朱少飛,唐群新
自噬在雷帕霉素逆轉脊髓嗎啡耐受形成機制研究
朱少飛,唐群新
目的 研究鞘內注射雷帕霉素對大鼠嗎啡耐受形成的作用。方法 選擇鞘內置管成功的成年雄性SD大鼠32只,隨機分為M組、C組、MR組和R組(n=8),M組2次/d,連續(xù)7 d鞘內注射嗎啡20 μg;C組2次/d,連續(xù)7 d鞘內注射生理鹽水;MR組2次/d,連續(xù)7 d鞘內注射嗎啡20 μg,并于第3天第2次注射嗎啡同時鞘內注射雷帕霉素2.3 μg,連續(xù)3 d;R組2次/d,連續(xù)7 d鞘內注射生理鹽水,并于第3天第2次注射生理鹽水前鞘內注射雷帕霉素2.3 μg,連續(xù)3 d。于鞘內注射前及第1、3、5、7天,第2次鞘內注藥后30 min,采用電子Von Frey測痛儀測定機械縮足反射閾值(MWT),最后一次MWT測定結束后,隨機取4只大鼠L4~6脊髓背角,采用Western blot測定自噬標記蛋白LC3Ⅱ(LC3Ⅱ/LC3Ⅰ)及自噬調節(jié)信號相關蛋白Beclin-1的表達。結果 與M組比較,MR組鞘內注射第3、5、7天后,MWT均升高(P<0.05),雖然MR組MWT有降低趨勢,但在第7天MWT僅比第1天下降43%,表明第3天后雷帕霉素與嗎啡合用能部分逆轉嗎啡耐受的形成。Western blot結果:與C組比較,M組、R組和MR組第7天脊髓背角Beclin-1、LC3Ⅱ與LC3Ⅱ/LC3Ⅰ表達均上調(P<0.05)。與M組比較,R組和MR組第7天脊髓背角Beclin-1、LC3Ⅱ與LC3Ⅱ/LC3Ⅰ表達顯著上調(P<0.01)。免疫組織化學結果:與M組比較,第7天MR組脊髓背角Beclin-1表達平均光密度值明顯升高(P<0.01)。結論 嗎啡耐受開始形成時合用雷帕霉素可以部分逆轉脊髓嗎啡耐受的形成。
嗎啡耐受;自噬;雷帕霉素
在疼痛藥物治療領域,阿片類藥物占據(jù)著主導地位。嗎啡是目前常用的強效鎮(zhèn)痛藥物,然而在慢性疼痛患者中,由于產(chǎn)生藥物耐受、依賴,或藥物不良反應而影響了其使用。目前嗎啡耐受的確切機制仍不清楚,阿片受體脫敏、內吞和受體下游信號轉導的調控是嗎啡耐受形成的主要原因[1]。一氧化氮合酶(NOS)表達上調,N-甲基-D天冬氨酸(NMDA)受體結合活性增加也參與慢性嗎啡耐受的形成[2]。
正常水平的自噬是維持細胞穩(wěn)態(tài)、保護細胞的一種機制。在自噬的信號調節(jié)中,哺乳動物雷帕霉素靶蛋白(Mammalian target of rapamycin,mTOR)處于中心環(huán)節(jié),其中PI3K-Akt-mTOR是最重要的信號通路[3]。雷帕霉素是一種大環(huán)內酯類免疫抑制劑,通過與親免素FK506結合蛋白12(FKBP12)形成復合物特異性抑制mTORC1活性,激活自噬,是研究最多的自噬誘導劑[4]。既往有研究表明,特異性μ阿片受體激動劑DAMGO可通過PI3K信號通路激活Akt,并使其下游的S6K、4EBP1蛋白磷酸化,調節(jié)神經(jīng)元蛋白翻譯與突觸可塑性[5]。最近研究表明,海馬CA3區(qū)PI3K-Akt-mTOR-p70S6K信號通路的激活在慢性嗎啡引起條件性位置偏愛(CPP)中起重要作用,應用PI3K抑制劑LY294002或者mTOR抑制劑雷帕霉素可以抑制PI3K-Akt信號通路的激活,從而抑制CPP的形成[6]。慢性應用嗎啡導致神經(jīng)元胞體減小、增加興奮性和引起獎賞效應耐受與下調腹側被蓋區(qū)(VTA)多巴胺神經(jīng)元Akt-mTORC2活性有關,雖然mTORC1活性增加,但與這些效應無關。自噬激活是應用嗎啡后的早期反應,可能會有細胞保護作用[7-8]。自噬是否也參與嗎啡耐受形成過程的調節(jié),尚未見文獻報道。
