gold deposit,located in the Zhaoyuan-Laizhou gold metallogenic belt,is one of the “Jiaojia” altered rock type gold deposit. This paper aims at revealing ore-forming fluids source,metal source and metallogenesis by C,H,O,S and Pb isotopes. The δDvalues of fluid inclusion in quartz are -116‰~-91‰,and δOwatervalues are 3.8‰~7.2‰,which suggest the ore-forming fluids were derived mainly magmatic water in the early period,with addition of minor amounts of meteoric water in the later period. The δ34S average value of the pyrites in the ores,Guojialing granodiorite,Linglong granite and Jiaodong Group,are 7.9‰,6.5‰,8.5‰,and 6.2‰,respectively, indicating their contribution from strata and granitoids. The ratios206Pb/204Pb,207Pb/204Pb and208Pb/204Pb are 17.115~17.414,15.460~15.577 and 37.912~38.196,respectively,indicating that Pb isotope is from crustal-mantle mixing. The C-H-O-S-Pb isotope values in the ores demonstrate that the ore-forming fluids and metal were derived mainly from magmatic sources.
isotopes,ore-forming fluids,metal source,metallogenesis,Xincheng gold deposit
2014-09-19;
2014-12-16;[責任編輯]陳偉軍。
姜盛洪(1990年-),男,中國地質大學(北京),碩士,礦產普查與勘探專業(yè)。E-mail: ajiangshenghong@163.com。
P618
A
0495-5331(2015)01-0068-11