何明明,陳蘊(yùn)生,李 寧,朱才輝
(西安理工大學(xué)巖土工程研究所,陜西西安 710048)
?
單軸循環(huán)荷載作用下砂巖變形特性與能量特征
何明明,陳蘊(yùn)生,李 寧,朱才輝
(西安理工大學(xué)巖土工程研究所,陜西西安 710048)
摘 要:為了研究單軸循環(huán)荷載下砂巖的變形與能量特性,利用WDT-1500多功能材料試驗(yàn)機(jī),對(duì)砂巖進(jìn)行不同應(yīng)力振幅條件下循環(huán)加載試驗(yàn),研究了循環(huán)加載過(guò)程變形3階段的變形特性、循環(huán)軟化與循環(huán)硬化及能耗特征,并且建立了耗散能隨循環(huán)次數(shù)變化的演化方程。研究結(jié)果表明:①循環(huán)荷載上限高于或者低于砂巖屈服應(yīng)力時(shí),在循環(huán)加載過(guò)程中的初始階段和等速階段砂巖的環(huán)向和軸向變形表現(xiàn)出不同的變形特性;②單軸壓縮條件下的屈服應(yīng)力是砂巖在循環(huán)加載過(guò)程中循環(huán)硬化和軟化特性出現(xiàn)變化的分界點(diǎn);③在循環(huán)加載過(guò)程中的不同階段能量耗散特征及其演化規(guī)律是不同的,其演化曲線呈現(xiàn)U形或者L形;④提出基于Lazan材料阻尼理論的耗散能演化方程,試驗(yàn)數(shù)據(jù)與計(jì)算結(jié)果對(duì)比顯示該方程能夠較好地反映砂巖循環(huán)加載過(guò)程中的能量耗散特征。
關(guān)鍵詞:砂巖;循環(huán)荷載;循環(huán)軟化與硬化;耗散能演化;變形
責(zé)任編輯:許書(shū)閣
何明明,陳蘊(yùn)生,李 寧,等.單軸循環(huán)荷載作用下砂巖變形特性與能量特征[J].煤炭學(xué)報(bào),2015,40(8):1805-1812.doi:10.13225/ j.cnki.jccs.2014.1226
動(dòng)荷載作用下的巖體穩(wěn)定性問(wèn)題是目前學(xué)術(shù)界和工程界廣泛關(guān)注的熱點(diǎn)問(wèn)題。已有一些學(xué)者研究了爆炸[1-2]、沖擊荷載[3-5]作用下巖石的動(dòng)態(tài)力學(xué)特性,及循環(huán)加卸載下巖石的能量特征[6-8]。而研究周期荷載作用下巖石的變形特性及其演化規(guī)律,有助于正確認(rèn)識(shí)巖體的破壞機(jī)理,進(jìn)而科學(xué)地評(píng)價(jià)巖體的長(zhǎng)期穩(wěn)定性。已有眾多國(guó)內(nèi)外學(xué)者對(duì)循環(huán)荷載下巖石的變形、阻尼、疲勞特性及疲勞損傷演化規(guī)律等進(jìn)行全面研究,獲得了豐富的研究成果[9-30]。如葛修潤(rùn)等[9-11]對(duì)循環(huán)荷載作用下巖石的不可逆變形及疲勞門(mén)檻值等進(jìn)行了系統(tǒng)的研究,認(rèn)為巖石不可逆變形的發(fā)展存在3個(gè)階段,以體積變形作為疲勞控制變量,疲勞門(mén)檻值接近屈服值;M.N.Bagde等[12-13]研究了砂巖在循環(huán)荷載作用下應(yīng)變振幅、頻率對(duì)砂巖疲勞特性、能量特征的影響;Xiao J.Q.等[14]研究了花崗巖在不同應(yīng)力水平循環(huán)荷載條件下?lián)p傷變量的演化規(guī)律;郭印同等[15]研究了鹽巖在單軸循環(huán)荷載作用下疲勞強(qiáng)度、變形及損傷特征,確定了鹽巖疲勞破壞門(mén)檻值;王者超等[16]研究了花崗巖的疲勞力學(xué)特性,基于內(nèi)時(shí)理論提出了花崗巖的疲勞力學(xué)模型;Liu E.L.等[17]討論了在不同圍壓作用下循環(huán)加載時(shí)巖樣的動(dòng)力力學(xué)性質(zhì),研究圍壓對(duì)砂巖的動(dòng)力力學(xué)性質(zhì)的影響;A.Aghaei.Araei等[18]研究了單軸循環(huán)荷載下加載速率、初始應(yīng)力狀態(tài)對(duì)巖石應(yīng)力-應(yīng)變曲線的影響;Li Ning等[19-20]研究了循環(huán)荷載下不同裂隙巖石的動(dòng)力特性,并且建立了疲勞損傷模型;劉建峰等[21-22]研究了單軸循環(huán)荷載和組合荷載下泥質(zhì)粉砂巖的阻尼特性;許江等[23-29]研究了周期荷載下巖石的變形特性,聲發(fā)射特征,疲勞損傷模型及其不同試驗(yàn)環(huán)境下滯回曲線演化規(guī)律;楊永杰等[30]認(rèn)為循環(huán)荷載下煤巖的疲勞門(mén)檻值不超過(guò)單軸抗壓強(qiáng)度的81%。從上述研究成果主要得到以下結(jié)論:①循環(huán)荷載的應(yīng)力上限超過(guò)應(yīng)力門(mén)檻值時(shí),巖石發(fā)生疲勞破壞;②在循環(huán)荷載下應(yīng)力上限低于疲勞門(mén)檻值時(shí)巖石的變形分為2個(gè)階段,應(yīng)力上限高于疲勞門(mén)檻值時(shí)變形為3個(gè)階段;③循環(huán)荷載的應(yīng)力上限和應(yīng)力振幅對(duì)巖石力學(xué)性質(zhì)的影響大于荷載頻率的影響。