本研究觀察慢性嗎啡耐受過程中自噬標記蛋白LC3和自噬上游信號通路蛋白Beclin-1水平的變化,以及應用雷帕霉素激活自噬對慢性嗎啡耐受變化的作用。
1.1 實驗動物 雄性SD大鼠,體重250~300 g,由廣東省醫(yī)學實驗動物中心提供,動物合格證號:SCXK(粵)2008-0002。動物每籠4只飼養(yǎng),保持室溫在24 ℃左右和50%~60%的相對濕度,自由攝食與飲水,隔天更換墊料。在安靜、白天與黑夜12 h循環(huán)光照的環(huán)境中適應1周后開始實驗。所有的實驗步驟都按照有關實驗動物的使用原則規(guī)范操作,盡量減輕動物的痛苦。
1.2 鞘內置管 根據(jù)經(jīng)典的Yaksh法[9],參考大鼠腰部蛛網(wǎng)膜下腔置管法[10-11],進行大鼠腰段置管模型的制作。大鼠腹腔注射10%水合氯醛溶液(3 mL/kg)麻醉后,俯臥位,下腹部墊1個20 mL注射器,腰背部剪毛、消毒后,于背部正中線L3~4間隙縱向切開背部皮膚約2 cm,切開筋膜,鈍性分離肌肉,暴露L3~4棘突間隙,切除部分L4棘突,用1 mL針頭(針尖鈍性處理,消毒)探查,穿破黃韌帶和硬脊膜,大鼠尾巴突然側擺或后肢出現(xiàn)抽動為成功標志,將充滿生理鹽水的PE-10導管經(jīng)硬脊膜破口向頭端插入2 cm,可見導管開口有腦脊液流出。將導管固定于肌肉上,然后在大鼠頸部皮膚切小口,將PE-10導管經(jīng)皮下拉至頸部,穿出后固定,PE-10導管外露3 cm,不銹鋼針芯封閉管腔。術畢局部肌肉注射4萬單位青霉素鈉。置管后第2天,蛛網(wǎng)膜下腔注射2%利多卡因20 μL,然后以10 μL生理鹽水沖洗,如果插管位置在脊髓腰膨大處,大鼠立即出現(xiàn)雙后肢癱瘓,30 min后逐漸恢復下肢活動,則證明置管位置正確,并且無明顯脊髓損傷,可行下一步實驗,在大鼠脊髓取材時可以確定。術后出現(xiàn)后肢癱瘓、運動功能障礙或導管位置不到位的大鼠從實驗中排除。
1.3 實驗分組 選擇鞘內置管成功的成年雄性SD大鼠32只,隨機分成4組,每組8只。M組(慢性嗎啡耐受模型組):鞘內注射鹽酸嗎啡20 μg/10 μL,2次/d,給藥時間:9∶00和18∶00,每次注藥后以10 μL生理鹽水沖管,連續(xù)7 d。C組(生理鹽水對照組):鞘內注射生理鹽水20 μL,2次/d,給藥時間:9∶00和18∶00,連續(xù)7 d。MR組(慢性嗎啡耐受+雷帕霉素組):鞘內注射鹽酸嗎啡同M組,于第3天第2次注射嗎啡同時鞘內注射雷帕霉素2.3 μg/10 μL,連續(xù)3 d。R組(雷帕霉素對照組):鞘內注射生理鹽水同C組,于第3天第2次注射生理鹽水同時鞘內注射雷帕霉素2.3 μg/10 μL,連續(xù)3 d。
