黃琳琳, 夏偉杰, 周 瑩, 齊媛媛
(南京航空航天大學 雷達成像與微波光子技術教育部重點實驗室, 南京 210016)
?
動態(tài)目標寬帶雷達回波頻域模擬及成像仿真
黃琳琳, 夏偉杰, 周瑩, 齊媛媛
(南京航空航天大學 雷達成像與微波光子技術教育部重點實驗室, 南京210016)
摘要:采用理論建模仿真的方法模擬雷達回波對研究雷達成像和目標檢測識別具有重要意義。 在完成空中目標幾何建模的基礎上, 采用“走-停-走”模型, 發(fā)射一組X波段的步進頻率信號。 根據每個雷達脈沖發(fā)射時刻目標與雷達的角度關系, 用課題組自研的基于SBR的高頻電磁散射計算軟件計算得到目標的頻域RCS。 結合目標的飛行軌跡, 可以模擬出頻域的目標回波信號, 并在此基礎上對點目標和F-22模型的回波信號進行逆合成孔徑雷達(ISAR)成像處理, 成像結果驗證了該方法的有效性。
關鍵詞:動態(tài)目標; 寬帶雷達; 回波仿真; ISAR成像; 步進頻率信號
0引言
雷達的發(fā)射信號只是信息的載體, 不包含有用信息。 當目標被雷達照射, 并將部分能量反射回雷達時, 目標信息被調制到雷達的回波中。 雷達要實現檢測、 定位、 測速、 測距及識別等功能, 就必須對回波進行處理。 因此, 雷達回波貫穿于整個雷達信息處理系統(tǒng), 是整個雷達信息處理的核心。 要獲取雷達回波, 目前主要有兩種途徑: 場外實際測量和理論建模仿真計算。 場外實際測量成本高、 時間長, 而且受限于技術條件、 環(huán)境條件以及測試條件, 許多真實目標無法獲取。 在這種情況下, 需要用理論建模仿真計算的方法來獲得回波數據[1]。
目前, 雷達回波仿真的研究方法主要有兩類: 一類是利用散射中心模型提取出強散射中心的位置、 幅度和相位等, 再與發(fā)射波形運算, 得到回波, 但散射中心位置難以準確提取, 且運算復雜。 文獻[2-8]都是采用提取散射中心的方法將目標簡化為由多個散射點組成, 這種方法導致目標回波中包含的信息不全面, 無法體現目標的整體散射特性。 另一類是對目標建立CAD幾何模型后, 利用高頻近似方法計算目標的頻域雷達散射截面(RCS), 并結合步進頻率信號, 在頻域上建立目標的回波模型。 這種方法計入了目標的整體散射特性; 另外, 該方法在頻域上建模, 避免了時域方法中的卷積過程, 計算簡便。
在雷達回波的驗證方面, 文獻[9-11]通過仿真目標的一維距離像來說明模擬雷達回波的有效性, 文獻[12]則仿真了三個點目標的逆合成孔徑雷達(ISAR)像。 目前很少有人通過仿真運動中擴展目標的ISAR二維像來驗證模擬的回波結果。
本文采用第二類回波仿真方法, 模擬出頻域的目標回波信號。 該方法不僅計入了目標整體的散射特性, 還完成了目標靜態(tài)散射特性與寬帶雷達回波之間的轉換。 最后, 在此基礎上通過仿真試驗得到了點目標及F-22模型的回波信號, 進行ISAR成像處理, 獲得目標的二維圖像, 驗證了該方法的有效性。
1回波信號分析
雷達發(fā)射機產生電磁能經收發(fā)開關后傳輸給天線, 再由天線將此電磁能定向輻射于大氣中, 如果目標恰好位于定向天線的波束內, 則要截取一部分電磁能。 目標將被截取的電磁能向各方向散射, 其中部分散射的能量朝向雷達接收方向。 雷達天線收集到這部分散射的電磁波后, 經傳輸線和收發(fā)開關饋給接收機。 此時接收機接收到的微弱信號就是目標回波, 將該微弱信號放大并經信號處理后即可獲取所需信息[13]。