大量巖石室內(nèi)試驗(yàn)結(jié)果表明,巖石介質(zhì)的形變中廣泛存在應(yīng)變硬化與應(yīng)變軟化現(xiàn)象。而已有研究中,對(duì)于循環(huán)荷載作用下巖石循環(huán)軟硬化特性研究方面的工作還不充分。本文將通過(guò)不同應(yīng)力振幅條件下砂巖的循環(huán)荷載試驗(yàn)探討以下內(nèi)容:①循環(huán)荷載作用下砂巖軸向變形、環(huán)向變形及體積變形特性;②循環(huán)加載過(guò)程中砂巖的循環(huán)硬化和循環(huán)軟化特性;③循環(huán)加載過(guò)程中砂巖的能耗特征及應(yīng)力振幅對(duì)耗散能影響規(guī)律;④循環(huán)荷載作用下砂巖耗散能的演化方程。研究成果可為深入了解周期荷載作用下巖石力學(xué)性質(zhì)和相關(guān)工程實(shí)踐提供參考。
1.1 試驗(yàn)儀器及方法
力學(xué)試驗(yàn)采用西安理工大學(xué)巖土工程研究所與長(zhǎng)春朝陽(yáng)試驗(yàn)儀器有限公司聯(lián)合研制的WDT-1500多功能材料試驗(yàn)機(jī),試驗(yàn)機(jī)由三軸壓縮和直剪兩部分構(gòu)成,采用德國(guó)DOLI公司EDC全數(shù)字伺服測(cè)控器,自平衡壓力室,軸向和徑向變形引伸計(jì)等先進(jìn)技術(shù),配備聲波檢測(cè)系統(tǒng),可進(jìn)行復(fù)雜應(yīng)力條件下的單軸、三軸壓縮試驗(yàn)、剪切試驗(yàn)、疲勞試驗(yàn)。
1.2 試樣制備
試驗(yàn)所用的砂巖來(lái)自陜西省銅川市龍?zhí)端畮?kù),該砂巖具有良好的完整性和均勻性。依據(jù)國(guó)際巖石力學(xué)學(xué)會(huì)的規(guī)定,將所采集的砂巖加工成?50 mm× 100 mm的標(biāo)準(zhǔn)試樣,對(duì)試樣斷面切割、磨平,使其端面平整度控制在0.02 mm以?xún)?nèi),直徑誤差小于0.3 mm。測(cè)定砂巖密度為2.45~2.46 g/ cm3,含水率為1.42%~1.45%,縱波速度Vp為3 719~3 785 m/ s。經(jīng)巖性鑒定巖樣為鈣質(zhì)長(zhǎng)石砂巖,細(xì)中粒砂質(zhì)結(jié)構(gòu),碎屑粒徑0.2~0.5 mm,碎屑結(jié)構(gòu)次棱角狀含量73%,填隙物含量27%,膠結(jié)物成分為碳酸鹽,膠結(jié)類(lèi)型為孔隙式。碎屑含量分別為黑云母10%,白云母2%,鉀長(zhǎng)石63%,石英19%,金屬礦物3%,巖屑3%。
1.3 試驗(yàn)方案
為了分析循環(huán)荷載上限對(duì)砂巖力學(xué)性質(zhì)的影響,在循環(huán)荷載上限小于屈服應(yīng)力時(shí)和循環(huán)荷載上限大于屈服應(yīng)力時(shí)開(kāi)展循環(huán)加載試驗(yàn)。在加載速率為1 mm/ min下測(cè)定巖樣的單軸峰值強(qiáng)度為94.46 MPa,屈服應(yīng)力為75.92 MPa。以5組砂巖試樣作為循環(huán)加載的試驗(yàn)對(duì)象,確定循環(huán)荷載的循環(huán)荷載上限分別為60,70,80,85,94.46 MPa;循環(huán)荷載下限為40 MPa;則循環(huán)荷載振幅為20,30,40,45, 54.46 MPa;對(duì)應(yīng)的應(yīng)力水平分別為42.3%~63.5%,42.3%~74.1%,42.3%~84.7%,42.3%~90.0%,42.3%~100%;施加頻率為0.5 Hz的余弦波周期荷載試驗(yàn)方案,如圖1所示。砂巖在靜態(tài)壓縮條件下的壓密階段為0~14.4 MPa,確定循環(huán)加載的循環(huán)荷載下限為40 MPa,這樣可避免壓密階段對(duì)循環(huán)荷載過(guò)程中砂巖變形特性的影響。
2.1 軸向變形規(guī)律
圖2為不同振幅循環(huán)荷載作用下峰值、谷值應(yīng)變-循環(huán)次數(shù)曲線。
圖1 砂巖的應(yīng)力-應(yīng)變曲線Fig.1 Curves of stress-strain of sandstone samples
圖2 循環(huán)荷載作用下砂巖的軸向應(yīng)變-循環(huán)次數(shù)曲線Fig.2 Curves of axial strain-cycle number of sandstone samples under cyclic loading
文獻(xiàn)[3]將循環(huán)荷載下巖石的變形分為3個(gè)階段:初始階段、等速階段、加速階段。在循環(huán)荷載過(guò)程中各個(gè)階段的應(yīng)變?cè)黾臃纫?jiàn)表1。
表1 不同變形階段應(yīng)變變化幅度Table 1 Variations in different stages of deformation strain %
