常 森,羅靜蘭,付曉燕,3,杜支文,張 三,3,杜孝華
1.中國(guó)石油長(zhǎng)慶油田分公司第五采氣廠,西安 710018 2.大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室/西北大學(xué)地質(zhì)學(xué)系,西安 710069 3.中國(guó)石油長(zhǎng)慶油田分公司勘探開發(fā)研究院,西安 710018
?
蘇里格氣田水平井地質(zhì)三維導(dǎo)向技術(shù)
——以盒8段辮狀河儲(chǔ)層為例
常 森1,2,羅靜蘭2,付曉燕2,3,杜支文1,張 三2,3,杜孝華1
1.中國(guó)石油長(zhǎng)慶油田分公司第五采氣廠,西安 710018 2.大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室/西北大學(xué)地質(zhì)學(xué)系,西安 710069 3.中國(guó)石油長(zhǎng)慶油田分公司勘探開發(fā)研究院,西安 710018
探討蘇里格氣田水平井地質(zhì)三維導(dǎo)向技術(shù),為水平井規(guī)?;_發(fā)提供新的思路和技術(shù)。以區(qū)域地質(zhì)背景、區(qū)塊砂體展布規(guī)律為基礎(chǔ),由常規(guī)二維地層對(duì)比求取地層視傾角發(fā)展為地層三維空間對(duì)比求取真傾角,精細(xì)對(duì)比地層及儲(chǔ)層展布情況,并結(jié)合辮狀河沉積微相及其發(fā)育特征和隨鉆參數(shù)分析評(píng)價(jià)開展水平井地質(zhì)導(dǎo)向分析。研究區(qū)盒8段辮狀河道主要發(fā)育河道充填、心灘微相、廢棄河道、越岸沉積4種微相;以沉積微相分析技術(shù)為基礎(chǔ)的地質(zhì)三維導(dǎo)向能夠有效保證水平段鉆遇率。在儲(chǔ)層三維空間對(duì)比閉合基礎(chǔ)上,形成了以沉積微相賦存規(guī)律、砂體地質(zhì)規(guī)模及特征分析為核心的水平井地質(zhì)三維導(dǎo)向技術(shù),完善了水平井地質(zhì)導(dǎo)向方法。
水平井;儲(chǔ)層空間對(duì)比;地質(zhì)三維導(dǎo)向;地質(zhì)模型;蘇里格氣田
蘇里格氣田于2008年開展水平井試驗(yàn)[1],由于儲(chǔ)層橫向變化快,有效儲(chǔ)層鉆遇率低[1-5],水平井開發(fā)效果并不理想。經(jīng)過近幾年水平井地質(zhì)開發(fā)技術(shù)逐步完善,儲(chǔ)層改造技術(shù)不斷成熟,水平井單井產(chǎn)量超過直井的3倍以上[5],已經(jīng)成為氣田上產(chǎn)及冬季高峰供氣的中堅(jiān)力量。蘇里格氣田歷年投產(chǎn)水平井占總投產(chǎn)氣井比例的8.6%,貢獻(xiàn)產(chǎn)量占?xì)馓锟偖a(chǎn)量比例的30.7%。筆者開展了水平井地質(zhì)導(dǎo)向現(xiàn)狀、儲(chǔ)層沉積特征以及水平井地質(zhì)導(dǎo)向配套技術(shù)的研究,以期完善和豐富水平井地質(zhì)導(dǎo)向技術(shù)與方法,實(shí)現(xiàn)提高水平井單井產(chǎn)量的目的。
目前水平井地質(zhì)導(dǎo)向確切地說為二維地質(zhì)導(dǎo)向,過程相對(duì)簡(jiǎn)單和單一,其地質(zhì)模型重點(diǎn)考慮了地層垂向?qū)傩苑植?,為二維剖面“線”對(duì)比;由于沒有充分考慮儲(chǔ)層橫向變化,不能準(zhǔn)確反映井眼軌跡周圍儲(chǔ)層的非均質(zhì)性[6],致使地質(zhì)導(dǎo)向具有多解性和不確定性;相比水平井二維地質(zhì)導(dǎo)向而言,水平井地質(zhì)三維導(dǎo)向具有較多的優(yōu)勢(shì)(表1),為此深入開展了水平井地質(zhì)三維導(dǎo)向研究工作。
水平井地質(zhì)三維導(dǎo)向指在三維空間內(nèi),依據(jù)地層形態(tài)、巖層性質(zhì)、儲(chǔ)層含氣性變化等地質(zhì)信息,結(jié)合隨鉆參數(shù),進(jìn)而優(yōu)化水平井地質(zhì)模型的一種水平井地質(zhì)導(dǎo)向方法。目前水平井地質(zhì)三維導(dǎo)向主要是三維地震和地質(zhì)三維建模導(dǎo)向[7-10]。根據(jù)蘇里格氣田勘探開發(fā)一體化、產(chǎn)能建設(shè)速度快的現(xiàn)狀[5],筆者僅開展了以儲(chǔ)層三維空間對(duì)比和沉積微相分析為核心的水平井地質(zhì)三維導(dǎo)向研究。
表1 水平井三維地質(zhì)導(dǎo)向技術(shù)優(yōu)勢(shì)對(duì)比表
Table 1 Comparison of two to three-dimensional geosteering technology for horizontal well