目標回波信號和發(fā)射信號相比, 主要在時間和幅度上發(fā)生了明顯的變化。
(1) 時間延遲
由于目標與雷達之間存在一定的距離R, 電磁波在空中以光速c傳播, 則回波相對于發(fā)射信號有一個延遲τ, 表示為
(1)
(2) 幅度變化
雷達發(fā)射信號射到目標表面, 由于目標各部分的結構和材料不同, 散射出去的回波信號的幅度會有很大的差異。 幅度變化很大程度上取決于目標的RCS。
通過以上分析可以推導目標回波信號的表達式。 假設目標與雷達之間的距離為R; 雷達發(fā)射頻率為ω=2πf的單頻信號s0(t)=exp(jωt); 時間延遲τ=2R/c; σ為目標的RCS, 則目標回波信號為
(2)
混頻后去除載波信號, 得到基頻的回波:
(3)
2ISAR成像原理
目標直線運動與雷達的相對運動可以分為平動和轉動, 轉動使散射點產生多普勒頻移, 這是成像的基本條件;平動對雷達成像不僅沒有貢獻, 而且還會影響成像質量, 因此需要通過運動補償把平動分量去掉[14]。 平動補償分為包絡對齊和相位補償[15], 由于這部分內容不是本文研究的重點, 這里不再贅述。
將平動分量補償掉后,ISAR成像就簡化為轉臺成像。 轉臺成像的回波模型如圖1所示[16]。
圖1 運動補償后的轉臺成像系統(tǒng)幾何關系圖
圖1中定義了兩個坐標系, (x,y)為目標坐標系, (u,v)為雷達坐標系, 轉換關系如下所示:
(4)
則目標上某一個散射點P與雷達的距離為
R=R0+v=R0-xsinθ+ycosθ
(5)
由式(2)可知, 點P的回波信號為
(6)
則整個目標反射的總的回波為
(7)
將式(5)代入式(7)中, 得
s(ω,θ)=
(8)
去除載頻及固定項, 得到回波信號表達式:
s(ω,θ)=
(9)
式(9)表明回波是發(fā)射信號的載波頻率和目標轉動角度的函數, 如果固定目標的轉動角度, 得到
(10)
式中: q(y,ω)為物體的一維距離像, 式(10)表明一維距離像的傅里葉變換就是隨頻率變化的目標回波s(ω,θ0), 因此, 只要對s(ω,θ0)作一個逆傅里葉變換就可以得到目標的一維距離像。 距離向分辨率為c/2B, 其中: c為光速3×108m/s; B為發(fā)射信號的帶寬。
類似地, 如果固定式中的頻率項, 得到對于單頻信號隨角度變化的目標回波:
(11)
式中: p(x,θ)為目標的橫向像, 如果對s(ω0,θ)作傅里葉變換就可以得到目標的橫向像p(x,θ)。 距離橫向分辨率為λ/2θ, 其中: λ為發(fā)射信號載波波長; θ為目標轉動的總角度。
因此, 只要先對原始回波在距離向作逆傅里葉變換, 得到目標的一維距離像, 然后再把同一距離單元的信號作傅里葉變換完成橫向分辨, 就可得到目標的二維像。
3動態(tài)目標回波仿真假設雷達發(fā)射步進頻率
(12)
而擴展目標各個方位向的RCS不一樣, 此時就要考慮目標的RCS。 本文用課題組自研的基于SBR的高頻電磁散射計算軟件來計算目標的RCS。 該軟件采用的射線跟蹤法、 幾何光學法、 等效電磁流法等高頻漸進技術都屬于頻域計算方法, 計算結果是目標頻域的RCS。 將計算得到的RCS數據整理后可以得到一個RCS矩陣:
(13)
根據式(3)可知, 將式(12)的點目標回波矩陣和式(13)的目標RCS矩陣對應元素相乘, 就可以得到擴展目標的回波矩陣:
S′=
(14)
式(12)點目標的回波矩陣和式(14)擴展目標的回波矩陣都屬于頻域回波矩陣。 該二維矩陣的橫向稱為距離向, 縱向稱為距離橫向(方位向)。
動態(tài)回波建模以及ISAR成像的步驟如圖2~3所示。
圖2 頻域回波建模步驟
圖3 頻域回波ISAR成像步驟
4仿真驗證
圖4 點目標與雷達的位置關系圖
雷達起始頻率為10 GHz; 帶寬為600 MHz; 計算頻率間隔為Δf=7.5 MHz; 距離向分辨率為c/2B=0.25 m; 目標轉動的總角度為θ=2°; 方位向分辨率為λ/2θ=0.43 m; 距離向采樣點81個; 方位向采樣點51個。
matlab仿真結果:
將仿真得到的雷達回波矩陣作距離向IFFT后得到的各個方位的距離像如圖5所示。 由于目標存在平動, 各個方位向上目標到雷達的距離R在變化, 因此, 圖5中有明顯的距離像錯位, 各個方位的距離像呈現一個弧形。 包絡對齊后的距離像如圖6所示, 可以看出, 各個方位的距離像已對齊, 彎曲的弧形已被拉直。 經過平動補償及方位向聚焦后點目標的ISAR圖像如圖7所示。
圖5 點目標各個方位的距離像
圖6 包絡對齊后各個方位的距離像
圖7 點目標的ISAR圖像
將圖4中點目標替換為F-22模型后的目標與雷達位置關系圖如圖8所示, 其他參數均不變。
圖8 F-22模型與雷達的位置關系圖
采用基于SBR的高頻電磁散射計算軟件來計算目標RCS時設置的目標坐標系如圖9所示。 為了驗證回波的正確性, 選取了一個能夠使飛機清晰成像的角度, 飛機的中軸線與Z軸的夾角為45°, 方位角為89°~91°, 俯仰角為90°。 飛機在坐標系中的尺寸為13.11 m×14.94 m×15.56 m。
matlab仿真結果:
圖9目標坐標系
將仿真得到的雷達回波矩陣作距離向IFFT后得到的各個方位的距離像如圖10所示; 包絡對齊后的距離像如圖11所示; F-22的ISAR圖像如圖12所示; F-22模型如圖13所示,與圖12相比, 能夠看到F-22的基本外形輪廓, 由此驗證了仿真得到的頻域回波的正確性。
圖10 各個方位的距離像
圖11 包絡對齊后各個方位的距離像
圖12 F-22的ISAR二維像
圖13 F-22模型圖
5結論
本文在分析目標回波信號特征的基礎上, 提出一種寬帶雷達回波頻域模擬的方法。 在目標動態(tài)飛行的情況下, 計算目標的姿態(tài)角, 對目標建立CAD幾何模型, 利用高頻電磁散射計算軟件計算得到目標的頻域RCS, 通過發(fā)射步進頻率信號, 模擬出頻域的動態(tài)目標回波信號, 最后通過ISAR成像仿真試驗驗證了回波的正確性。 該方法計入了目標的整體散射特性, 完成了目標靜態(tài)散射特性與寬帶雷達回波之間的轉換, 考慮了目標與雷達的距離變化對回波的影響; 同時, 避免了時域建模中提取散射中心、 卷積運算等復雜過程, 操作簡單, 運算量小。 需要說明的是, 為了簡化起見, 本文僅考慮了目標勻速直線運動的情況, 但為后續(xù)考慮目標含有加速度及微動等復雜情況奠定了基礎。
參考文獻:
[1] 溫曉楊. 動態(tài)目標雷達回波建模與仿真程序設計[D]. 長沙: 國防科學技術大學, 2006.
[2] 薛愛軍, 王曉丹, 宋亞飛, 等. 中段目標寬帶雷達回波仿真及分析[J]. 計算機仿真, 2013, 30(8): 23-26.