在應(yīng)力水平分別為42.3%~63.5%,42.3%~74.1%,42.3%~84.7%,42.3%~90.0%,42.3%~100%時(shí),對(duì)應(yīng)的初始階段分別為前30,40,50,80,95次循環(huán)。由表1可知,在初始階段,對(duì)應(yīng)應(yīng)力水平的谷值應(yīng)變?cè)黾臃葹?.009%,0.015%,0.029%, 0.046%,0.053%明顯大于對(duì)應(yīng)應(yīng)力水平的峰值應(yīng)變?cè)黾臃?.008%, 0.016%, 0.022%, 0.044%, 0.052%;在等速階段,當(dāng)循環(huán)荷載上限大于屈服應(yīng)力時(shí),谷值應(yīng)變?cè)黾臃?.013%,0.012 2%大于峰值0.010%,0.012%,但循環(huán)荷載上限小于屈服應(yīng)力時(shí),恰好相反??傻?屈服應(yīng)力是巖石在循環(huán)荷載下變形特性發(fā)生變形的轉(zhuǎn)折點(diǎn);應(yīng)力水平越高,軸向變形的初始階段在整個(gè)變形發(fā)展過(guò)程中所占比例越大,而初始階段的變形量所占總變形量的比例卻越小。
圖3為巖樣在循環(huán)荷載作用下軸向應(yīng)變幅值隨循環(huán)次數(shù)和振幅的變化曲線。
圖3 軸向應(yīng)變幅值與循環(huán)次數(shù)和應(yīng)力振幅曲線Fig.3 Curves of axial strain amplitude and cycle number,stress amplitude of sandstone samples
在恒應(yīng)力控制情況下,軸向應(yīng)變幅值的減小或增大,反映了循環(huán)荷載作用下砂巖的循環(huán)硬化或軟化的特征[31]。當(dāng)應(yīng)力水平為42.3%~63.5% , 42.3%~74.1 % ,在初始階段軸向應(yīng)變幅值由0.095%增大至0.110% ,由0.015 1%增大至0.153% ,巖樣處于循環(huán)的硬化階段;在等速階段軸向應(yīng)變幅值基本不變?yōu)?.112% ,0.152% ,巖樣處于循環(huán)的軟化階段。循環(huán)荷載的軸向變形過(guò)程是一個(gè)由循環(huán)硬化到循環(huán)軟化變化的過(guò)程。當(dāng)應(yīng)力水平為42.3%~84.7% , 42.3%~90.0% , 42.3%~100% ,軸向應(yīng)變幅值在變形初始階段由0.221%減小至0.198% ,由0.226%減小至0.224% ,由0.259%減小至0.258% ;在等速加載階段和加速階段由于巖樣抵抗變形的能力逐漸減弱,軸向應(yīng)變幅值呈增大的趨勢(shì),循環(huán)荷載的軸向變形過(guò)程是一個(gè)循環(huán)硬化階段過(guò)程,由圖3(b)也可看出,隨著應(yīng)力水平的增大,軸向應(yīng)變一直朝著循環(huán)軟化的方向發(fā)展,在相同循環(huán)次數(shù)時(shí),軸向應(yīng)變幅值與應(yīng)力振幅存在一定的線性關(guān)系。由此可得,屈服應(yīng)力是巖石在循環(huán)荷載下軸向循環(huán)硬化與軟化特性發(fā)生變化的分界點(diǎn)。
2.2 環(huán)向變形規(guī)律
不同應(yīng)力振幅循環(huán)荷載下砂巖的應(yīng)力-環(huán)向峰值和谷值應(yīng)變曲線如圖4所示。由圖4可以看出,當(dāng)應(yīng)力水平為42.3%~63.5%時(shí),環(huán)向峰值應(yīng)變由0.065%增大至0.067%后減小至0.045%,谷值應(yīng)變由0.055%增大至0.057%后減小至0.036%;應(yīng)力水平為42.3%~74.1%,峰值應(yīng)變由0.075%增大至0.079%后減小至0.069%,谷值應(yīng)變由0.064%增大至0.067%后減小至0.057%,這是由于在循環(huán)加載的過(guò)程中,經(jīng)歷初始階段后,由于該巖樣為鈣質(zhì)長(zhǎng)石砂巖,細(xì)中粒砂質(zhì)結(jié)構(gòu),膠結(jié)類(lèi)型為孔隙式,巖樣內(nèi)部微觀結(jié)構(gòu)發(fā)生緩慢變化,砂巖顆粒向內(nèi)部發(fā)生緩慢滑移,大部分內(nèi)部孔隙發(fā)生密實(shí),環(huán)向變形由膨脹變形逐漸變?yōu)槭湛s變形。應(yīng)力水平為42.3%~84.7%, 42.3%~90.0%,42.3%~100%時(shí),環(huán)向峰值、谷值應(yīng)變隨循環(huán)次數(shù)的增加而增大,說(shuō)明環(huán)向變形表現(xiàn)為膨脹變形。由此可得:當(dāng)循環(huán)荷載上限小于砂巖屈服應(yīng)力時(shí),在初始加載階段環(huán)向變形表現(xiàn)為膨脹變形,在等速階段則為收縮變形;當(dāng)循環(huán)荷載上限大于屈服應(yīng)力時(shí),環(huán)向變形在整個(gè)循環(huán)過(guò)程中表現(xiàn)為膨脹變形。屈服應(yīng)力是環(huán)向變形由收縮變形到膨脹變形轉(zhuǎn)化的轉(zhuǎn)折點(diǎn)。
圖4 循環(huán)荷載作用下環(huán)向峰值、谷值應(yīng)變與循環(huán)次數(shù)曲線Fig.4 Curves of lateral strain-cycle number of sandstone samples under cyclic loading