1.4 Western blot檢測和免疫組織化學檢測 取脊髓組織置于1 mL細胞裂解液中,冰上勻漿。12 000 r/min 4 ℃離心15 min,取上清。取1 μL蛋白液,用BCA法測蛋白含量,細胞裂解液將上樣蛋白濃度調成一致。樣品按4∶1加入5×上樣緩沖液,100 ℃變性5 min。15% SDS-聚丙烯酞胺凝膠電泳,濕法轉至PVDF膜,室溫封閉2 h,一抗(兔抗鼠LC3B 1∶700,兔抗鼠Beclin-1 1∶500,Abcam公司)與內參GAPDH(1∶400,武漢博士德公司)4C孵育過夜,HRP標記的羊抗兔二抗(1∶4 000,武漢博士德公司)室溫孵育1 h,ECL顯色,隨后暗室曝光,顯影,定影。采用Quantity One圖像分析軟件分析所得條帶的光密度值,以靶蛋白光密度值/GAPDH光密度比值作為目的蛋白的相對表達量。
2.1 機械痛閾的變化 各組大鼠機械痛閾基礎值比較差異無統(tǒng)計學意義(P>0.05)。與C組、R組比較,M組第1天鞘內注射嗎啡產(chǎn)生最大鎮(zhèn)痛效應,隨著注射時間增加,MWT逐漸下降,到第7天接近基礎值水平,表明嗎啡耐受已經(jīng)形成。與M組比較,MR組鞘內注射第3、5、7天后MWT均升高(P<0.05),雖然MR組MWT有降低趨勢,但在第7天MWT僅比第1天下降43%,表明第3天后雷帕霉素與嗎啡合用能部分逆轉嗎啡耐受的形成。C組和R組各時點機械痛閾與基礎值比較差異無統(tǒng)計學意義(見表1)。
表1 四組大鼠各時點機械痛閾的比較(g)
注:與C組、R組比較,*P<0.01;與M組比較,#P<0.05
2.2 Western blot結果
2.2.1 大鼠脊髓背角LC3蛋白水平的變化 與C組比較,M組、R組和MR組脊髓背角LC3Ⅱ與LC3Ⅱ/LC3Ⅰ表達均上調(P<0.05)。與M組比較,R組和MR組LC3Ⅱ與LC3Ⅱ/LC3Ⅰ表達顯著上調(P<0.01)。R組和MR組比較無統(tǒng)計學差異。
圖1 四組大鼠第7天脊髓背角LC3蛋白表達
2.2.2 大鼠脊髓背角Beclin-1蛋白水平的變化 與C組比較,M組、R組和MR組脊髓背角Beclin-1表達顯著增加(P<0.01)。與M組比較,R組和MR組Beclin-1表達量增加(P<0.01)。與R組比較,MR組Beclin-1表達輕度增高(P<0.05)。
哺乳動物雷帕霉素靶蛋白mTOR是自噬的負調控分子,在自噬信號調節(jié)中處于中心環(huán)節(jié)[12]。調節(jié)mTOR活性的主要信號通路是磷脂酰肌醇三磷酸激酶(PI3K)途徑。生長因子或胰島素與細胞膜表面相應受體結合激活Ⅰ型PI3K,使PIP2磷酸化生成PIP3,PIP3募集Akt/PKB及其激活劑PDK1,激活Akt,導致結節(jié)性硬化復合物TSC1/2的磷酸化。TSC1/TSC2復合物整合上游各種激酶的信號,包括Akt和細胞外信號調節(jié)蛋白激酶(ERK1/2)[13]。下游的Rheb是小GTP結合蛋白,直接與mTOR結合,并激活mTOR。TSC1/2磷酸化后,TSC1分裂出來,TSC1/2活性下降,抑制Rheb作用下降,負調節(jié)作用減弱,mTOR活性增強[14]。