對(duì)比指標(biāo)二維地質(zhì)導(dǎo)向三維地質(zhì)導(dǎo)向核心思想軌跡傾角、發(fā)育砂體砂體形態(tài)及規(guī)模、沉積微相、地層傾角基礎(chǔ)資料水平井控制井水平井所有鄰井地層對(duì)比二維剖面對(duì)比三維空間儲(chǔ)層對(duì)比軌跡指導(dǎo)視傾角地層傾角、傾向、走向隨鉆導(dǎo)向井筒附近砂體沉積微相為單元導(dǎo)向方式相對(duì)簡(jiǎn)單、單一相對(duì)豐富地質(zhì)模型定性分析半定量化分析儲(chǔ)層認(rèn)識(shí)垂向?qū)傩源瓜驅(qū)傩?、平面變化?dǎo)向結(jié)論多解性、不確定性相對(duì)準(zhǔn)確,更接近客觀情況
2.1 沉積背景
盒8段沉積期,研究區(qū)北部蝕源區(qū)陰山地塊抬升幅度大,物源供給充足,基底平緩,由于水急流淺,呈現(xiàn)出多條網(wǎng)狀或交織狀辮狀河河道沉積特征[11]。研究區(qū)盒8段分流河道與辮狀河沉積模式具有很好的相似性[12-13],具有明顯的辮狀河沉積特征(圖1)。
圖1 蘇里格氣田盒8段沉積序列與典型辮狀河模式對(duì)比Fig.1 Comparison of typical braided river pattern with He8 sedimentary sequences in Sulige gasfield
盒8段辮狀河河道砂體分布特點(diǎn)是單支辮狀河規(guī)模有限,單期河道經(jīng)過橫向反復(fù)遷移、縱向多期疊置,使得辮狀河河道、心灘相互切割或疊置相連,形成寬度更大、延伸范圍更廣、大面積分布的大型復(fù)合連片狀中粗粒砂巖辮狀河道砂體[14]。研究區(qū)盒8段南北向復(fù)合條帶狀砂體延伸一般為4 km,東西向?qū)挾纫话銥? km。隨著河道的遷移,原河道水體能量減弱,形成的廢棄河道以微--細(xì)粒沉積為主,加之成巖致密層的形成,成為辮狀河儲(chǔ)層中的滲流屏障,使得心灘砂體在橫向上被分割成多個(gè)孤立狀,儲(chǔ)層非均質(zhì)性進(jìn)一步加強(qiáng)[15]。
2.2 沉積微相
辨狀河形成于坡降大、水動(dòng)力強(qiáng)的沉積環(huán)境[16],以垂向加積作用為主,沉積速度快,主要為含礫砂巖和粗--中砂巖沉積,局部夾少量粉砂和黏土[17],巖石成分復(fù)雜,礦物成熟度較低,粒度變化范圍寬、分選較差。辮狀河雖為多河道沉積,但由于河道寬而淺且穩(wěn)定性差,具有強(qiáng)烈侵蝕、擺動(dòng)頻繁和快速遷移的特征,水流呈多河道繞心灘不斷分叉和重新匯聚,河載推移質(zhì)與懸浮質(zhì)比值很大[16],砂泥比值高,垂向上形成“砂包泥”的宏觀沉積特征。最主要的儲(chǔ)集砂巖沉積微相為河道充填和心灘沉積[18-20],廢棄河道、越岸沉積一般不發(fā)育。總體表現(xiàn)出粒度向上變細(xì)的正旋回沉積剖面。
2.3 沉積微相與產(chǎn)能關(guān)系
物源供給和水動(dòng)力條件不同,形成的沉積微相砂巖類型、礦物成分和含量、砂巖粒度、結(jié)構(gòu)成熟度、成分成熟度等巖石學(xué)特征以及儲(chǔ)層沉積韻律特征也不同,這些特征制約了砂巖的成巖演化路徑與成巖作用過程,致使砂巖孔喉結(jié)構(gòu)差異,從而間接決定了砂巖儲(chǔ)層氣井產(chǎn)能的高低。前人對(duì)鄂爾多斯盆地上古生界辮狀河不同沉積微相所對(duì)應(yīng)的儲(chǔ)層物性、中值半徑、巖性、電性的統(tǒng)計(jì)結(jié)果表明,辮狀河道充填微相的砂巖粒度粗、孔滲匹配性好、孔喉中值半徑大、電性參數(shù)與曲線特征明顯,產(chǎn)能較高;其次為心灘微相[21]。
現(xiàn)階段,水平井地質(zhì)導(dǎo)向主要分為斜井段、水平段兩個(gè)層次[2,22-26];在地震、地質(zhì)建模等方法對(duì)儲(chǔ)層預(yù)測(cè)的基礎(chǔ)之上,依據(jù)巖屑、鉆時(shí)、氣測(cè)、隨鉆伽馬(GR)等綜合錄井參數(shù)及隨鉆測(cè)井參數(shù),綜合分析地層厚度與傾角、微幅構(gòu)造變化等特點(diǎn)[27],及時(shí)調(diào)整水平段軌跡,最大限度地實(shí)現(xiàn)水平井鉆井目的。
而對(duì)于開發(fā)進(jìn)程較快、工作量較大且開發(fā)區(qū)域面積廣闊的氣田水平井開發(fā),其缺少三維地震數(shù)據(jù)體、地質(zhì)建模等關(guān)鍵數(shù)據(jù)。為了彌補(bǔ)地質(zhì)認(rèn)識(shí)精度方面的不足,適應(yīng)水平井鉆井的特殊性[28],開展了標(biāo)志層控制下的地層三維空間閉合對(duì)比關(guān)鍵技術(shù),結(jié)合隨鉆地質(zhì)導(dǎo)向評(píng)價(jià)技術(shù)。充分發(fā)揮了沉積微相分析作用[4],加之地質(zhì)模型優(yōu)化技術(shù),進(jìn)行了水平井軌跡綜合調(diào)整,完善了水平井地質(zhì)導(dǎo)向技術(shù),同時(shí)提升了水平井水平段長(zhǎng)度、儲(chǔ)層鉆遇率、單井產(chǎn)量等指標(biāo)。
3.1 三維空間地層對(duì)比技術(shù)
3.1.1 標(biāo)志層選取
結(jié)合鄰井儲(chǔ)層發(fā)育特征,選取多個(gè)穩(wěn)定標(biāo)志層(地層界線、穩(wěn)定砂巖、純泥巖段,測(cè)井曲線異常段及其組合等)[4,24,28-29],通過沉積旋回控制,地層厚度輔助,進(jìn)行多井區(qū)域閉合對(duì)比。