圖5為環(huán)向應(yīng)變幅值與應(yīng)力振幅、循環(huán)次數(shù)的變化曲線,可以看出,當(dāng)應(yīng)力水平為42.3%~84.7%, 42.3%~90.0%,42.3%~100%時(shí),環(huán)向應(yīng)變幅值在初始階段急速增大至0.013 9%,0.016 9%, 0.022 8%,在等速階段略微增大,加速階段急速增大;當(dāng)應(yīng)力水平為42.3%~63.5%,42.3%~74.1% 時(shí),環(huán)向應(yīng)變幅值一直減小直至0.009%,0.011 6%保持不變。說(shuō)明當(dāng)循環(huán)荷載上限大于屈服應(yīng)力時(shí),環(huán)向變形的初始階段發(fā)生循環(huán)軟化,在等速階段發(fā)生循環(huán)硬化,循環(huán)加載的環(huán)向變形過(guò)程是一個(gè)由循環(huán)軟化到循環(huán)硬化變化的過(guò)程,當(dāng)循環(huán)荷載上限小于屈服應(yīng)力時(shí),循環(huán)加載的環(huán)向變形過(guò)程是一個(gè)循環(huán)硬化的過(guò)程,環(huán)向的循環(huán)硬化規(guī)律恰好與軸向循環(huán)硬化規(guī)律相反。環(huán)向應(yīng)變幅值與應(yīng)力振幅呈非線性關(guān)系,如圖5(a)所示。
圖5 環(huán)向應(yīng)變幅值與應(yīng)力振幅、循環(huán)次數(shù)的關(guān)系曲線Fig.5 Curves of lateral strain amplitude and stress amplitude,cycle number of sandstone samples
2.3 體積變形規(guī)律
體積應(yīng)變是軸向應(yīng)變以及橫向應(yīng)變的綜合體現(xiàn)。圖6為體積應(yīng)變與應(yīng)力振幅,體積應(yīng)變幅值與循環(huán)次數(shù)的關(guān)系曲線,由圖6(a)可知,在循環(huán)荷載過(guò)程中巖樣的體積一直朝著膨脹的方向發(fā)展,應(yīng)力振幅越大,體積越易膨脹。由圖6(b)可知,體積應(yīng)變幅值與軸向應(yīng)變幅值變化規(guī)律基本相同。
通過(guò)以上軸向、環(huán)向及體積變形特性的分析,得到以下結(jié)論:屈服應(yīng)力(與循環(huán)荷載上限75.92 MPa相等)為砂巖變形特性,收縮與膨脹變形,循環(huán)硬化和軟化特性出現(xiàn)變化的一個(gè)分界點(diǎn),砂巖的環(huán)向變形在分界點(diǎn)循環(huán)荷載上限之上和之下表現(xiàn)出不同的變形特性,當(dāng)循環(huán)荷載上限在分界點(diǎn)之下時(shí),循環(huán)軟硬化特性是與巖石顆粒和彈性形變有關(guān);當(dāng)循環(huán)荷載上限在分界點(diǎn)之上時(shí),循環(huán)軟硬化特性是與裂紋的活動(dòng)有關(guān)。
謝和平等[32-33]認(rèn)為巖體單元在外力作用下產(chǎn)生變形時(shí),假設(shè)該物理過(guò)程與外界沒(méi)有熱交換,外力功所產(chǎn)生的總輸入能量為式中,Ud為巖體單元耗散能;Ue為巖體單元的可釋放彈性應(yīng)變能。
圖6 體積應(yīng)變-應(yīng)力振幅,體積應(yīng)變幅值-循環(huán)次數(shù)曲線Fig.6 Curves of volumetric strain-stress amplitude andvolumetric strain amplitude-cycle number
能量耗散是反映巖石內(nèi)部微缺陷的不斷閉合,新生裂隙發(fā)展演化的本質(zhì)屬性。巖石在循環(huán)加載過(guò)程中,所吸收的能量,一部分形成彈性應(yīng)變能;一部分以聲能、熱能、輻射能與產(chǎn)生新塑性區(qū)所需要的能量等形式消耗掉[34],這里稱(chēng)為耗散能。一些學(xué)者[13-14]將巖石在循環(huán)荷載下形成的滯回環(huán)面積大小用于描述耗散能大小。圖7(a)和(b)為循環(huán)荷載作用下試樣單位體積耗散能與應(yīng)力振幅、循環(huán)次數(shù)的變化曲線,由圖7(b)可知,可以將循環(huán)荷載過(guò)程中單位體積耗散能發(fā)展可以劃分為3個(gè)階段:開(kāi)始階段急速下降;經(jīng)過(guò)一定的周期之后逐漸趨于穩(wěn)定,以等速發(fā)展;臨近疲勞破壞又逐漸加速破壞。借用循環(huán)荷載巖石變形過(guò)程,把能量耗散過(guò)程分為初始階段、等速階段和加速階段。在初始階段,耗散能隨著循環(huán)次數(shù)的增加而急速減小,而后逐漸趨于穩(wěn)定,這是由于在循環(huán)荷載初期,能量主要消耗在試樣內(nèi)部微缺陷的閉合上,隨著循環(huán)次數(shù)的增加試樣逐漸被壓密,耗散能減小。而在等速階段,當(dāng)循環(huán)荷載上限小于砂巖屈服應(yīng)力時(shí),能量主要以聲能、熱能與塑性變形所需要的能量等形式消耗掉,隨著循環(huán)次數(shù)的增加,耗散能逐漸趨于穩(wěn)定;當(dāng)循環(huán)荷載上限大于屈服應(yīng)力時(shí),能量主要消耗在微裂紋的萌生、有效擴(kuò)展和產(chǎn)生新塑性區(qū)上,同時(shí)伴隨著以聲能、熱能等形式的能量耗散,隨著循環(huán)次數(shù)的增加,在等速變形階段,耗散能基本保持不變,而在加速變形階段,能量主要消耗在裂紋的貫通上,耗散能急速增大。同時(shí),由圖7(b)可知,在循環(huán)荷載上限高于屈服應(yīng)力時(shí)的循環(huán)加載試驗(yàn)中,都可以觀察到穩(wěn)定的3階段發(fā)展規(guī)律,曲線呈現(xiàn)U形,在循環(huán)荷載上限低于屈服應(yīng)力時(shí)的循環(huán)荷載試驗(yàn)時(shí),都可以觀察到穩(wěn)定的2階段發(fā)展規(guī)律,曲線呈現(xiàn)L形。