雷帕霉素是特異性mTOR抑制劑,通過與親免素FK506結合蛋白12(FKBP12)形成復合物抑制mTORC1活性,從而激活自噬[15]。正常的自噬活性對于維持神經(jīng)細胞穩(wěn)態(tài)非常重要。最近研究表明,在神經(jīng)退行性疾病,如亨廷頓病、帕金森病等,應用雷帕霉素可以增強自噬,通過清除大量有聚集傾向的蛋白,減輕毒性,減少神經(jīng)元死亡[16-19]。Erlich等[20]在小鼠閉合性腦外傷后4 h應用雷帕霉素,明顯抑制p70S6K磷酸化,減少小膠質細胞的活化,增加損傷處神經(jīng)元的存活,改善神經(jīng)功能恢復。Carloni等[21]研究顯示,大鼠腦缺氧/缺血模型中,應用雷帕霉素是通過PI3K-Akt-mTOR信號通路促進自噬而產(chǎn)生的神經(jīng)保護作用,該信號通路的受阻,如缺氧/缺血前20 min應用自噬拮抗劑渥曼青霉素(WM)、3-甲基腺嘌呤(3MA)抑制PI3K后,可增加細胞壞死。因此,應用雷帕霉素促進自噬活性,有神經(jīng)保護作用。
然而,雷帕霉素抑制mTOR可以產(chǎn)生有利或有害的作用,關鍵在于疾病的模型與應用時機。研究表明,每天予雷帕霉素處理后,可加重腎臟缺血/再灌注損傷[22];缺血預處理前15 min應用雷帕霉素可以減弱心肌缺血預處理的心肌保護作用[23]。缺血再灌注前應用雷帕霉素,可以減少心肌梗死面積和細胞死亡,起到類似缺血預處理的心肌保護作用[16]。雷帕霉素的細胞保護作用可能是由于阻礙凋亡的信號通路,雷帕霉素可以通過激活自噬清除受損線粒體,減少胞漿內細胞色素C的釋放,降低Caspase酶的激活[24]。如在缺氧/缺血性腦損傷模型上,雷帕霉素激活自噬可以減少活化的Caspase-3表達[25]。
既往對雷帕霉素在體內的藥代動力學研究表明,雷帕霉素起效時間約2 h,半衰期較長,大約33~63 h[26-27]。也有相關研究認為,單次使用雷帕霉素可以影響自噬活性>24 h[28-29]。Sekiguchi等[30]在小鼠脊髓損傷后4 h單次腹腔內注射雷帕霉素1 mg/kg可以有效抑制24 h后mTOR信號途徑的p70S6K的磷酸化,明顯減低神經(jīng)細胞死亡,提高運動功能評分。在福爾馬林致痛的模型上,大鼠后足掌面皮下注射5%福爾馬林前20 min鞘內注射雷帕霉素20 μL(250 μM,4.6 μg),與對照組相比,可以明顯減輕福爾馬林致痛的雙相反應[31]。而在坐骨神經(jīng)分支選擇性損傷模型(SNI)上,于術后第6天鞘內注射10 μL(250 μM,2.3 μg)雷帕霉素,可以減輕SNI后繼發(fā)的機械痛覺過敏[32]。本研究中,在嗎啡耐受開始形成時(連續(xù)鞘內注射嗎啡第3天)鞘內合用雷帕霉素2.3 μg/10 μL,連續(xù)3 d,能明顯減輕嗎啡耐受,脊髓背角LC3Ⅱ和Beclin-1蛋白均明顯上調,而雷帕霉素對照組對痛閾無影響,說明了雷帕霉素逆轉嗎啡耐受的機制可能與上調自噬活性有關,但還不能證明是促進μ阿片受體的內吞,修復信號通路的動態(tài)變化,來減輕慢性嗎啡耐受形成的。今后考慮研究自噬在嗎啡耐受過程中阿片受體蛋白表達和mRNA表達中的作用,來進一步驗證。
本研究顯示,嗎啡耐受開始形成時合用雷帕霉素,可能是通過抑制mTOR活性,促進自噬活性,從而部分逆轉嗎啡耐受的形成。
[1]Jaggi AS,Singh N.Analgesic potential of intrathecal farnesyl thiosalicylic acid and GW 5074 in vincristine-induced neuropathic pain in rats[J].Food and Chemical Toxicology,2012,50(5):1295-1301.