①石千峰組底界
二疊系石千峰組底部(千5)發(fā)育細(xì)砂巖、中砂巖(圖2),而石盒子組頂部為砂泥巖互層,砂層厚度較薄。二者巖性變化大,測(cè)井曲線上響應(yīng)明顯,作為水平井入靶調(diào)整的第一個(gè)標(biāo)志層,應(yīng)用范圍極其廣泛。
a.直井; b.水平井。圖2 典型井標(biāo)志層對(duì)比圖Fig.2 Comparison of the marker beds in two typical wells
②盒4段砂巖底界
研究區(qū)范圍內(nèi),盒4段發(fā)育一套相對(duì)穩(wěn)定的正旋回砂巖,底部巖性較純,多數(shù)情況下有氣測(cè)顯示,盒4段砂巖底縱向上距盒8段地層頂界70 m左右;其下盒5段發(fā)育大段泥巖,巖屑變化很明顯。
③巖性組合及旋回特征
接近盒8段目標(biāo)層時(shí),標(biāo)志層往往不明顯,必須借助于巖性組合及旋回特征來預(yù)測(cè)目標(biāo)層頂部深度,具體可選擇砂泥巖組合、薄層致密砂巖、純泥巖等作為輔助標(biāo)志層進(jìn)行入靶地質(zhì)導(dǎo)向。
3.1.2 求取地層產(chǎn)狀
二維地質(zhì)導(dǎo)向地層對(duì)比較為局限,求取的地層傾角為視傾角(小于地層真傾角)[30-37],不能充分體現(xiàn)儲(chǔ)層空間的展布特征。而充分利用能夠控制該局部區(qū)域儲(chǔ)層分布與變化情況的鄰井資料,進(jìn)行地層三維空間閉合對(duì)比(圖3),求取統(tǒng)一目的層地層傾角(公式(1))[38],減小入靶誤差,指導(dǎo)水平井入靶及水平段地質(zhì)導(dǎo)向。目前,水平井三維鉆井技術(shù)逐步完善,結(jié)合入靶過程中求取的地層傾角數(shù)據(jù),對(duì)水平井設(shè)計(jì)軌跡加以修正,可對(duì)原設(shè)計(jì)水平井方位進(jìn)行針對(duì)性調(diào)整,進(jìn)一步提升水平段儲(chǔ)層鉆遇率和單井產(chǎn)量。地層傾角(λ)及走向(ω)具體計(jì)算公式為:
圖3 地層三維空間對(duì)比示意圖Fig.3 Schematic diagram of the three-dimensional space formation
(1)
(2)
式中:λ1、ω1,λ2、ω2分別為井位A至井位C、井位B至井位C連線的地層傾角和走向(°)。
3.1.3 實(shí)例應(yīng)用
根據(jù)水平井常規(guī)二維剖面對(duì)比,計(jì)算S62-66H1所在區(qū)域盒8地層傾角為-0.226°;而通過水平井三維地層空間對(duì)比,計(jì)算得出地層走向105.4°,地層傾角0.204°(表2),較為平緩。該井于3 110 m處氣測(cè)值由0.5%升高至5.6%,由灰色細(xì)砂巖變?yōu)榛野咨瑲庵猩皫r,自然伽馬明顯降低(圖4),鉆遇辮狀河道心灘微相砂體,并于儲(chǔ)層中上部入靶;水平井目的段砂層厚度約20.9 m,有效厚度16.7 m,該期河道長(zhǎng)度超過2 000 m,寬度超過1 200 m。
3.2 沉積微相分析技術(shù)
受鄂爾多斯盆地北部物源充足影響,二疊系石盒子組盒8段自北向南依次發(fā)育沖積扇、辮狀河、辮狀河三角洲沉積相;蘇里格氣田大部分區(qū)域處于辮狀河三角洲平原沉積環(huán)境,主要發(fā)育河道充填、心灘沉積微相,而越岸沉積、廢棄河道較少,或不發(fā)育(圖5)。
表2 S62-66H1區(qū)域標(biāo)準(zhǔn)層計(jì)算地層傾角對(duì)比表
Table 2 Comparison of calculated stratigraphic dip with the measured dip of the standard layer in S62-66H1 area
序號(hào)層位SN二維傾角/(°)地層產(chǎn)狀/(°)傾角走向1盒4段砂體底-0.2270.271129.82目的層上方砂體頂-0.204-0.22670.93目的層砂體底-0.2010.204105.4
高能河道主要集中于河道充填微相,成分成熟度、結(jié)構(gòu)成熟度高,物性、含氣性較好;相比心灘微相而言,產(chǎn)能更高,穩(wěn)產(chǎn)能力更強(qiáng)[21](表3、表4)。
根據(jù)Z30區(qū)塊叢式井整體開發(fā)區(qū)砂體精細(xì)解
剖結(jié)果統(tǒng)計(jì)及砂體空間賦存形態(tài)的描述,發(fā)現(xiàn)河道充填微相砂體主要以切割疊置狀為主,心灘微相砂體多以堆積疊置狀為主,而越岸沉積則以孤立狀存在(表4)。
圖5 蘇里格氣田沉積模式圖Fig.5 The sedientary pattern in Sulige gasfield
3.3 隨鉆參數(shù)跟蹤評(píng)價(jià)技術(shù)
堅(jiān)持地質(zhì)、工程參數(shù)緊密結(jié)合,跟蹤巖屑、氣測(cè)、伽馬值、鉆時(shí)等參數(shù)變化情況(表5),充分分析沉積微相變化,以沉積微相特征及砂體展布規(guī)律為單元,進(jìn)行針對(duì)性預(yù)判,并多方面綜合求證。