[3] 蔡武, 潘明海.基于散射中心模型的典型目標寬帶雷達回波仿真[J].航空兵器, 2015, (2): 34-37.
[4] 鮑鵬俊, 劉立國, 莫錦軍, 等. 基于GRECO的復雜目標ISAR圖像仿真[J]. 現代電子技術, 2012, 35(21): 31-34.
[5] 劉向陽, 曾操, 王靜, 等. 一種二維頻域SAR回波仿真的改進方法[J]. 西安電子科技大學學報(自然科學版), 2013, 40(3): 42-49.
[6] 汪丙南, 張帆, 向茂生. 基于混合域的SAR回波快速算法[J]. 電子與信息學報, 2011, 33(3): 690-695.
[7] Franceschetti G,Iodice A, Perna S, et al.SAR Sensor Trajectory Deviations:Fourier Domain figuretion and Extended Scene Simulation of Raw Signal[J]. IEEE Transations on Geoscience and Remote Sensing, 2006, 44(9): 2323-2334.
[8] Khwaja A S, Ferro-Famil L, Pottier E.SAR Raw Data Simulation Using High Precision Focusing Methods[C]∥Paris: The European Microwave Association, 2005.
[9] 寧超, 耿旭樸, 王超, 等. 高速運動目標寬帶雷達回波頻域模擬及分析[J]. 雷達學報, 2014, 3(2): 142-149.
[10] 袁斌, 劉萬全, 徐世友, 等. 機載火控雷達對空目標動態(tài)寬帶回波仿真[J]. 系統(tǒng)仿真學報, 2013, 25(6): 1241-1246.
[11] 姚漢英, 李星星, 孫文峰, 等. 基于電磁散射數據的彈道目標寬帶回波仿真[J]. 系統(tǒng)仿真學報, 2013, 25(4): 599-604.
[12] 楊正龍, 劉愛芳, 李士國, 等. 高速運動目標的寬帶回波仿真和成像[J]. 現代雷達, 2007, 29(6): 43-45.
[13] 丁鷺飛, 陳建春. 雷達原理(第4版)[M].北京: 電子工業(yè)出版社, 2009.
[14] 董明慧. ISAR成像電磁模擬的研究[D]. 西安: 西安電子科技大學, 2012.
[15] 費智婷. 機動目標的逆合成孔徑雷達成像研究[D]. 成都: 電子科技大學, 2006.
[16] 夏偉杰. 合成孔徑雷達回波仿真與圖像模擬[D]. 南京: 南京航空航天大學, 2010.
Wideband Radar Echo Frequency-Domain Simulation and
Imaging Simulation for Moving Target
Huang Linlin, Xia Weijie, Zhou Ying, Qi Yuanyuan
(Key Laboratory of Radar Imaging and Microwave Photonlcs Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
Abstract:Radar echo simulation by using the method of theoretical modeling is significant to the study of radar imaging and target detection and recognition. Based on the geometric modeling for the target, ‘go-stop-go’ model is taken and a group of X-band stepped-frequency signals are chosen as the transmitted waveform. According to the angular relations between the target and radar at each transmission time, the RCS of target in frequency-domain is figured out by the SBR-based high frequency electromagnetic scattering calculation software which is developed by seminar. Then, according to the trajectory of target, the echo signal in frequency-domain is simulated. In addition, the echo signals of point target and F-22 model are processed by inverse synthetic aperture radar(ISAR) imaging, and the simulation results illustrate the efficiency of the proposed method.
Key words:moving target; wideband radar; echo simulation; ISAR imaging; stepped-frequency signal
作者簡介:黃琳琳(1992-), 女, 江蘇南通人, 碩士研究生, 研究方向為信息與信號處理。
基金項目:航空科學基金項目(20130152001)
收稿日期:2015-06-29
中圖分類號:TN957
文獻標識碼:A
文章編號:1673-5048(2015)06-0058-05