圖7 耗散能與應(yīng)力振幅、循環(huán)次數(shù)的關(guān)系曲線Fig.7 Curves of Ud-cycle number and stress amplitude ofsandstone samples under cyclic loading
4.1 模型表達(dá)式
Lazan[34]認(rèn)為,材料的非彈性在任何荷載形式下都是存在的,即使在較低的應(yīng)力條件下,仍不是按完全彈性工作,在循環(huán)荷載作用下都表現(xiàn)出應(yīng)力與應(yīng)變曲線不是單值函數(shù),而是形成滯回環(huán)。Lazan將這種損耗能量的性質(zhì)定義為材料阻尼,并對(duì)金屬、混凝土及聚合物等材料進(jìn)行大量的試驗(yàn)研究發(fā)現(xiàn):材料的單位體積阻尼耗能與最大正應(yīng)力幅值的對(duì)數(shù)呈線性關(guān)系為一個(gè)普遍現(xiàn)象。
由圖7(a)擬合結(jié)果可知,耗散能與應(yīng)力振幅呈冪函數(shù)關(guān)系,即符合Lazan材料阻尼理論
式中J,n為巖石性質(zhì)、循環(huán)次數(shù)與應(yīng)力級(jí)別有關(guān)的參數(shù)。
通過(guò)擬合得到J與n的值,見(jiàn)表2。
表2 不同循環(huán)次數(shù)時(shí)J與n的值Table 2 J and n under different cycle number
假設(shè)在循環(huán)加載過(guò)程中J,n與循環(huán)次數(shù)N有如下關(guān)系:
式中,a,b,c,d分別為與巖石性質(zhì)有關(guān)的參數(shù)。
則式(2)可寫(xiě)為
則式(5)為耗散能隨循環(huán)次數(shù)變化的演化模型。
4.2 模型驗(yàn)證
為了驗(yàn)證本文提出的耗散能演化模型,對(duì)試樣的能量耗散過(guò)程進(jìn)行回歸分析。以式(5)作為回歸模型,選取應(yīng)力振幅為20,30,40,45 MPa時(shí)的第200次循環(huán)的試驗(yàn)結(jié)果進(jìn)行回歸分析,回歸參數(shù):a= 2.189 9,b=0.013 1,c=0.000 131,d= -0.166 8。圖8分別為應(yīng)力振幅為20,30,40,45 MPa時(shí)循環(huán)加載試驗(yàn)數(shù)據(jù)與計(jì)算結(jié)果的對(duì)比曲線,不難看出本文所提模型可以較好地反映砂巖在循環(huán)加載過(guò)程中的能量耗散行為。
圖8 回歸模型的計(jì)算結(jié)果與試驗(yàn)結(jié)果的比較Fig.8 Comparison of regression model with test results
當(dāng)Δσ= 0,σmax為任意值時(shí),滯回環(huán)面積為0, Ud=0,因此式(5)滿足條件;當(dāng)Δσ取最大應(yīng)力振幅Δσ=σmax-σmin=54.46 MPa時(shí),σmax=σ0時(shí),試樣在循環(huán)加載過(guò)程中容易發(fā)生疲勞破壞,圖9為疲勞變形過(guò)程中試驗(yàn)數(shù)據(jù)與計(jì)算結(jié)果對(duì)比曲線及誤差分析,可以看出該模型的計(jì)算結(jié)果誤差不超過(guò)5%,計(jì)算結(jié)果精度較高,說(shuō)明該模型能夠描述疲勞變形的初始階段和等速階段的能量耗散行為。
圖9 回歸模型的誤差分析Fig.9 Error analysis of regression model
(1)單軸壓縮條件下的砂巖屈服應(yīng)力是其在循環(huán)加載過(guò)程中軸向變形特性出現(xiàn)變化的分界點(diǎn)。當(dāng)循環(huán)荷載上限大于砂巖屈服應(yīng)力時(shí),軸向變形過(guò)程是一個(gè)由循環(huán)硬化到循環(huán)軟化變化的過(guò)程。而循環(huán)荷載上限小于砂巖屈服應(yīng)力時(shí),軸向變形過(guò)程是一個(gè)循環(huán)硬化的過(guò)程。
(2)循環(huán)載荷上限小于砂巖屈服應(yīng)力時(shí),在初始加載階段環(huán)向應(yīng)變表現(xiàn)為膨脹變形;在等速加載階段則表現(xiàn)為收縮變形。而循環(huán)載荷上限大于屈服應(yīng)力時(shí),環(huán)向應(yīng)變表現(xiàn)為膨脹變形。