表3 蘇里格氣田辮狀河沉積微相特征對(duì)比
表4 蘇里格氣田盒8段沉積微相規(guī)模描述
表5 蘇里格氣田水平井地質(zhì)導(dǎo)向參數(shù)特征
3.4 地質(zhì)模型優(yōu)化技術(shù)
水平井水平段鉆進(jìn)過程中鉆遇泥巖情況很普遍,主要有:井身軌跡穿出目的層頂界進(jìn)入蓋層;或鉆遇目的層內(nèi)部夾層;或從目的層底部穿出鉆遇泥巖;側(cè)向穿出河道鉆遇河道間泥巖或砂質(zhì)泥巖。這些導(dǎo)致了井壁垮塌,下鉆遇阻、遇卡和泵壓升高等情況,不得不提前完鉆或填井側(cè)鉆,嚴(yán)重影響了工程進(jìn)度及施工成本。
據(jù)文獻(xiàn)[39]修改。圖6 蘇里格氣田盒8段砂體賦存模型圖Fig.6 Sand body occurrence model of He8 in Sulige gasfield
正確、有效地進(jìn)行水平井水平段地質(zhì)導(dǎo)向,必須以區(qū)域地質(zhì)背景、區(qū)塊砂體展布規(guī)律為基礎(chǔ),結(jié)合辮狀河道、心灘、越岸沉積、廢棄河道發(fā)育特征,以沉積微相及砂體賦存模型(圖6)、規(guī)模(表4)和特征(表3)為核心。根據(jù)大量統(tǒng)計(jì)分析,蘇里格氣田砂體賦存模型主要有厚層塊狀孤立型、垂向疊置干層型、垂向疊置物性?shī)A層型、垂向疊置泥質(zhì)隔層型,主要分布在辮狀河疊置砂帶內(nèi); 而橫向切割連通型、橫向串糖葫蘆型主要分布在過渡帶內(nèi)及疊置砂帶和過渡帶的銜接部位[5,39]。
分析沉積微相在三維空間內(nèi)的展布形態(tài)及規(guī)模,修正地質(zhì)模型,開展沉積微相主導(dǎo)的水平井地質(zhì)三維導(dǎo)向,從而保證水平井儲(chǔ)層鉆遇率和有效儲(chǔ)層鉆遇率。對(duì)于水平井水平段鉆遇泥質(zhì)夾層現(xiàn)象,垂向厚度及橫向延伸范圍有限,不需要頻繁調(diào)整水平井軌跡,進(jìn)一步縮短水平井鉆井周期,避免出現(xiàn)井筒復(fù)雜情況或事故。S62-66H1入靶后認(rèn)為其鉆遇砂體模型為厚層塊狀孤立型,而依據(jù)水平井水平段軌跡鉆遇參數(shù)分析,并對(duì)其地質(zhì)模型進(jìn)行充分優(yōu)化(圖7),分析認(rèn)為是垂向疊置物性?shī)A層型地質(zhì)模型;水平井鉆遇砂體地質(zhì)模型整體認(rèn)識(shí)進(jìn)一步深化,更能有效地指導(dǎo)水平井后續(xù)鉆進(jìn),并提高開發(fā)效果。
a.優(yōu)化前; b.優(yōu)化后。圖7 水平井三維地質(zhì)導(dǎo)向模型優(yōu)化對(duì)比Fig.7 Comparison of horizontal well three-dimensional geosteering before and after optimization model
3.5 應(yīng)用實(shí)例
S37-54H2(圖8)入靶后鉆遇河道充填砂巖,低伽馬、高氣測(cè)值、鉆時(shí)較快;砂體厚度6~7m,寬度至少達(dá)到1 000 m。
圖8 S37-54H2水平井地質(zhì)三維導(dǎo)向Fig.8 Three-dimensional geosteering of S37-54H2 horizontal well
水平段鉆至A點(diǎn)(水平段長(zhǎng)200 m),伽馬值升高,無氣測(cè)顯示,灰白色細(xì)砂巖逐漸變?yōu)榛疑凵皫r、灰色泥巖,結(jié)合辮狀河河道曲度較曲流河曲度小特征,分析認(rèn)為因河道側(cè)向遷移致使水平井軌跡側(cè)向鉆出河道,且砂體由北東向南西方向延伸,按照水平段方位205°繼續(xù)鉆進(jìn)60 m后重新鉆遇河道砂體,砂體模型實(shí)際為厚層塊狀獨(dú)立型,但是表現(xiàn)為串糖葫蘆型,并向河道中央靠近。根據(jù)砂體展布規(guī)律及河道充填微相規(guī)模分析,該支河道寬帶800 m,厚度6~8 m。鉆至B點(diǎn)時(shí),井斜角89.1°過小,致使水平井軌跡鉆穿河道底部,調(diào)整井斜至90.5°重新鉆入有效儲(chǔ)層;分析認(rèn)為,該套砂體厚度至少8 m,長(zhǎng)度超過2 000 m。
該井采用裸眼封隔器,配合超低濃度胍膠體系進(jìn)行體積壓裂改造,試氣獲無阻流量42.0×104m3/d,相當(dāng)于10~15口直井效果,已累計(jì)生產(chǎn)天然氣4 240×104m3。
1)地質(zhì)三維導(dǎo)向依據(jù)地質(zhì)體規(guī)模、特征及其變化規(guī)律和相互間的依存關(guān)系,充分發(fā)揮地質(zhì)分析在導(dǎo)向過程中的作用,將地層對(duì)比由二維剖面拓展至三維空間,能夠準(zhǔn)確刻畫儲(chǔ)層的空間立體展布規(guī)律及其特征;依據(jù)區(qū)塊砂體解剖,對(duì)沉積微相規(guī)模進(jìn)行統(tǒng)計(jì),結(jié)果應(yīng)用于水平井地質(zhì)導(dǎo)向分析,實(shí)現(xiàn)了定性的地質(zhì)導(dǎo)向向定量、半定量地質(zhì)導(dǎo)向轉(zhuǎn)變。