[2]Hayashi Y,Koga Y,Zhang X,et al.Autophagy in superficial spinal dorsal horn accelerates the cathepsin B-dependent morphine antinociceptive tolerance[J].Neuroscience,2014,275:384-394.
[3]Toda N,Kishioka S,Hatano Y,et al.Modulation of opioid actions by nitric oxide signaling[J].Anesthesiology,2009,110(1):166-181.
[4]Bekhit MH.Opioid-induced hyperalgesia and tolerance[J].Am J Ther,2010,17(5):498-510.
[5]Esclatine A,Chaumorcel M,Codogno P.Macroautophagy signaling and regulation[J].Curr Top Microbiol Immunol,2009,335:33-70.
[6]P Headrick J,Pepe S,N Peart J.Non-analgesic effects of opioids:cardiovascular effects of opioids and their receptor systems[J].Current Pharmaceutical Design,2012,18(37):6090-6100.
[7]Viguier F,Michot B,Kayser V,et al.GABA,but not opioids,mediates the anti-hyperalgesic effects of 5-HT 7 receptor activation in rats suffering from neuropathic pain[J].Neuropharmacology,2012,63(6):1093-1106.
[8]Lamming DW,Ye L,Katajisto P,et al.Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity[J].Science,2012,335(6076):1638-1643.
The study suggested a possible role of IL-1β -511 C/T genotypes in the pathogenesis of pNETs since the presence of the IL-1β -511 CT and TT genotypes and the T allele was associated with an increased risk of pNET only.
[9]Cui Y,Zhang XQ,Cui Y,et al.Activation of phosphatidylinositol 3-kinase/akt-mammalian target of rapamycin signaling pathway in the hippocampus is essential for the acquisition of morphine-induced place preference in rats[J].Neuroscience,2010,171(1):134-143.
[10]Mazei-Robison MS,Koo JW,Friedman AK,et al.Role for mTOR signaling and neuronal activity in morphine-induced adaptations in ventral tegmental area dopamine neurons[J].Neuron,2011,72(6):977-990.
[11]Zhao L,Zhu Y,Wang D,et al.Morphine induces Beclin-1 and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus[J].Autophagy,2010,6(3):386-394.
[12]周曉菊,李宇寧.哺乳動物雷帕霉素靶蛋白在阿霉素誘導足細胞損傷中的作用[J].國際兒科學雜志,2014,41(6):644-647.
[13]Chawla SP,Staddon AP,Baker LH,et al.Phase II study of the mammalian target of rapamycin inhibitor ridaforolimus in patients with advanced bone and soft tissue sarcomas[J].Journal of Clinical Oncology,2012,30(1):78-84.
[14]Benjamin D,Colombi M,Moroni C,et al.Rapamycin passes the torch:a new generation of mTOR inhibitors[J].Nature reviews Drug Discovery,2011,10(11):868-880.
[15]呂金,陳華,崔健君.慢性神經(jīng)痛大鼠鞘內聯(lián)合應用嗎啡和氯胺酮在脊髓上水平的抗傷害性作用及對嗎啡耐受的影響[J].實用藥物與臨床,2013,15(11):714-716.
[16]Barlow AD,Xie J,Moore CE,et al.Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2)[J].Diabetologia,2012,55(5):1355-1365.
[18]Perkey E,Fingar D,Miller RA,et al.Increased Mammalian target of rapamycin complex 2 signaling promotes age-related decline in CD4 T cell signaling and function[J].The Journal of Immunology,2013,191(9):4648-4655.
[19]Malagelada C,Jin ZH,Jackson-Lewis V,et al.Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson′s disease[J].J Neurosci,2010,30(3):1166-1175.
[20]Erlich S,Alexandrovich A,Shohami E,et al.Rapamycin is a neuroprotective treatment for traumatic brain injury[J].Neurobiol Dis,2007,26(1):86-93.
[21]Carloni S,Girelli S,Scopa C,et al.Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia[J].Autophagy,2010,6(3):366-377.