(3)基于Lazan材料阻尼理論,建立了耗散能隨循環(huán)次數(shù)變化的演化方程,其計(jì)算結(jié)果與試驗(yàn)數(shù)據(jù)吻合較好,誤差不超過(guò)5%。
參考文獻(xiàn):
[1]馬林建,劉新宇,馬千里,等.爆炸荷載作用下巖石介質(zhì)中大跨度被覆結(jié)構(gòu)動(dòng)力響應(yīng)分析[J].煤炭學(xué)報(bào),2011,36(S2):416-420.
Ma Linjian,Liu Xinyu,Ma Qianli,et al.On dynamic responses of large-span revetment structures subjected to blast loads in rock medium[J].Journal of China Coal Society,2011,36(S2):416-420.
[2]宗 琦.巖石爆破的擴(kuò)腔作用及能量消耗[J].煤炭學(xué)報(bào),1997, 22(4):392-396.
Zong Qi.Function of cavity expansion and energy consumption in rock blasting[J].Journal of China Coal Society,1997,22(4):392-396.
[3]黎立云,徐志強(qiáng),謝和平,等.不同沖擊速度下巖石破壞能量規(guī)律的實(shí)驗(yàn)研究[J].煤炭學(xué)報(bào),2011,36(12):2007-2011.
Li Liyun,Xu Zhiqiang,Xie Heping,et al.Failure experimental study on energy laws of rock under differential dynamic impact velocities [J].Journal of China Coal Society,2011,36(12):2007-2011.
[4]金解放,李夕兵,殷志強(qiáng),等.軸壓和循環(huán)沖擊次數(shù)對(duì)砂巖動(dòng)態(tài)力學(xué)特性的影響[J].煤炭學(xué)報(bào),2012,37(6):924-930.
Jin Jiefang,Li Xibing,Yin Zhiqiang,et al.Effects of axial pressure and number of cyclic impacts on dynamic mechanical characteristics of sandstone[J].Journal of China Coal Society,2012,37(6):924-930.
[5]吳愛(ài)軍,蔣承林,唐 俊.瓦斯突出作用下煤巖體中沖擊波傳播規(guī)律的研究[J].煤炭學(xué)報(bào),2010,35(10):1644-1648.
Wu Aijun,Jiang Chenglin,Tang Jun.Study on propagation laws of shock wave in coal-rock mass under the effect of gas outburst[J].Journal of China Coal Society,2010,35(10):1644-1648.
[6]苗勝軍,樊少武,蔡美峰,等.基于加卸載響應(yīng)比的載荷巖石動(dòng)力學(xué)特征試驗(yàn)研究[J].煤炭學(xué)報(bào),2009,34(3):329-333.
Miao Shengjun,Fan Shaowu,Cai Meifeng,et al.Dynamic characteristics experiment study of loading rock based on theory of load unload response ratio[J].Journal of China Coal Society,2009,34(3): 329-333.
[7]彭瑞東,鞠 楊,高 峰,等.三軸循環(huán)加卸載下煤巖損傷的能量機(jī)制分析[J].煤炭學(xué)報(bào),2014,39(2):245- 252.
Peng Ruidong,Ju Yang,Gao Feng,et al.Energy analysis on damage of coal under cyclical triaxial loading and unloading conditions[J].Journal of China Coal Society,2014,39(2):245-252.
[8]李 楠,王恩元,趙恩來(lái),等.巖石循環(huán)加載和分級(jí)加載損傷破壞聲發(fā)射實(shí)驗(yàn)研究[J].煤炭學(xué)報(bào),2010,35(7):1099-1103.
Li Nan,Wang Enyuan,Zhao Enlai,et al.Experiment on acoustic emission of rock damage and fracture under cyclic loading and multi-stage loading[J].Journal of China Coal Society,2010, 35(7):1099-1103.
[9]葛修潤(rùn).周期荷載作用下巖石大型三軸試件的變形和強(qiáng)度特性研究[J].巖土力學(xué),1987,8(2):11-19.