2)以真傾角為基礎(chǔ)的地層對(duì)比,實(shí)現(xiàn)了儲(chǔ)層由二維平面對(duì)比至三維空間閉合的升華,實(shí)現(xiàn)了精細(xì)對(duì)比區(qū)域地層及儲(chǔ)層展布情況,有效保證了水平井的入靶成功率。
3)以區(qū)域地質(zhì)背景、區(qū)塊砂體展布規(guī)律為基礎(chǔ),水平井井眼軌跡結(jié)合辮狀河河道、心灘、越岸沉積、廢棄河道等各沉積微相及其發(fā)育特征,以沉積微相空間賦存規(guī)律、砂體地質(zhì)規(guī)模及特征分析為核心的水平井地質(zhì)三維導(dǎo)向技術(shù)的應(yīng)用有效提高了儲(chǔ)層鉆遇率以及單井產(chǎn)量等各項(xiàng)指標(biāo),完善了水平井地質(zhì)導(dǎo)向方法,進(jìn)一步推動(dòng)了油氣田水平井規(guī)模化開發(fā)和應(yīng)用。
[1] 費(fèi)世祥,王勇,王心敏,等.蘇里格氣田東區(qū)南部上古生界水平井地質(zhì)導(dǎo)向技術(shù)方法及應(yīng)用[J].天然氣勘探與開發(fā),2013,36(1):54-57. Fei Shixiang,Wang Yong,Wang Xinmin,et al.Application of Geosteeting Technology to Upper Paleozoic Horizontal Wells in the South of East Area in Sulige Gasfield[J].Natural Gas Exploration & Development,2013,36(1):54-57.
[2] 趙占良,白建文,胡子見,等.蘇里格氣田薄產(chǎn)層水平井地質(zhì)導(dǎo)向技術(shù)研究[J].鉆采工藝,2010,33(4):10-12. Zhao Zhanliang,Bai Jianwen,Hu Zijian,et al.Research on Geosteering Technology for Horizontal Wells of Thin Layers in Sulige Gasfield[J].Drillring and Production Technology,2010,33(4):10-12.
[3] 李建奇,楊志倫,陳啟文,等.蘇里格氣田水平井開發(fā)技術(shù)[J].天然氣工業(yè),2011,31(8):60-64. Li Jianqi,Yang Zhilun,Chen Qiwen,et al.Horizontal Well Technology for Development of Sulige Gas Field[J].Natural Gas Industry,2011,31(8):60-64.
[4] 唐欽錫.水平井地質(zhì)導(dǎo)向技術(shù)在蘇里格氣田開發(fā)中的應(yīng)用:以蘇10和蘇53區(qū)塊為例[J].石油與天然氣地質(zhì),2013,34(3):388-393. Tang Qinxi.Application of Geosteering Technology in Development of Sulige Gasfield:Case Studies of the Su10 and Su53 Blocks[J].Oil & Gas Geology,2014,34(3):388-393.
[5] 盧濤,張吉,李躍剛,等.蘇里格氣田致密砂巖氣藏水平井開發(fā)技術(shù)及展望[J].天然氣工業(yè),2013,33(8):38-43. Lu Tao,Zhang Ji,Li Yuegang,et al.Horizontal Well Development Technology for Tight Sandstone Gas Reservoirs in Sulige Gasfield,Ordos Basin[J].Natrual Gas Industry,2013,33(8):38-43.
[6] 廖愛明,曾閩山,王虎.三維地質(zhì)導(dǎo)向技術(shù)及應(yīng)用實(shí)例[J].科技傳播,2012,4(6):129-130. Liao Aiming,Zeng Minshan,Wang Hu.Three-Dimensional Geosteering Technology and Application[J].Science and Technology Communication,2012,4(6):129-130.
[7] 劉振武,撒利明,楊曉,等.地震導(dǎo)向水平井方法與應(yīng)用[J].石油地球物理勘探,2013,48(6):932-937. Liu Zhenwu,Sa Liming,Yang Xiao,et al.Horizontal Well Drilling Guided by a Seismic-Centered Multi-Discipline Software Platform[J].Oil Geophsical Prospecting,2013,48(6):932-937.