[22]Lui SL,Chan KW,Tsang R,et al.Effect of rapamycin on renal ischemia-reperfusion injury in mice[J].Transpl Int,2006,19(10):834-839.
[23]Voleti B,Navarria A,Liu RJ,et al.Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling,synaptogenesis,and antidepressant behavioral responses[J].Biological Psychiatry,2013,74(10):742-749.
[24]Khan S,Salloum F,Das A,et al.Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes[J].J Mol Cell Cardiol,2006,41(2):256-264.
[25]Neff F,Flores-Dominguez D,Ryan DP,et al.Rapamycin extends murine lifespan but has limited effects on aging[J].The Journal of Clinical Investigation,2013,123(8):3272-3291.
[26]Long SA,Rieck M,Sanda S,et al.Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function[J].Diabetes,2012,61(9):2340-2348.
[27]王海蓮,閆素英,劉揚.中國9家腫瘤??漆t(yī)院2009-2012年應用鎮(zhèn)痛藥處方趨勢分析[J].實用藥物與臨床,2014,17(9):1219-1223.
[28]Lamming DW,Ye L,Astle CM,et al.Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive[J].Aging Cell,2013,12(4):712-718.
[29]Sheng R,Zhang LS,Han R,et al.Autophagy activation is associated with neuroprotec-tion in a rat model of focal cerebral ischemic preconditioning[J].Autophagy,2010,6(4):482-494.
[30]Sekiguchi A,Kanno H,Ozawa H,et al.Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice[J].J Neurotrauma,2012,29(5):946-956.
[31]Bové J,Martínez-Vicente M,Vila M.Fighting neurodegeneration with rapamycin:mechanistic insights[J].Nature Reviews Neuroscience,2011,12(8):437-452.
[32]Caramés B,Hasegawa A,Taniguchi N,et al.Autophagy activation by rapamycin reduces severity of experimental osteoarthritis[J].Ann Rheum Dis,2012,71(4):575-581.
Effects of intrathecal rapamycin on the development of morphine tolerance
ZHU Shao-fei,TANG Qun-xin
(Department of Anesthesiology,Haikou People′s Hospital,Haikou 570208,China)
Objective To investigate the effects of intrathecal (IT) rapamycin on the development of morphine tolerance.Methods 32 healthy male SD rats with intrathecal (IT) catheter successfully placed were randomly divided into 4 groups (n=8) : group M was given morphine 20 μg IT twice daily for 7 d; group C was given normal saline(NS) 20 μL IT twice daily for 7 d; group MR was given morphine 20 μg IT twice daily for 7 d,and at the second injection from 3 d to 5 d,rapamycin 2.3 μg was added; group R was given normal saline 20 μL IT twice daily for 7 d,and at the second injection from 3 d to 5 d,rapamycin 2.3 μg was injected before the normal saline.Mechanical withdrawal thresholds (MWT) to von Frey filament stimulation were measured before intrathecal morphine or NS was given and at 30 min after second time of IT morphine or NS administration on 1,3,5,7 d.The rats were sacrificed after MWT measurement.The autophagy marker protein LC3Ⅱ (or LC3Ⅱ/LC3Ⅰ) and autophagy signal pathway related protein Beclin-1 expression in spinal dorsal horn was determined by Western blot.Results The analgesic effect of morphine decreased slowly in group MR,but higher than that of group M from 3 d to 7 d (P<0.05).Western blot results showed that LC3Ⅱ,Beclin-1 expression and LC3Ⅱ/LC3Ⅰ ratio were up-regulated in group M,group MR and group R compared with those in group C (P<0.05).The LC3Ⅱ,Beclin-1 expression and LC3Ⅱ/LC3Ⅰ ratio were higher in group MR and group R than those in group M (P<0.01).Immunohistochemistry results showed that the optical density of Beclin-1 in group MR was higher than that in group M (P<0.01).Conclusion Rapamycin could partly reverse the development of spinal morphine tolerance.
Morphine tolerance; Autophagy; Rapamycin
2015-01-21
海南省??谑腥嗣襻t(yī)院麻醉科,???570208
10.14053/j.cnki.ppcr.201507005