Ge Xiurun.Study of deformation and strength behavior of the largesized triaxial rock samples under cyclic loading [J].Rock and Soil Mechanics,1987,8(2):11-19.
[10]葛修潤(rùn),盧應(yīng)發(fā).循環(huán)荷載作用下巖石疲勞破壞和不可逆變形問(wèn)題的探討[J].巖土工程學(xué)報(bào),1992,14(3):56-60.
Ge Xiurun,Lu Yingfa.Study on fatigue failure and irreversible deformation problem of rock under cyclic load[J].Chinese Journal of Geotechnical Engineering,1992,14(3):56-60.
[11]葛修潤(rùn),蔣 宇,盧允德,等.周期荷載作用下巖石疲勞變形特性試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2003,22(10):1581-1585.
Ge Xiurun,Jiang Yu,Lu Yunde,et al.Testing study on fatigue deformation law of rock under cyclic loading[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(10):1581-1585.
[12]Bagde M N,Petro? V.Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J].International Journal of Rock Mechanics and Mining Sciences,2005,42(2): 237-250.
[13]Bagde M N,Petro? V.Fatigue and dynamic energy behavior of rock subjected to cyclical loading[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(1):200-209.
[14]Xiao J Q,Ding D X,Jiang F L,et al.Fatigue damage variable and evolution of rock subjected to cyclic loading[J].International Journal of Rock Mechanics and Mining Sciences,2010,47(3):461-468.
[15]郭印同,趙克烈,孫冠華,等.周期荷載下鹽巖的疲勞變形及損傷特性研究[J].巖土力學(xué),2011,32(5):1353-1359.
Guo Yintong,Zhao Kelie,Sun Guanhua,et al.Experimental study of fatigue deformation and damage characteristics of salt rock under cyclic loading[J].Rock and Soil Mechanics,2011,32(5): 1353-1359.
[16]王者超,趙建綱,李術(shù)才,等.循環(huán)荷載作用下花崗巖疲勞力學(xué)性質(zhì)及其本構(gòu)模型[J].巖石力學(xué)與工程學(xué)報(bào),2012,31(9): 1888-1900.
Wang Zhechao,Zhao Jiangang,Li Shucai,et al.Fatigue mechanical behavior of granite subjected to cyclic load and its constitutive modeL[J].Chinese Journal of Rock Mechanics and Engineering,2012, 31(9):1888-1900.
[17]Liu Enlong,He Siming.Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions[J].Engineering Geology,2012,125(27):81-91.[18]Araei A Aghaei,Razeghi H R,Ghalandarzadeh A.Effects of loading rate and initial stress state on stress-strain behavior of rock fill materials under monotonic and cyclic loading conditions[J].Scientia Iranica,2012,9(15):1220-1235.
[19]Li Ning,Zhang Ping,Chen Yunsheng,et al.The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading [J].International Journal of Rock Mechanics & Mining Sciences,2001,38(7):1071-1079.
[20]Li Ning,Zhang Ping,Chen Yunsheng,et al.Fatigue properties of cracked,saturated and frozen sandstone samples under cyclic loading [J].International Journal of Rock Mechanics & Mining Sciences,2003,40(1):145-150.
[21]劉建鋒,謝和平,徐 進(jìn),等.循環(huán)荷載作用下巖石阻尼特性的試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2008,27(4):712-717.
Liu Jianfeng, Xie Heping, Xu Jin, et al.Experimental study on damping characteristics of rock under cyclic loading[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(4):712-717.
[22]劉建鋒,徐 進(jìn),李青松,等.循環(huán)荷載下巖石阻尼參數(shù)測(cè)試的試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2010,29(5):1036-1041.
Liu Jianfeng,Xu Jin,Li Qingsong,et al.Experimental research on damping parameters of rock under cyclic loading[J].Chinese Journal of Rock Mechanics and Engineering,2010,29 (5):1036 -1041.
[23]許 江,楊秀貴,王 鴻,等.周期性荷載作用下巖石滯回曲線的演化規(guī)律[J].西南交通大學(xué)學(xué)報(bào),2005,40(6):754-758.
Xu Jiang,Yang Xiugui,Wang Hong,et al.Evolution law of hysteresis curve of rock under cyclic loading[J].Journal Southwest Jiaotong University,2005,40(6):754-758.
[24]許 江,鮮學(xué)福,王 鴻,等.循環(huán)加、卸載條件下巖石類(lèi)材料變形特性的實(shí)驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2006,25(S1): 3040-3045.
Xu Jiang,Xian Xuefu,Wang Hong,et al.Experimental study on rock deformation characteristics under cycling loading and unloading conditions[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(S1):3040-3045.
[25]許 江,唐曉軍,李樹(shù)春,等.周期性循環(huán)載荷作用下巖石聲發(fā)射規(guī)律試驗(yàn)研究[J].巖土力學(xué),2009,30(5):1241-1246.
Xu Jiang,Tang Xiaojun,Li Shuchun,et al.Experimental research on acoustic emission rules of rock under cyclic loading[J].Rock and Soil Mechanics,2009,30(5):1241-1246.
[26]許 江,李樹(shù)春,唐曉軍,等.單軸壓縮下巖石聲發(fā)射定位實(shí)驗(yàn)的影響因素分析[J].巖石力學(xué)與工程學(xué)報(bào),2008,27(4):765-773.