[8] 趙偉,張艷梅,劉俊,等.基于地震數(shù)據(jù)體的水平井實(shí)時(shí)導(dǎo)向系統(tǒng)[J].石油鉆采工藝,2010,32(4):8-11. Zhao Wei,Zhang Yanmei,Liu Jun,et al.A Real-Time Steering System of Horizontal Well Base on Seismic Data[J].Oil Drilling & Production Technology,2010,32(4):8-11.
[9] 周明暉.儲(chǔ)層地質(zhì)模型的建立及動(dòng)態(tài)實(shí)時(shí)跟蹤研究[D].北京:中國(guó)石油大學(xué),2009. Zhou Minghui.Study on Reservoir Geologic Modeling and Dynamic Real-Time Tracking[D].Beijing:China University of Petroleum,2009.
[10] 王理斌,段憲余,鐘偉,等.地質(zhì)建模在蘇丹大位移水平井地質(zhì)導(dǎo)向中的應(yīng)用[J].巖性油氣藏,2012,24(4):90-92. Wang Libin,Duan Xianyu,Zhong Wei,et al.Application of Geologic Modeling to Geosteering in Sudan Extend-Reach Horizontal Wells[J].Lithologic Reservoirs,2012,24(4):90-92.
[11] 羅靜蘭,魏新善,姚涇利,等.物源與沉積相對(duì)鄂爾多斯盆地上古生界天然氣優(yōu)質(zhì)儲(chǔ)層的控制[J].地質(zhì)通報(bào),2010,29(6):811-820. Luo Jinglan,Wei Xinshan,Yao Jingli,et al.Provenance and Depositional Facies Controlling on the Upper Paleozoic Excellent Natural Gas-Reservoir in Northern Ordos Basin[J].Geological Bulletin of China,2010,29(6):811-820.
[12] Micheal Edward Hohn. Geostatistics and Petroleum Geology[M].[S.l.]: Kluwer Academic Publishers,1999:25-43.
[13] 何東博.蘇里格氣田復(fù)雜儲(chǔ)層控制因素與有效儲(chǔ)層預(yù)測(cè)[D].北京:中國(guó)地質(zhì)大學(xué)(北京),2005. He Dongbo.Controls on the Complicated Reservoirs and Prediction of Effective Sandstone Distribution in Sulige Gasfield[D].Beijing:China University of Geosciences(Beijing),2005.
[14] 謝慶賓,孫建,陳菁萍,等.蘇里格大氣田多成因河道砂體的分布模式研究[J].地學(xué)前緣,2013,20(2):40-51. Xie Qingbin,Sun Jian,Chen Jingping,et al.Research on Distribution Pattern of Polygenetic Channel Sandbody in Sulige Large Gasfield[J].Earth Science Frontiers,2013,20(2):40-51.
[15] 王繼平,任戰(zhàn)利,李躍剛,等.基于儲(chǔ)層精細(xì)描述的水平井優(yōu)化設(shè)計(jì)方法[J].西北大學(xué)學(xué)報(bào):自然科學(xué)版,2012,42(4):642-647. Wang Jiping,Ren Zhanli,Li Yuegang,et al.Horizontal Well Design Based on the Detailed Description of Reservoir[J].Journal of Northwest University :Natural Science Edition,2012,42(4):642-647.
[16] 于興河.碎屑巖系油氣儲(chǔ)層沉積學(xué)[M].北京:石油工業(yè)出版社,2008:276-278. Yu Xinghe.Clastic Reservoir Sedimentology[M].Beijing:Petroleum Industry Press,2008:276-278.
[17] 居亞娟,崔建,李海東,等.水動(dòng)力成因分析心灘建筑結(jié)構(gòu):以南堡凹陷館陶組為例[J].復(fù)雜油氣藏,2012,5(3):6-9. Ju Yajuan,Cui Jian,Li Haidong,et al.Analysis of Channel Bar Building Structure by Water Dynamic Origin:Guantao Formation of Nanpu Sag as an Example[J].Complex Hydrocarbon Reservoirs,2012,5(3):6-9.
[18] 劉鈺銘,侯加根,王連敏,等.辮狀河儲(chǔ)層構(gòu)型分析[J].中國(guó)石油大學(xué)學(xué)報(bào):自然科學(xué)版,2009,33(1):7-11. Liu Yuming,Hou Jiagen,Wang Lianming,et al.Architecture Analysis of Braided River Reservoir[J].Journal of China University of Petroleum:Natural Science Edition,2009,33(1):7-11.
[19] 白全明,樊長(zhǎng)栓,李曉茹,等.辮狀河道砂體模擬:以蘇里格6井區(qū)為例[J].石油天然氣學(xué)報(bào),2005,27(5):580-582. Bai Mingquan,F(xiàn)an Changshuan,Li Xiaoru,et al.Braided Channel Sand Body Simulation:A Case Study in Su6 Area[J].Journal of Oil and Gas Technology,2005,27(5):580-582.
[20] 葛云龍,逯徑鐵,廖保方,等.辮狀河相儲(chǔ)集層地質(zhì)模型:“泛連通體”[J].石油勘探與開發(fā),1998,25(5):77-79. Ge Yunlong,Lu Jingtie,Liao Baofang,et al.A Braided River Reservoir Geological Model:“Pan-Communicated Sandbody”[J].Petroleum Exploration and Development,1998,25(5):77-79.
[21] 董昭雄,沈昭國(guó),何國(guó)賢,等.鄂爾多斯盆地大牛地氣田山1段儲(chǔ)層與沉積微相的關(guān)系[J].石油與天然氣地質(zhì),2009,30(2):162-167. Dong Zhaoxiong,Shen Zhaoguo,He Guoxian,et al.Relationship of Sedimentary Microfacies with Reservoirs in Shan-1 Member of Daniudi Gasfield,Ordos Basin[J].Oil & Gas Geology,2009,30(2):162-167.