Xu Jiang,Li Shuchun,Tang Xiaojun,et al.Influential factors of accoustic emission locaion experiment of rock under uniaxial conpression[J].Chinese Journal of Rock Mechanics and Engineering, 2008,27(4):765-773.
[27]許 江,李樹(shù)春,陶云奇,等.巖石低周疲勞損傷模型與損傷變量表達(dá)方法[J].巖土力學(xué),2009,30(6):1611-1615.
Xu Jiang,Li Shuchun,Tao Yunqi,et al.Low cycle fatigue damage model and damage variable expression of rock [J].Rock and Soil Mechanics,2009,30(6):1611-1615.
[28]Li Shuchun,Xu Jiang,Tao Yunqi,et al.Study on damages constitutive model of rocks based on lognormal distribution[J].Journal of Coal Science & Engineering,2007,13(4):430-433.
[29]李樹(shù)春.周期荷載作用下巖石變形與損傷規(guī)律及其非線性特征[D].重慶:重慶大學(xué),2008:25-26.
Li Shuchun.Deformation and damage law and its nonlinear characteristics of rock under cyclic load[D].Chongqing:Chongqing Universtiy,2008:25-26.
[30]楊永杰,宋 楊,楚 俊.循環(huán)荷載作用下煤巖強(qiáng)度及變形特征試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2007,26(1):201-205.
Yang Yongjie,Song Yang,Chu Jun.Experimental study on characteristics of strength and deformation of coal under cyclic loading [J].Chinese Journal of Rock Mechanics and Engineering,2007, 26(1):201-205.
[31]席道瑛,劉小燕,張程遠(yuǎn).應(yīng)力控制疲勞載荷作用下循環(huán)硬化的應(yīng)變響應(yīng)[J].巖石力學(xué)與工程學(xué)報(bào),2003,22 (11):1807 -1810.
Xi Daoying,Liu Xianyan,Zhang Chengyuan.Straln response of cyclic hardening under faltlgueloading on saturated rock[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1807-1810.
[32]謝和平,鞠 楊,黎立云,等.巖體變形破壞過(guò)程的能量機(jī)制[J].巖石力學(xué)與工程學(xué)報(bào),2008,27(9):1729-1740.
Xie Heping,Ju Yang,Li Liyun,et al.Energy mechanism of deformation and failure of rock masses[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(9):1729-1740.
[33]謝和平,彭瑞東,鞠 楊.巖石變形破壞過(guò)程中的能量耗散分析[J].巖石力學(xué)與工程學(xué)報(bào),2004,23(21):3565-3570.
Xie Heping,Peng Ruidong,Ju Yang.Energy dissipation of rock deformation and fracture[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(21):3565-3570.
[34]Lazan B J.Damping of material and members in structural mechanics[M].London:Pergamon Press,1968:41-46.
趙永川,楊天鴻,肖福坤,等.西部弱膠結(jié)砂巖循環(huán)載荷作用下塑性應(yīng)變能變化規(guī)律[J].煤炭學(xué)報(bào),2015,40(8):1813-1819.doi: 10.13225/ j.cnki.jccs.2014.1192
Zhao Yongchuan,Yang Tianhong,Xiao Fukun,et al.The variation law of plastic strain energy of western weak cemented sandstone during cyclic loading experiment[J].Journal of China Coal Society,2015,40(8):1813-1819.doi:10.13225/ j.cnki.jccs.2014.1192
He Mingming,Chen Yunsheng,Li Ning,et al.Deformation and energy characteristics of sandstone subjected to uniaxial cyclic loading[J].Journal of China Coal Society,2015,40(8):1805-1812.doi:10.13225/ j.cnki.jccs.2014.1226
Deformation and energy characteristics of sandstone subjected to uniaxial cyclic loading
HE Ming-ming,CHEN Yun-sheng,LI Ning,ZHU Cai-hui
(Institute of Rock and Soil Mechanics,Xi’an University of Technology,Xi’an 710048,China)
Abstract:In order to investigate the deformation,cyclic softening and hardening and energy properties of sandstone, the tests of sandstone samples under different amplitudes cyclic loading were conducted on WDT-1500 reactive material testing machine.A dissipated energy evolution equation with cycle number was founded.In the tests,the following conclusion could be drawn.The lateral and axial deformation characteristics of sandstone are different at the initial and constant speed stages,when the upper cyclic loading is above or below yield stress.The yield stress of sandstone under uniaxial compression could be the peak stress corresponding to the point transferring from cyclic softening to cyclic hardening.The characteristics of dissipated energy are different in the whole process,and the shape of evolution can be U shape or L shape.A dissipated energy evolution equation is proposed for sandstone,and the predicted energy dissipation behavior is consistent with the observations in the tests,which shows that the evolution equation is capable of describing the energy dissipation behavior of sandstone.
Key words:sandstone;cyclic loading;cyclic softening and hardening;dissipated energy evolution;deformation
通訊作者:陳蘊(yùn)生(1962—),男,副教授。E-mail:yschen@ xaut.edu.cn
作者簡(jiǎn)介:何明明(1986—),男,陜西寶雞人,博士研究生。E-mail:hmm-hemingming@ 163.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51179153);國(guó)家自然科學(xué)基金青年科學(xué)基金資助項(xiàng)目(51308456)
收稿日期:2014-09-15
中圖分類(lèi)號(hào):TD315;TU45
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0253-9993(2015)08-1805-08