[22] 劉海鋒,薛云龍,張保國(guó),等.低滲透薄層碳酸鹽巖氣藏水平井地質(zhì)導(dǎo)向技術(shù)[J].天然氣勘探與開發(fā),2013,36(2):77-80. Liu Haifeng,Xue Yunlong,Zhang Baoguo,et al.Geosteering Technology for Horizontal Wells in Low Permeability and Thin Carbonate Gas Reservoir[J].Natural Gas Exploration & Development,2013,36(2):77-80.
[23] 楊志倫,趙偉蘭,陳啟文,等.蘇里格氣田水平井高效建產(chǎn)技術(shù)[J].天然氣工業(yè),2013,33(8):44-48. Yang Zhilun,Zhao Weilan,Chen Qiwen,et al.High Efficiency and Productivity Technology for Horizontal Wells in Sulige Gasfield,Ordos Basin[J].Natural Gas Industry,2013,33(8):44-48.
[24] 方錫賢,吳福鄒,李文德,等.非常規(guī)油氣水平井地質(zhì)導(dǎo)向方法探討[J].石油地質(zhì)與工程,2012,26(5):89-91. Fang Xixian,Wu Fuzou,Li Wende,et al.Method Study on Geosteering in Horizontal Wells of Unconventional Oil and Gas[J].Petroleum Geology and Engineering, 2012,26(5):89-91.
[25] 高曉飛,閆正和,曾顯磊.新型地質(zhì)導(dǎo)向技術(shù)在薄層油藏中的應(yīng)用[J].石油天然氣學(xué)報(bào),2010,32(5):214-218. Gao Xiafei,Yan Zhenghe,Zeng Xianlei.Application of New Geosteering Technology in Thin Reservoirs[J].Journal of Oil and Gas Technology,2010,32(5):214-218.
[26] 秦宗超,劉迎貴,邢維奇,等.水平井地質(zhì)導(dǎo)向技術(shù)在復(fù)雜河流相油田中的應(yīng)用:以曹妃甸11-1油田為例[J].石油勘探與開發(fā),2006,33(3):378-382. Qin Zongchao,Liu Yinggui,Xing Weiqi,et al.Application of Geosteering Technique of Horizontal Well in Complex Fluvial Reservoir:A Case from Caofeidian 11-1 Oilfield[J].Petroleum Exploration and Development,2006,33(3):378-382.
[27] 張吉,陳鳳喜,盧濤,等.靖邊氣田水平井地質(zhì)導(dǎo)向方法與應(yīng)用[J].天然氣地球科學(xué),2008,19(1):137-140. Zhang Ji,Chen Fengxi,Lu Tao,et al.Horizonal Well Geosreering Technology and Its Application in Development of Jingbian Gasfield[J].Natural Gas Geoscience,2008,19(1):137-140.
[28] 袁昭,李艷明,陶林本,等.吐哈油田水平井隨鉆地質(zhì)導(dǎo)向技術(shù)研究[J].石油鉆探技術(shù),2008,36(3):87-90. Yuan Zhao,Li Yanming,Tao Linben,et al.Study on MWD Geological Steering Technique of Horizonal Well in Tuha Oilfield[J].Petroleum Drilling Techniques,2008,36(3):87-90.
[29] 葛啟兵,徐云恒,康波,等.水平井現(xiàn)場(chǎng)地質(zhì)導(dǎo)向技術(shù)淺議[J].吐哈油氣,2012,17(3):267-300. Ge Qibing,Xu Yunheng,Kang Bo,et al.Discussion on Field Geosteering Technique for Horizontal Well[J].Tuha Oil & Gas,2012,17(3):267-300.
[30] 曹偉,谷會(huì)霞,張愛軍,等.三維井眼軌跡地質(zhì)導(dǎo)向軟件的開發(fā)與應(yīng)用[J].吐哈油氣,2011,16(1):97-100. Cao Wei,Gu Huixia,Zhang Aijun,et al.Development and Application of Geosteering Software of 3D Well Track[J].Tuha Oil & Gas, 2011,16(1):97-100.
[31] 吳寶玉,羅利,張樹東,等.基于隨鉆測(cè)井的產(chǎn)層導(dǎo)向技術(shù)在水平井中的應(yīng)用:以川中磨溪?dú)馓餅槔齕J].天然氣工業(yè),2010,30(12):63-66. Wu Baoyu,Luo Li,Zhang Shudong,et al.Application of LWD Geosteering to Improve the Payzone:Encountered Rate by Horizontal Well Drilling:A Case History in Moxi Gasfield[J].Natural Gas Industry,2010,30(12):63-66.
[32] 陳孝平,龔時(shí)波,王剛,等.地質(zhì)導(dǎo)向方法在吉國(guó)馬-伊油田小井眼水平井中的應(yīng)用[J].國(guó)外測(cè)井技術(shù),2007,22(3):14-17. Chen Xiaoping,Gong Shibo,Wang Gang,et al.Application of Geosteering Method in Horizontal Slim Wells in the Oilfield of Kyrgyzs-Tan[J].World Well Logging Technology,2007,22(3):14-17.
[33] 劉巖松,衡萬富,劉斌,等.水平井地質(zhì)導(dǎo)向方法[J].石油鉆采工藝,2007,29:4-6. Liu Yansong,Heng Wanfu,Liu Bin,et al.Discussion on Geosteering Methods of Horizontal Wells[J].Oil Drilling & Production Technology,2007,29:4-6.
[34] 孫新陽(yáng),尚鎖貴,吳昊晟.水平井現(xiàn)場(chǎng)地質(zhì)導(dǎo)向方法及其應(yīng)用[J].錄井工程,2006,17(4):17-21. Sun Xinyang,Shang Suogui,Wu Haosheng.Wellsite Geosteering Method and Application for Hotizonal Wells[J].Mud Logging Engineering,2006,17(4):17-21.
[35] 竇松江,趙平起.水平井隨鉆地質(zhì)導(dǎo)向方法的研究與應(yīng)用[J].海洋石油,2009,29(4):77-82. Dou Songjiang,Zhao Pingqi.The Research and Application of Horizontal Well Geosteering Method[J].Offshore Oil,2009,29(4):77-82.
[36] 羅萬靜,王曉冬,李義娟.鉆井的眼睛:地質(zhì)導(dǎo)向理論及實(shí)踐[J].西部探礦工程,2006,18(2):149-152. Luo Wanjing,Wang Xiaodong,Li Yijuan.The Eye of Drilling:Geosteering Theory and Prantice[J].West China Exploration Engineering,2006,18(2):149-152.
[37] 孟韶彬,王玲云,劉永剛,等.復(fù)雜斷塊油氣田水平井地質(zhì)錄井技術(shù)的應(yīng)用[J].特種油氣藏,2005,12(6):32-33. Meng Shaobin,Wang Lingyun,Liu Yonggang,et al.Horizontal Well Geological Logging Technology for Complex Fault Block Oil and Gas Field[J].Special Oil and Gas Reservoies,2005,12(6):32-33.
[38] 唐炎森.根據(jù)鉆孔資料確定地下巖層產(chǎn)狀:通用地質(zhì)坐標(biāo)系應(yīng)用實(shí)例:之四[J].連云港化工高專學(xué)報(bào),1997,3(3):28-30. Tang Yansen.Determinnation of Attitude of Blind Rocks from Data of Drilling:Applying of General Geological Coordinate System:4[J].Journal of Lianyungang College of Chernical Technology,1997,3(3):28-30.
[39] 常森.蘇里格氣田東區(qū)盒8與山1段致密砂巖儲(chǔ)層展布規(guī)律研究及水平井地質(zhì)適應(yīng)性分析[D].西安:西北大學(xué),2013. Chang Sen.Research on Tight Sandstone Reservoir Distribution and Geological Adaptability of Horizontal Wells of the H8 and S1 Group in Eastern Sulige Gasfield,Ordos Basin[D].Xi’an:Northwest University,2013.
Three-Dimensional Geosteering Technology for Horizontal Wells in Sulige Gasfield——A Case from Braided River Reservoir of the He8Group
Chang Sen1,2,Luo Jinglan2,F(xiàn)u Xiaoyan2,3,Du Zhiwen1,Zhang San2,3,Du Xiaohua1
1.TheFifthGasProductionPlant,ChangqingOilfieldCompany,PetroChina,Xi’an710018,China2.StateKeyLaboratoryofContinentalDynamics/DepartmentofGeology,NorthwestUniversity,Xi’an710069,China3.ResearchInstituteofExplorationandDevelopment,ChangqingOilfieldCompany,PetroChinaXi’an710018,China
The discussion on three-dimensional geosteering technology for the horizontal wells in Sulige gasfield provides some new ideas and technology for the development of large-scale horizontal wells. The analysis of horizontal well three-dimensional geosteering technology is carried out through obtaining true dip via three dimensional comparison with apparent dip in two-dimensional, precise strata correlation,and reservoir distribution, recognizing the braided river facies of micro-facies and characteristics, and analyzing the regional geological background and distribution of sand bodies. The He8Group braided river sub-facies mainly include channel-filling, channel bar, abandoned channel, overbank deposit. Based on the analysis of sedimentary microfacies, the three-dimensional geosteering technology can effectively guarantee the horizontal drill encounter rate. The three-dimensional geosteering technology is developed based on three dimensional comparison, sedimentary microfacies scale, and their characteristics. It can expand and extend the development of the horizontal well geosteering methods and techniques,and effectively promote its application.
horizontal well; reservoir correlation; three-dimensional geosteering; geological model; Sulige gasfield
10.13278/j.cnki.jjuese.201506105.
2015-03-29
國(guó)家自然科學(xué)基金項(xiàng)目(40872083, 41272138);國(guó)家科技重大專項(xiàng)項(xiàng)目(2011ZX05008-004-61,2008ZX05044)
常森(1986--),男,工程師,主要從事天然氣開發(fā)研究及管理工作,E-mail:csheng_cq@petrochina.com.cn
羅靜蘭(1957--),女,教授,主要從事儲(chǔ)層沉積學(xué)、火山巖油氣藏巖相學(xué)、儲(chǔ)層地質(zhì)及成巖作用研究,E-mail:jlluo@nwu.edu.cn。
10.13278/j.cnki.jjuese.201506105
P618.130.21;TE122;TE242
A
常森,羅靜蘭,付曉燕,等.蘇里格氣田水平井地質(zhì)三維導(dǎo)向技術(shù):以盒8段辮狀河儲(chǔ)層為例.吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2015,45(6):1608-1619.
Chang Sen,Luo Jinglan,F(xiàn)u Xiaoyan,et al. Three-Dimensional Geosteering Technology for Horizontal Wells of Sulige Gasfield: A Case from Braided River Reservoir of the He8Group.Journal of Jilin University:Earth Science Edition,2015,45(6):1608-1619.doi:10.13278/j.cnki.jjuese.201506105.